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Abstract. Complete lists of number fields, of given degree n and unramified
outside a given finite set S of primes, are both of intrinsic interest and useful
in some applications. For degrees n ≤ 5 and S = {∞, 2, 3}, the complete lists
have appeared previously; there are in total 85 such fields. Here we give the
complete list for n = 6 and S = {∞, 2, 3}, finding in particular exactly 398
such fields. We use a three-pronged approach to obtain this classification: an
exhaustive computer search, sextic twinning, and class field theory. Also we
completely identify the 2-adic and 3-adic completions of all these degree ≤ 6
fields, this information being one of the focal points of interest and essential
in applications.

There is a considerable literature on the classification of number fields by means
of their discriminants. At present for n = 3, 4, 5, 6, 7 there are large tables,
available at [B], giving all number fields of degree n and absolute discriminant less
than certain bounds.

It would also be interesting to have complete tables of number fields unramified
outside a given finite set S of primes. For a given degree n, these sets of number
fields are finite, by a classical theorem of Hermite. For a recent survey of the general
subject of number fields with prescribed ramification, we recommend [H]; there it
is made clear that very little is known about the set of non-solvable number fields
unramified outside a given S.

In this paper, we focus on the set S = {∞, 2, 3}. We present tables for degrees ≤
6, the following chart giving an overview the situation.

Degree n Sn An Hn Upper Bound for |D| Method
2 7 – – 233 = 24 Trivial
3 8 1 – 2335 = 1,944 Old tables or CFT
4 22 1 39 21135 = 497,664 Old tables or CFT
5 5 0 1 21136 = 1,492,992 Old tables
6 54 8 336 214311 = 2,902,376,448 New here
7 214311 = 2,902,376,448
8 231312 ≈ 1.1× 1015

9 231326 ≈ 5.5× 1021

Here the Sn and An columns give the number of fields with the given Galois group.
Similarly, the Hn entry is the number of fields with smaller Galois group.
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For n ≤ 4, the maximal possible absolute discriminant is well within the range
of the existing tables; alternatively, one can use class field theory, as all fields
here are solvable. The case n = 5 is just barely within the range of the existing
tables. For n = 6, the existing tables for arbitrary signature fields cover absolute
discriminants up to 200,000; the maximum possible absolute discriminant required
here is well beyond the range of these tables. The case n = 7 may also be in the
range of our current techniques, while the cases n ≥ 8 certainly are not.

In general, we would like to advocate the point of view that number fields with
discriminants divisible by only a few small primes should be regarded as “jewels”.
On the one hand, they occur very rarely on complete tables of number fields ordered
by absolute discriminant. On the other hand, they are exactly the fields which
appear most often in certain other contexts. For example, they appear as fields
of definition of three-point covers of the projective line, see e.g. [Mal]. Similarly,
they arise naturally in the study of motives. Suppose M is a motive with bad
reduction only in S and ` is a finite prime in S; then the fields which correspond
to the `-adic representations associated to M are ramified only in S. We have
already investigated some simple cases from quite varied geometric situations with
S = {∞, 2, 3}. The fields we tabulate here appear repeatedly. Our tables thus play
an important role in the analysis of certain motives. This application served as our
principal motivation for writing the present paper.

To obtain the complete classification of sextics, we proceed as follows. There
are sixteen conjugacy classes of transitive subgroups of S6. We divide them into
three classes:

• Two “new” non-solvable groups: A6 and S6

• Two “new” solvable groups: C2
3 .C4 and C2

3 .D4

• Twelve “old” groups.

We have made a large specialized computer search for fields of discriminant −j2a3b,
in particular guaranteed to find all the new non-solvable fields. The search, de-
scribed in Section 2, found 62 new non-solvable fields, 54 new solvable fields and
282 old fields. In Section 3.2, we use sextic twinning to directly construct all old
fields from the list of degree ≤ 5 fields; this proves that there are indeed 282 of
them. In Section 3.4, we apply class field theory to the list of C4 and D4 quartics,
proving directly that there are indeed 54 new solvable fields.

The fields we consider here being “jewels”, it is worth studying them in some
detail. We tabulate essentially all such fields of degree ≤ 5 and all of the new sextic
fields. These tables provide common invariants for each field, and also complete
descriptions of their 2-adic and 3-adic completions.

1. Preliminaries

1.1. Conventions. A number field is by definition a finite degree field exten-
sion of Q. Similarly, a p-adic field is a finite degree field extension of Qp. A number
algebra is a finite direct product of number fields and a p-adic algebra is a finite
direct product of p-adic fields. While the focus is on fields, it is natural, as often in
Galois theory, to consider algebras as well. For example, if K is a number field its
p-adic completions Kp are typically only p-adic algebras.

Throughout, when the context is clear, we will drop phrases such as “isomor-
phism classes of” and “up to isomorphism”. For example, when we say there are
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exactly 398 sextic number fields with discriminant −j2a3b, we of course mean 398
isomorphism classes of such fields.

With respect to Galois theory, we work with Q, the algebraic closure of Q in
C. We fix also algebraic closures Q2 ⊃ Q and Q3 ⊃ Q. So we have unambiguously
defined decomposition groups Dv := Gal(Qv/Qv) for v = ∞, 2, and 3.

If K is a number algebra, its root set is by definition X := Hom(K, Q). The
construction K 7→ X gives an antiequivalence between the category of number
algebras and the category of finite Gal(Q/Q)-sets, number fields corresponding to
transitive Gal(Q/Q)-sets. The Galois group of K is by definition the image of
Gal(Q/Q) in the symmetric group SX . Thus, for example, for a sextic number
field K, one often has Gal(K) ∼= S6. Similarly, one has decomposition groups
Gal(Kv) ⊆ Gal(K).

We do our best to consider the place ∞ of Q on an equal footing with the
remaining places 2, 3, . . . . Accordingly, for us, the discriminant of a number
algebra K is a formal symbol −j2a3b · · · . Here j is the number of complex places
of K and a, b, . . . are as usual. A place is ramified in K iff the corresponding
exponent is positive.

The discriminant class d of a number algebra K is its discriminant considered
as an element of Q×/Q×2. One can think of the discriminant class of a number
field as just its discriminant with all exponents considered in Z/2; equivalently, one
can think of a discriminant class as just a square-free integer.

The absolute discriminant of a number algebra K of discriminant DK is just
the positive integer |DK |. We then define the root discriminant to be rd(K) :=
|DK |1/[K:Q] and the Galois root discriminant of K to be the root discriminant of a
splitting field Kgal, i.e. grd(K) := rd(Kgal).

1.2. Guide to the tables. Here we explain in some detail the format of
Table 1. The main table of this paper, Table 6, has essentially the same format.
The few differences will be explained there.

The possible Galois groups are listed on the second line of the following table.

n = 3 n = 4 n = 5
G S3 A3 S4 A4 D4 C4 V S5 A5 F5 D5 C5

# 8 1 22 1 28 4 7 5 0 1 0 0

Here F5 denotes the Frobenius group F5.F
×

5 of order 20; the other notations are
standard. The third line lists the number of −j2a3b fields with the given Galois
group and degree. Table 1 omits the twenty-eight D4 fields and the four C4 fields;
they will be tabulated along with the sextics in Table 6, where they will play a
useful role as resolvents. Table 1 also omits the seven V fields; they are trivial
from the point of view of classification, being naturally indexed by four-element
subgroups of {−6,−3,−2,−1, 1, 2, 3, 6}.

There is a subtable for each discriminant class d ∈ {−6,−3,−2,−1, 1, 2, 3, 6}.
After the subtable name, there are two lines of header. If d 6= 1, there are two lines
corresponding to the quadratic field D = Q[x]/(x2−d). Finally, there are two lines
for each of the fields K being tabulated.

Our policy throughout is to print invariants of K so that the various aspects
of our situation are each presented as clearly as possible. There are many rela-
tionships among the invariants. Often some even completely determine others, as
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we’ll indicate. Thus we have aimed for maximum clarity at the expense of some
redundancy.

Galois groups, Artin exponents, and root numbers. Let K be one of our listed
fields. The entry G gives the Galois group of K, together with some information
about lifting explained below. The entries in the slots∞, 2, 3 are of the form (cv)wv

.
Here cv is the Artin exponent at v; thus the discriminant of K is −c∞2c23c3 . Also,
wv is the root number at v, a fourth root of unity in C. To save space and increase
readability we use the notation

+ for 1 − for −1
i for i k for −i.

The root number wv(K) differs from the root number wv(D) of the quadratic
discriminant algebra D by a sign. Also, one always has w∞w2w3 = 1. The root
number w∞ is just kc∞ , so in this spot one sees only the symbols 0+, 1k and 2−;
the other root numbers are more subtle to calculate.

Quadratic lifting. For n ≥ 4, the group An has up to isomorphism a unique non-

split double cover Ãn. The group Sn has two similarly well-defined double covers

restricting to Ãn. There are several notations for these covers in the literature, some

conflicting. We let S̃n be the double cover where 2-cycles in Sn lift to elements of

order two; we let Ŝn be the double cover where 2-cycles in Sn lift to elements
of order 4. Given a degree n number algebra K with root set X = Hom(K, Q),

the permutation representation ρK : Gal(Q/Q) → SX may or may not lift to S̃X ;

similarly, it may or may not lift to ŜX .
Lifting criteria in two related languages are given in [S] and [D]. Very simply,

ρK lifts to a ρ̃K ⇐⇒ ∀v, wv(K) = wv(D)

ρK lifts to a ρ̂K ⇐⇒ ∀v, wv(K) = wv(D)(d,−1)v

Here (d,−1)v ∈ {±1} is the Hilbert sign. For convenience, on the discriminant class
d-table we have put the header v in bold-face iff (d,−1)v = −1. If K has Galois

group G, we write G, G̃, Ĝ or G to indicate whether one has no lifting, tilde-lifting
only, hat-lifting only, or both liftings. Perhaps the most interesting fact about the
seven omitted V quartics is the following. Since V is a subgroup of the alternating
group A4, the tilde and hat obstructions coincide for each place v; they all vanish
only for Q(

√
2,
√

3), and so this field only is contained in quaternionic octic fields.

In fact, Q(
√

2,
√

3) is contained in two such −j2a3b fields, one totally real and the
other totally imaginary.

Slope content. In the slot SCp, we give the slope content of Kp at p. By this
we mean the following. The decomposition group Dp = Gal(Kp) has a decreasing
filtration by ramification groups which we index using the Artin upper number-
ing system. The slopes of Dp are the indices c of the non-trivial subquotients
Qc

p = Dc
p/D>c

p . The group Q0
p = Dp/Ip, which corresponds to unramified exten-

sions, is cyclic; the group Q1
p, which corresponds to tame ramification, is cyclic of

order prime to p; the groups Qc
p for c > 1 correspond to wild ramification and are

elementary abelian p-groups.
We define the slope content of Kp to be a set, allowing multiplicities, of ordered

pairs (ci, pi), having the following property. The pi are prime and for all slopes c,
∏

ci=c

pi = |Qc
p|.
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Thus our terminology “slope content” is in the spirit of “Jordan-Hölder content”.
The primes pi which appear here are 2, 3, and 5. Exploiting this fact we merely

print the ci in decreasing order using the following conventions. The prime pi = 5
occurs only for the unique F5 field, and we print the corresponding ci in boldface.
When pi = p, we print ci in plain type. Otherwise, we print ci in italics. There
are in fact only the following possibilities for the ci, and we use abbreviations as
follows:

At 2 At 3
0 0

0 0
1 1

4/3, 4/3 = [4/3] 1

2 5/4, 5/4 = [5/4]
8/3, 8/3 = [8/3] 3/2 = t

3 2
7/2 = s 9/4, 9/4 = [9/4]

4 5/2 = f

Here whenever the slopes 4/3, 8/3, 5/4, or 9/4 appear, they appear with multi-
plicity two, allowing our abbreviations. For example, an entry [8/3]10 indicates in
particular that |D2| = 24 and |I2| = 12; in fact here one has D2

∼= S4 and I2
∼= A4.

Galois root discriminants. An irreducible linear representation

ρ : Dp → Aut(V )

of Dp has a slope s(ρ), namely the smallest c ∈ [0,∞) with D>c
p in the kernel of

ρ. The Artin exponent c(ρ) of ρ is then the slope s(ρ) times the degree dim(V ).
Artin exponents of arbitrary representations are then defined by additivity. If ρ is
induced from a permutation representation r : Dp → SX , then the discriminant of

the p-adic algebra Kp corresponding to X is pc(ρ).
In the slot grd, we give the Galois root discriminant δ = 2α3β of K to two

decimal places. Here α is calculated as the mean slope of D2 acting on itself by left
translations; similarly, β as the mean slope of D3 acting on itself by left translations.
Thus, for example, suppose in SC2 we have printed [8/3]10. Of the twenty-four
slopes, three-quarters are 8/3, one-sixth are 1, and one-twelfth are 0; this yields the
average α = 13/6 ≈ 2.17.

Fields with the same Galois group and resolvent are sorted by increasing Galois
root discriminant. Fields with small root discriminant are interesting for a number
of reasons; for examples constructed from the fields here, see [R1].

Class numbers. In the slot h we have printed the class number of K when
different from 1.

A defining equation. The next block gives the coefficients ai of a polynomial

f(x) = xn + a1x
n−1 + · · ·+ an−1x + an ∈ Z[x]

with K = Q[x]/f(x) the field under consideration. Here, for almost-canonicity, we
have chosen f so that the sum T2(f) is minimal. If αi are the complex roots of f ,

T2(f) :=
n∑

i=1

|αi|2.
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2-adic and 3-adic information. The next two blocks of data for K give infor-
mation about the p-adic algebra Kp, for p = 2 and then p = 3. We will describe
these two blocks in parallel. The algebra Kp has the form

Kp = K1
p ×K2

p × · · · ,

each of the factors being fields, say of weakly decreasing degree. There is one line
of data for each field different from Qp. Thus, here there can be at most two lines
of data. Note that even on Table 6, the a priori possibility that Kp is the product
of three quadratic fields in fact does not occur.

The entry f e gives the inertial degree f and the ramification index e; thus the
degree of the field is the product fe. The entry cw gives the Artin exponent c and
the root number w of the local field Kj

p. The entry d gives the discriminant class

of Kj
p . Here the natural map {−6,−3,−2,−1, 1, 2, 3, 6}→ Q×

2 /Q×2
2 is conveniently

bijective; we thus use these labels even in the current local context. On the other
hand, the natural map {−6,−3,−2,−1, 1, 2, 3, 6}→ Q×

3 /Q×2
3 is surjective with ker-

nel {1,−2}. Here we use the labels {−3,−1, 1, 3}— one needs to always remember
that it is −2 and not 2 that is trivial.

If there is no proper quadratic subfield of Kj
p , the entry s is left blank. If there

is exactly one proper quadratic subfield, the entry s gives its discriminant class.
The only other possibility is that there are three quadratic subfields of K j

p; then

Kj
p = K1

p is quartic with Galois group V . There are seven V quartics over Q2; but

it happens that none of them appear as a K1
2 for a field K on either of our tables.

There is one V quartic over Q3; this appears as K1
3 on our tables just for three D4

quartics; in this case, we print V in the column s.
The paper [R2] tabulates all 2-adic and 3-adic fields of degree ≤ 6. The data

(fe, cw, d, s) often suffice to determine Kj
p up to isomorphism. In degrees ≤ 5 there

can be otherwise only a 2-fold or a 3-fold ambiguity. In these cases, we add an
identifying label from {x, y} or from {a, b, c}, according to the scheme in [R2].

The local information just described in fact determines most of the information
in the first block of data. Namely the Artin exponent cp decomposes additively
while the root number wp and the discriminant class d, considered in Q×

p /Q×2
p ,

decompose multiplicatively. For example, for the quartic S4 field with discriminant
−22535, and thus discriminant class d = 6, the decompositions at p = 2 are

c : 5 = 2 + 3
w : i = i · 1
d : 6 = 3 · 2.

Note that for Qp the relevant invariants are trivial: c = 0, w = 1, and d = 1.
This local information also determines the slope content in a less direct way.

For example, suppose n = 4 and K2 is a field. If c = 9 or 10, then the slope content
is s32. If c = 11, then the slope content is 43, 430, or 432, according to whether
the product discriminant class sd is 1, −3, or −1.

Frobenius data. The last block of data gives the Frobenius elements Frp for
p = 5, 7, . . . , 47, as partitions of the degree n. To save space, we do not print 1’s:
thus the partition 4 = 2+ 1+ 1 gets printed just as 2. This information is essential
for identifying fields involved in the 2-adic or 3-adic representations associated to a
motive. For given a motive, one typically has direct access only to Frobenius data,
not to discriminantal data, and certainly not to defining equations.
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1.3. Table for degrees ≤ 5. Table 1 presents the complete table of cubics,
quartics, and quintics with discriminant −j2a3b, excluding the V , C4, and D4

quartics as has been explained. As emphasized in the introduction, this list of
fields is not new. The list of nine cubics is given in [MS], where these nine fields
are studied in considerable detail. All but one of the cubics, quartics, and quintics
appear on the large lists available in Pari format by anonymous ftp from [B]. The
one exception is the highest discriminant quintic, which is covered by [SPD]. On
the other hand, these large lists do not provide all the information that Table 1
does.

Among several things to note in Table 1, we’ll just mention one. There are eight
S3 cubics and one A3 cubic. For all but one of these cubics F , the 3-decomposition
group Gal(F3) coincides with global Galois group Gal(F ). The exception is the
unique cubic with discriminant class −2, for which the 3-local-to-global inclusion is
A3 ⊂ S3. Now up to conjugation there are just two subgroups of S4 surjecting down
to S3 under the resolvent map, namely S4 itself and S3 ⊂ S4. Similarly, there are
just two subgroups of S4 surjecting to A3, namely A4 and A3 ⊂ A4. Now neither
S4 nor A4 is of the form 3-group by 3′-cyclic by cyclic; so they are not quotients
of Gal(Q3/Q3). In conclusion, the 3-completion of all of our A4 or S4 quartics K
has the form Q3 × F3 where F3 is the completion of the resolvent cubic F . This
explains the repetitiveness of the 3-local block of columns.

2. Targeted searches

Let n and D be positive integers. There is a standard method by which one can
make systematic searches for all primitive number fields of degree n and absolute
discriminant ≤ D. Here we quickly review this method. Then we explain, in
more detail, how one can modify it to make much quicker searches for primitive
degree n number fields with absolute discriminant exactly D. It is a question of

Table 1. Low degree fields (Galois group 6= V4, C4, or D4)

Discriminant class: -6

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 1k 3− 1k 0 6 12 3− -6 12 1k 3 + + + – – – –

4.90 2 3 1 + + – – – –

S3 1k 3− 3k 0 3 -2 12 3− -6 -6 13 3k 3 3 3 3 2 2 2 2

10.19 3 t1 e 3 2 2 2 2

S̃4 1k 11− 3k 0 0 8 14 11− -6 -6x 13 3k 3 3 3 3 4 4 2 2

24.24 4 43 t1 6 22 3 2 2 4 4

S̃4 1k 9− 3k 0 0 4 14 9− -6 -1 13 3k 3 3 3 3 4 4 4 4

24.24 s32 t1 -3 22 3 4 4 2 2

S̃4 1k 11− 3k 0 -12 16 14 11− -6 6x 13 3k 3 3 3 3 2 2 4 4

28.82 432 t1 12 22 3 4 4 4 4

S5 1k 11+ 5i 0 -2 -4 14 11+ -6 -6x 13 5i -3 c 5 5 3 32 32 32 32

50.41 43 f10 -9 -4 2 0+ -1 3 5 4 4 4 4
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Discriminant class: -3

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 1k 0+ 1i 0 3 2 0+ -3 12 1i -3 – + – + – + –

1.73 0 1 – + + – + –

S3 1k 2+ 3i 0 0 -2 13 2+ -3 13 3i -3 2 3 2 3 2 3 2

5.72 10 t1 2 e 3 2 e 2

S̃4 1k 8+ 3i 0 0 4 14 8+ -3 13 3i -3 4 3 4 3 4 3 4

16.18 [8/3]10 t1 -6 2 22 3 2 22 4

S3 1k 0+ 5i 0 0 -3 2 0+ -3 -3 13 5i -3 a 2 3 2 3 2 3 2

7.49 0 f1 2 3 3 2 3 2

S̃4 1k 6+ 5i 2 -3 2 22 6+ -3 -3x 13 5i -3 a 4 3 2 3 4 3 4

21.20 2 30 f1 7 2 3 3 4 3 2

S̃4 1k 6+ 5i 2 0 4 14 6+ -3 -1 13 5i -3 a 4 3 4 3 2 3 2

21.20 220 f1 2 4 3 3 4 3 4

S̃4 1k 8+ 5i 0 -6 4 14 8+ -3 3 13 5i -3 a 2 3 4 3 4 3 4

29.98 320 f1 6 4 3 3 2 3 4

S3 1k 2+ 5i 0 0 -12 13 2+ -3 13 5i -3 b 2 3 2 e 2 e 2

11.90 10 f1 2 3 3 2 3 2

S̃4 1k 8+ 5i 0 -6 4 14 8+ -3 13 5i -3 b 2 3 4 22 2 22 4

33.65 [8/3]10 f1 15 4 3 3 4 3 2

S3 1k 2+ 5i 0 0 -6 13 2+ -3 13 5i -3 c 2 e 2 3 2 3 2

11.90 10 f1 2 3 e 2 3 2

S̃4 1k 4+ 5i 2 0 6 14 4+ -3 13 5i -3 c 4 22 4 3 4 3 4

16.82 [4/3]10 f1 3 2 3 22 2 3 2

Discriminant class: -2

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 1k 3i 0+ 0 2 12 3i -2 – – + – + + –

2.83 3 – – – + + –

S3 1k 3i 4+ 0 -3 -10 12 3i -2 -2 13 4+ 1 b 2 2 3 2 3 3 2

12.24 3 3 2 2 2 2 3 3 2

S̃4 1k 9i 4+ 0 -6 8 14 9i -2 3 13 4+ 1 b 4 2 3 4 3 3 4

29.11 s32 2 6 2 2 4 3 3 4

S̃4 1k 11i 4+ 0 0 8 14 11i -2 6 13 4+ 1 b 4 4 3 2 3 3 2

29.11 430 2 -6 4 2 4 3 3 2

S̃4 1k 11i 4+ 0 -12 8 14 11i -2 2x 13 4+ 1 b 2 4 3 4 3 3 4

34.61 2 432 2 18 4 2 2 3 3 4
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Discriminant class: -1

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 1k 2i 0+ 0 1 12 2i -1 2 0+ -1 + – – + + – –

2.00 2 0 + – + + – –

S3 1k 2i 4+ 0 -3 -4 12 2i -1 -1 13 4+ -1 3 2 2 3 3 2 2

8.65 2 20 3 2 3 e 2 2

S̃4 1k 6i 4+ 2 3 6 22 6i -1 -3 13 4+ -1 3 4 4 3 3 4 4

17.31 320 20 3 3 2 3 22 4 2

S̃4 1k 10i 4+ 0 0 16 14 10i -1 -6 13 4+ -1 3 2 4 3 3 2 4

29.11 2 s32 20 -24 3 4 3 22 4 4

S̃4 1k 10i 4+ 0 -6 8 14 10i -1 2 13 4+ -1 3 4 2 3 3 4 2

29.11 2 s32 20 15 3 4 3 22 2 4

Discriminant class: 1

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C3 0+ 0+ 4+ 0 -3 1 3 0+ 1 13 4+ 1 a 3 3 3 3 e e 3

4.33 0 2 3 3 e 3 3 3

A4 2− 6− 4+ 2 6 4 14 6− 1 13 4+ 1 a 3 3 3 3 22 22 3

12.24 220 2 2 3 3 22 3 3 3

Discriminant class: 2

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 0+ 3+ 0+ 0 -2 12 3+ 2 2 0+ -1 – + – – + – +

2.83 3 1 – + – + – +

F5 2− 11− 4+ -2 -2 8 14 11− 2 2x 15 4+ -1 4 5 4 4 5 4 5

16.20 43 100 -1 -10 4 22 4 22 4 22

S5 2− 9− 6+ -1 -2 6 14 9− 2 -1 13 5i -3 c 4 5 4 32 5 4 5

50.41 s32 f10 -6 6 12 1k 3 4 3 32 5 32 5

S5 2− 11− 6+ -1 4 -12 14 11− 2 -2x 13 5i -3 b 32 3 32 4 5 32 5

59.95 432 f10 12 -12 12 1k 3 4 3 32 3 32 22
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Discriminant class: 3

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 0+ 2i 1k 0 -3 12 2i 3 12 1k 3 – – + + – – +

3.46 2 1 – – + – – +

S5 2− 10i 5i -2 2 4 14 10i 3 6 13 5i -3 a 32 4 5 3 32 4 5

50.41 s32 f10 -5 2 2 0+ -1 4 32 5 4 32 3

Discriminant class: 6

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 0+ 3k 1i 0 -6 12 3k 6 12 1i -3 + – – – – + +

4.90 3 1 + – – – + +

S3 0+ 3k 5i 0 -9 -6 12 3k 6 6 13 5i -3 b 3 2 2 2 2 3 3

21.20 3 f1 3 2 2 2 e 3

S4 2− 5i 5i 0 3 2 12 2i 3 13 5i -3 b 3 4 4 4 4 3 3

29.98 32 f1 6 12 3+ 2 3 2 2 4 22 3

S4 2− 9i 5i 0 12 16 14 9i 6 3 13 5i -3 b 3 2 2 4 2 3 3

50.41 4 s32 f1 24 3 4 2 4 22 3

S4 2− 11i 5i 0 12 16 14 11i 6 -2 13 5i -3 b 3 2 4 2 2 3 3

50.41 2 430 f1 6 3 2 2 4 22 3

S̃4 0+ 11k 5i 0 -24 32 14 11k 6 -2 13 5i -3 b 3 4 2 4 4 3 3

50.41 430 f1 24 3 2 2 2 22 3

S4 2− 9i 5i 0 12 4 14 9i 6 3 13 5i -3 b 3 4 4 2 4 3 3

50.41 4 s32 f1 69 3 4 2 2 e 3

S4 2− 11i 5i 0 12 8 14 11i 6 -6x 13 5i -3 b 3 2 4 4 2 3 3

59.95 2 432 f1 42 3 4 2 2 22 3

S4 2− 11i 5i 0 12 16 14 11i 6 -6y 13 5i -3 b 3 4 2 2 4 3 3

59.95 2 432 f1 60 3 4 2 4 22 3

S5 2− 11i 5i -2 4 0 14 11i 6 -6y 13 4+ 1 c 5 4 4 32 4 5 3

41.57 432 21 -6 12 12 1i -3 5 4 32 32 3 5

supplementing the usual archimedean bounds on coefficients with p-adic bounds
for each prime p dividing D. Throughout, we illustrate the generalities with our
particular case n = 6 and D of the form 2a3b.

Let K a number field of the type sought: primitive, degree n, and with absolute
discriminant D. Let OK be its ring of integers and I the product of all prime ideals
in OK over primes p dividing D. For η ∈ I one has its characteristic polynomial

fη(x) = xn + a1x
n−1 + a2x

n−2 + · · ·+ an−1x + an ∈ Z[x].
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In §2.1, we state a version of Hunter’s theorem adapted to this context. It guaran-
tees the existence of one η ∈ I−Z with the corresponding coefficients ai satisfying a
certain quite complicated system of inequalities. In §2.2, we introduce integers vp,i.
They are the largest integers such that every η ∈ I satisfies the congruence pvp,i |ai.
Details of our computer search are given in §§2.3–2.4, and possible improvements
in §2.5.

2.1. Archimedean bounds. The traditional statement of Hunter’s theorem
involves the full ring of integers OK . For targeted searches, we use the completely
analogous statement for our search ideal I .

Theorem 2.1. Let K be a degree n number field with absolute discriminant D.

Let l be the least positive integer contained in I and let m be the order of OK/I.
Finally, let γn be Hermite’s constant for n-dimensional lattices. Then there exists

an element η ∈ I − Z such that

T2(fη) ≤ Tr(η)2

n
+ γn−1

(
m2D

l2n

)1/(n−1)

and 0 ≤ Tr(η) ≤ [nl/2].

For I = OK , this is the usual statement of Hunter’s theorem as it appears, for
example, in [C]. The new factor m2/l2 in the discriminant term gives in practice
much weaker archimedean bounds. The ultrametric bounds in §2.2 more than make
up for this loss. As in the case when I = OK , search times are dependent essentially
on only the discriminant term. In our searches, n = l = 6 and Hermite’s constant
γ5 = 5

√
8, so the discriminant term is (m2D/27)1/5.

The transition from this bound on T2(fη) to explicit bounds on the coefficients
of fη is very subtle and a point of continuing research. In our computer program
we use the methods described in [P, §3].

Remark 2.2. We are interested in both primitive fields and imprimitive fields,
yet the version we have stated of Hunter’s theorem is not suitable for classifying
imprimitive fields K. The problem is that the element η, whose existence is being
asserted, might lie in a proper subfield of K. There is a version of Hunter’s theorem
which applies to imprimitive fields due to Martinet [Mar]. However our search for
primitive fields in fact found all imprimitive fields as well, as we will prove by sextic
twinning and class field theory in §3.

2.2. Ultrametric bounds. Fix p dividing the targeted absolute discriminant
D; thus, p = 2 or p = 3 for the computer search conducted for this paper. Let
c be the Artin exponent at p, so that pc exactly divides D. The considerations
of this section are purely p-adic; we consider p-adic algebras Kp of degree n and
discriminant pc.

The target pc is best thought of as composed of several smaller targets. Accord-
ingly, one aims at these smaller targets separately as follows. Let Qun

p be a maximal
unramified extension of Qp. Consider the base-changed algebra Kun

p = Kp ⊗Qun
p .

It has a canonical decomposition into fields:

Kun
p = Kun,1

p × · · · ×Kun,w
p .

Here we let ej be the degree of Kun,j
p over Qun

p and cj its Artin exponent. Thus∑
ej = n and

∑
cj = c. We define a ramification structure to be a set of pairs
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which can arise in this way, allowing multiplicities of course:

r = {(e1, c1), . . . , (ew, cw)}.
These ramification structures are the smaller targets.

Let Kp be a degree n algebra with ramification structure r as above, say written
with the ei weakly decreasing. Let Ip be the product of the maximal ideals in
OKp

; this is now our local search ideal. Let η ∈ Ip with characteristic polynomial

fη(x) = xn + a1x
n−1 + · · ·+an. From the ei’s alone, one knows that pui | ai where

ui = min

{
u :

u∑

1

ej ≥ i

}
.

These congruences are usually phrased in terms of Newton polygons: ui is the
smallest integer such that (i, ui) is on or above the Newton polygon of Kp.

Recall that if p - ej the field Kun,j
p is tame, and very simply cj = ej − 1.

If p|ej then the field Kun,j
p is wild; its Artin exponent cj is one of finitely many

possibilities, the smallest being ej and the largest being ordp(ej)ej + ej − 1.
Define vi to be the largest integer such that pvi |ai for all η in the search ideal

Ip of any algebra Kp with the given ramification structure r. When each cj is
minimal for ej one has very simply vi = ui. When some cj are non-minimal one
may have vi > ui for some i. We call the vi Newton-Ore exponents because of
the connection with both Newton polygons and Ore’s formulas for discriminants of
Eisenstein polynomials [Or].

For r = {(n, c)}, corresponding to totally ramified fields, the Newton-Ore ex-
ponents have been described in many places; the discussion in [R2] gives examples
particularly relevant for this paper. For r = {(e1, c1), . . . , (ew, cw)}, the numbers vi

are computed by examining the coefficients of f1 · · · fw; here fj has degree ej and is
the general polynomial with coefficients satisfying the corresponding Newton-Ore
congruences; a particular case is examined closely in §2.5 below.

We have calculated the Newton-Ore exponents for all possible sextic ramifica-
tion structures {(e1, c1), . . . , (ew, cw)}, treating the cases p = 2 and p = 3 separately.
Tables 2 and 3 record some of the results. Here is an example, which illustrates
how to read the tables. Take p = 2 and r of the form {(6, c)}, corresponding to
totally ramified sextics. The relevant column is 6c; in general, the tables present
ramification structures as subscripted partitions of 6. The possible values for the
Artin exponent c are 6, 8, 10, and 11. If c is 6, one has only the Newton congruences
2|a1, a2, a3, a4, a5, a6. Table 2 shows the exponents vi in sequence, 111111. As
c increases one gets stronger congruences until for c = 11 one has 2|a2, a4, a6 and
4|a1, a3, a5, which Table 2 records as 212121.

2.3. Combining cases. There are 37 sextic ramification structures at p = 2
and 24 sextic ramification structures at 3. So there are 37 · 24 searches to be done,
each with its own archimedean and ultrametric bounds. However many of our
smaller searches are rendered unnecessary by our larger searches, as we explain
now.

Fix a ramification structure

r = {(e1, c1), . . . , (ew, cw)}
with Artin exponent c =

∑
ci. Let

v = (v1, v2, . . . , v6)
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Table 2. Newton-Ore exponents for p = 2

4c22 4c23 6c

c,2 Cong α1 α c,3 Cong α1 α c Cong α1 α
11,2 113122 17 24 11,3 213132 18 24 11 212121 13 17
10,2 " 16 22 10,3 " 17 22 10 112121 12 16
9,2 112122 15W 21 9,3 " 16 20 8 111121 10 13
8,2 " 14 19 8,3 212132 15w1 19 6 111111 8 10
6,2 " 12 15 6,3 112132 13w2 16
4,2 111122 10x 12 4,3 111122 11X 14

Table 3. Newton-Ore exponents for p = 3

3c111 3c3d 6c

c Cong β1 β c,d Cong β1 β c Cong β1 β
5 121234 13y 13 5,5 221332 14 15 11 221221 13 16
4 " 12 11 4,5 121232 13Y 15 10 121221 12 15
3 111234 11z 10 4,4 " 12 13 9 111221 11 14

3,5 111222 12Z 15 7 111121 9 11
3,4 " 11 13 6 111111 8 10
3,3 " 10 11

be the associated sequence of Newton-Ore exponents; so v6 = w. The ramification
structure r contributes p2v6+c to the critical quantity m2D in Hunter’s theorem.
The exponent 2v6 + c has been printed in Tables 2 and 3, under the heading α1 or
β1.

Consider another ramification structure R = {(E1, C1), . . . , (EW , CW )}, induc-
ing the Artin exponent C and the Newton-Ore exponents (V1, . . . , V6). We say that
R subsumes r iff

Vi ≤ vi for all i = 1, . . . , 6

2V6 + C ≥ 2v6 + c.

We write r � R to indicate this relationship. The point is that the search for all
R2-R3 fields finds also all r2-r3 fields if r2 � R2 and r3 � R3.

For example, on the above table any ramification pattern rp indicated by quotes
is subsumed by the ramification pattern Rp above it, to which the quotes refer. Also,
one has the five indicated relations w1 � W , w2 � W , . . . , z � Z. In particular,
the entire column 3c111 for p = 3 is subsumed by other entries. Among the 37
ramification patterns at 2, the maximal ones are exactly the 8 patterns maximal
on Table 2; similarly, among the 24 ramification patterns at 3, the maximal ones
are exactly the 8 patterns which are maximal on Table 3. Thus, we in fact carry
out 64 = 8 · 8 separate searches, rather than 888 = 37 · 24 searches.

2.4. The computer searches. Each of the 64 searches was carried out in
two stages. The program for the first stage was written in C, utilizing the Pari pro-
gramming library, and was implemented on several Sun and HP workstations. The
program was designed to find all sextic monic polynomials in Z[x] with coefficients
ai satisfying the archimedean, 2-adic, and 3-adic inequalities discussed above. By
far, this was the more time-consuming stage.
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The second stage checked for irreducibility on early polynomials, as defined
below. It then eliminated duplicate fields, and generated most of the information
found in Tables 1 and 6.

The first stage ran each polynomial f through the following screening proce-
dure.

1. Compute the absolute polynomial discriminant of f , and divide out all fac-
tors of 2 and 3. If the result is 1, output f to stage 2. If the result is a
square different from 1, pass f on to step 2.

2. Pass f to step 3 iff T2(f) is below the Hunter bound.
3. Pass f to step 4 iff f is irreducible.
4. Output f to stage 2 iff the absolute field discriminant |DK(f)| is of the form

2a3b.

The order of the tests above is important, typical times for Test i being very
roughly as given in the second column of Table 4; these times are averages based
on 1000 sample polynomials. The third and fourth columns give some data for 2 of

Table 4. Timing data

Time per 611 at 2 611 at 2
polynomial 610 at 3 3535 at 3

Test 1: 0.0013 Seconds 1017101 1301618
Test 2: 0.055 Seconds 4014 4779
Test 3: 0.104 Seconds 1438 2194
Test 4: 0.128 Seconds 1383 2064

Late Fields Found 140 203
Early Fields Found 384 402

Distinct Fields Found 229 215
Distinct Fields on Target 1 11

our 64 searches. The first line gives the number of polynomials inspected, i.e. the
number to which we applied Test 1. The second line gives the number which passed
Test 1 to which we then applied Test 2, and so on. Late fields found indicates the
number of polynomials output by Test 4, whereas early fields found indicates the
number of irreducible polynomials output by Test 1. Distinct fields found represents
the result of combining early and late fields and removing duplicates, while distinct

fields on target represents those which match the targeted ramification structure.
Note that Test 1 is not available when one is looking simply for all fields of

degree n with absolute discriminant less than a given bound D; so here we have
an important time savings inherent in targeted searches. As the numbers indicate,
relatively few polynomials need further testing.

The entries α and β in Tables 2 and 3 are calculated by α = 2α1 −
∑

v2,i and
β = 2β1 −

∑
v3,i. The time required for a given case is roughly proportional to

the number of polynomials inspected, which is in turn proportional to 2α3β. Our
searches for the longest cases, namely 4112c at 2 versus 611 at 3, for c = 2, 3,
inspected approximately half a billion polynomials each.

Remark 2.3. The following brief discussion of the large drop 229 → 1 on
Table 4 throws some further light on the nature of our search. To search for fields
with ramification structure 611 at 2 and 610 at 3, we imposed the congruences 4|a1,
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a3, a5, 2|a2, a4, a6, 3|a1, a3, a6, and 9|a2, a4, a5, in accordance with Tables 2
and 3. Normalize Haar measure so that the corresponding region R in Z6

2 × Z6
3

has total mass one. Let T ⊂ R be the subregion of R consisting of polynomials
with exactly the targeted ramification structure. The region T contains T0 which
is defined by the additional conditions 4 - a6 (“Eisenstein at 2”), 9 - a6 (“Eisenstein
at 3”), and 9 - a1 (forcing c3 = 10 rather than c3 = 11). The mass of T0 is
(1/2)(2/3)(2/3) = 2/9.

In searching all of R, rather than just the target T , we are over-searching by
a factor of less than 4.5, reasonable given the circumstances. In the region T , in
fact T0, we found exactly the one targeted field, listed as the second S6 field on our
d = 2 subtable. In retrospect one sees that our search over R found more than half
of the 398 sextic fields with discriminant −j2a3b. This fact serves as a reminder
that it is relatively easy to produce many sextic fields with discriminant −j2a3b;
the deep assertion in this paper is that we have found all such sextic fields.

2.5. Improvements. Our search was carried out using easy-to-program
bounds, but by no means optimal bounds. For larger n and/or larger targeted
absolute discriminant D it would be important to use better bounds.

Better archimedean bounds. This has been explored by several papers, e.g.
[SPD]. The best results target the different possible ramification patterns −j

separately. For j = 0, i.e. the totally real case, this is a very substantial savings.
As j increases, the savings becomes more modest. Our archimedean bounds were
actually moderately close to optimal since roughly one-third of the polynomials f
we inspected indeed had T2(f) under the search bounds.

Better ultrametric bounds. When the target ramification structures are totally
ramified, our use of coefficient-by-coefficient congruences only is reasonably close to
optimal, as illustrated by Remark 2.3. However in general, it would be important
to take advantage of other more complicated congruences as we indicate by the
following example.

Take p = 2 and target the ramification structure 41122. The relevant product
is then

(x2 + 2ax + 2b)(x4 + 8Ax3 + 4Bx2 + 8Cx + 2D)

= x6 + 2(a + 4A)x5 + 2(b + 2B + 8aA)x4 + 8(aB + C + 2Ab)x3

+ 2(D + 4bB + 8aC)x2 + 4(aD + 4bC)x + 4(bD).

We used only the obvious congruences 2vi | ai with (v1, v2, v3, v4, v5, v6) =
(1, 1, 3, 1, 2, 2), as stated in Table 2. Thus we searched over a lattice with coor-
dinates

b1 = a + 4A b2 = b + 2B + 8aA

b3 = aB + C + 2Ab b4 = D + 4bB + 8aC

b5 = aD + 4bC b6 = bD.

Among the congruences we did not exploit are the following.

b5 ≡ b1b4 (4)

If b4 ≡ 1 (2) then b6 ≡ b2b4 (2)

If b4 ≡ 0 (2) then b6 ≡ b2b4 (4).
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In fact, these are all the congruences modulo 4. Namely, as (a, b, A, B, C, D) runs
over the 4096 elements of (Z/4)6, the vector (b1, b2, b3, b4, b5, b6) runs over exactly
the 384 elements of (Z/4)6 satisfying these congruences. So the incorporation of
just these congruences into the program would give a time savings of roughly a
factor of 10 for the cases involving the ramification structure 41122 at 2.

3. Sextics

In §3.1, we give the complete breakdown of the 398 fields found by the computer
search according to Galois group and discriminant class. In §3.2, we prove that the
list of 282 old sextic fields is complete using the tables of smaller degree fields from
§1.3 and sextic twinning. In §3.3, we tabulate the 116 new sextic fields. Finally in
§3.4, we prove that the list of new solvable sextic fields is complete using class field
theory.

3.1. Summarizing table. The sextic twinning operator t is treated in detail
in [R3]. Here we review just enough for our purposes. If X is a six element set,
one has canonically a second six-element set X t with a natural bijection X → X tt.
Correspondingly, if K is a sextic separable algebra over a field F then one has its
twin algebra Kt. The Galois groups G of K and Gt of Kt are identical as quotient
groups of Gal(F/F ); however the permutation representations X and X t are not
isomorphic, except in degenerate cases where the Galois group is very small. Given
a defining polynomial of a sextic separable algebra, a defining polynomial for its
twin algebra can be computed as a resolvent sextic for the subgroup PGL2(5) ⊂ S6.

If K is a field, there are two possibilities. First, its Galois group G may be
C2

3 .C4, C2
3 .D4, A6, or S6. In this case, Kt is a field not isomorphic to K. These

“new” fields thus come in twin pairs. Second, the Galois group G may be one of
the remaining twelve transitive subgroups of S6. In this case Kt is not a field,
its Galois group Gt not being transitive. Thus these “old” fields are by definition
constructible from fields of smaller degree.

Table 5 gives, for each of the 16 transitive subgroups G of S6, and each of the
eight possible discriminant classes d ∈ {−6,−3,−2,−1, 1, 2, 3, 6}, the number of
sextic fields with Galois group G and discriminant class d found by the search. The
top block summarizes Table 1. The format is similar to the next three blocks which
we describe now. In the column headed by G, we list the 11 transitive subgroups
of S6 which are not in A6. The column labeled by G+ gives information about
G∩A6. In five cases this subgroup is not transitive; then the entry is left blank. In
six cases the subgroup is transitive; then it is given, with the unique exception of
the even subgroup of S2 oεS3. This subgroup is S2 o+A3 which has already appeared
as the even subgroup of S2 o A3. Our notation for subgroups follows [R3] and, in
particular, “o” indicates a wreath product.

On the G row, we have also printed (Gt
+ ⊂)Gt. Here G = Gt but G is acting on

a six element set X , while Gt is acting on the six element set X t. In the old cases,
the action of Gt is intransitive, and the subscripts indicate the orbit structure, fixed
points not being mentioned. For example, D6 = S3S2 acts transitively on X and
with orbit partition 321 on X t.

Finally in the G row, the entries under d 6= 1 refer to G, while the entry under
d = 1, when non-blank, refers to G+. Thus the sum of the sixteen numbers in
boldface corresponding to sextics is the number of sextic fields with discriminant
−j2a3b found by the search, namely 398.
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Table 5. Summarizing table for degrees ≤ 6

|G+| |G| G+⊂G G
t
+⊂G

t −6 −3 −2 −1 1 2 3 6 Tot

Some cubics, quartics, and quintics

3 6 A3⊂S3 1 4 1 1 1 0 0 1 8

12 24 A4⊂S4 3 6 3 3 1 0 0 7 22

60 120 A5⊂S5 1 0 0 0 0 2 1 1 5

Old sextics

6 C6 A3S2 1 1 1 1 1 1 1 7

6 S3gal S3 1 4 1 1 0 0 1 8

12 D6 S3S2 7 4 7 7 8 8 7 48

18 C
2
3 .C2 A3S3 1 4 1 1 0 0 1 8

36 C
2
3 .V S3S3 1 1 4 1 5 5 5 22

12 24 S2 o
+

A3⊂S2 o A3 A4⊂A4S2 1 1 1 1 1 1 1 1 7

24 ⊂S2 o
ε
S3 ⊂S4 3 6 3 3 0 0 7 22

24 48 S2 o
+

S3⊂S2 o S3 S
+
4 S2⊂S4S2 19 16 19 19 22 22 22 15 132

60 120 PSL2(5)⊂PGL2(5) A5⊂S5 1 0 0 0 0 2 1 1 5

New solvable sextics

36 72 C
2
3 .C4⊂C

2
3 .D4 C

2
3 .C4⊂C

2
3 .D4 10 10 4 18 4 8 0 0 50

New non-solvable sextics

360 720 A6⊂S6 A6⊂S6 2 2 0 4 8 26 8 12 54

In the case of sextic fields, one has something of a coincidence: a transitive
subgroup of S6 is primitive iff it is non-solvable. Thus the computer search was
guaranteed to find all the fields only in the cases G = PSL2(5), PGL2(5), A6, and
S6.

3.2. Old fields. Here we use Table 1 and sextic twinning to prove that the
numbers of old sextic fields presented in the previous section are correct, giving
a total of 282 old sextic fields. This shows that the computer search, which was
not guaranteed to find all old fields, in fact did. We then give a short table giving
defining polynomials for five particularly interesting old sextic fields.

Consider first the transitive group S3gal. Sextic S3gal fields are in bijection with
cubic S3 fields via twinning, i.e. via Galois closure in this case. Hence, the S3gal-d
entry on Table 5 must be just the S3-d entry. The cases with Gt = S4, A4, S5, and
A5 are similarly trivial.

Consider next the transitive group C6. These fields are in bijection with ordered
pairs of appropriate fields (L3, L2) by twinning, i.e. by tensor product in this case.
So the C6-d entry on Table 5 is the product of the A3-1 entry and the S2-d entry,
i.e. just 1 · 1 = 1. The cases with Gt = A3S3 and A4S2 are similarly trivial.

Now consider the transitive group G = C2
3 .V with twin group Gt = S3S3. By

twinning C2
3 .V -d sextics are in bijection with ordered pairs (La, Lb) of S3 cubics

with discriminant classes satisfying say da < db and dadb = d. The simple “mul-
tiplication” table below lets one easily deduce the desired numbers. For example,
there are five C2

3 .V sextics of discriminant class 2, corresponding to the sum of the
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boldface table entries.

db −6 −3 −2 −1 6
da # 1 4 1 1 1
−6 1 4 1 1 1
−3 4 4 4 4
−2 1 1 1
−1 1 1
−6 1

Sextic fields with group G = S2 o+S3 are in bijection with quartic fields with
group S4; there are thus 22 of them, as indicated by Table 5. Similarly, consider
sextic fields with group G = S2 o S3 and discriminant class d. Since Gt = S4S2,
these fields are in bijection with quartic fields with group S4 and discriminant class
different from d. Thus, for example, there are 22− 3 = 19 sextic fields with group
S2 o S3 and discriminant class d = 6. This finishes our completeness proof.

To save space, we do not tabulate all 282 old sextics here. Tables are currently
available from [J]. We wish however to emphasize that these fields K are of some
interest as well, not everything being immediately deducible from knowledge of the
twin algebra Kt. For example, the integers arising as class numbers of S2 oS3 sextics
are 1, 2, 3, 4, 6, 7, 8, 12, and 24. Since large class numbers are often of particular
interest we list the five fields giving the four largest class numbers.

h Cl d Irreducible Sextic ↔ Reducible Sextic

7 C7 −2 x
6 + 15x

4 + 48x
2 + 32 ↔ (x4 − 24x

2 + 32x + 24)(x2 + 3)

8 C4C2 −3 x
6 + 18x

4 + 72x
2 + 48 ↔ (x4 − 24x

2 + 32x + 24)(x2 + 2)

8 C4C2 −6 x
6 + 9x

4 + 18x
2 + 6 ↔ (x4 − 24x

2 + 32x + 24)(x2 + 1)

12 C6C2 −6 x
6 − 6x

4 + 96 ↔ (x4 − 6x
2 + 8x + 6)(x2 − 3)

24 C12C2 −3 x
6 + 6x

4 − 18x
2 + 12 ↔ (x4 + 8x− 6)(x2 − 6)

All these fields are totally imaginary. The quartic polynomial x4−24x2+32x+24 is
our preferred defining polynomial for the unique totally real S4 quartic. In general
the unique cubic subfield of an S2 oS3 sextic is the resolvent cubic of the associated-
by-twinning quartic. So, the cubic subfield of the first three fields is totally real;
thus these three fields are CM fields.

3.3. Table of new sextics. Table 6 has two lines for each of the twenty-eight
D4 fields and each of the four C4 fields. The D4 fields come in seven groups
of four, each group being listed in an order F , F t, F T , and F tT . Here one of
the four D4 quartics F is followed by its twin, its twist, and its twin-twist. The
twin F t is defined to be the unique quartic field which is distinct from F but has
the same Galois group as a quotient of Gal(Q/Q). Twisting refers to replacing
the permutation representation ρ : Gal(Q/Q) → D4 by the different permutation
representation ρχ where χ : Gal(Q/Q) → Z ⊂ D4 is a quadratic character with
values in the center Z of D4. The subfields of the four fields have the form Q(

√
s),

Q(
√

st), Q(
√

s), and Q(
√

st) for s, st, sst distinct in {−6,−3,−2,−1, 2, 3, 6}. These
four fields have all been put on the d = sst subtable. Similarly, all four C4 quartics
have been put on the d = 1 subtable.

The twin pair (F, F t) is followed by twin pairs of C2
3 .D4 sextics (Ka, K

t
a),

(Kb, K
t
b), . . . . Here F is the resolvent quartic for Ka, Kb, . . . while F t is the
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Table 6. New sextic fields

Discriminant class: -6

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 1k 3− 1k 0 6 12 3− -6 12 1k 3 + + + – – – –

4.90 2 3 1 + + – – – –

D̃4 1k 9i 2+ 0 2 0 14 9i -2 3 22 2+ 1 V 4 4 e 2 22 22 2

11.65 s32 10 -2 4 4 2 22 22 2

D4 2− 10i 1i 0 -2 0 14 10i 3 -2 12 1i -3 4 4 e 22 2 2 22

11.65 2.75 0.50 3 2 0+ -1 4 4 22 2 2 22

C̃2
3 .D4 1k 11− 9k 0 -6 -8 14 9i -2 3 16 9k 3 3 42 42 33 2 6 222 32

44.62 s32 2t10 -18 24 16 12 2i 3 42 42 32 6 6 32

Ĉ2
3 .D4 3i 13− 7i 0 0 8 14 10i 3 -2 13 3i -3 42 42 3 222 32 2 6

44.62 2.75 1.72 18 24 24 12 3i -2 13 4+ -1 42 42 6 32 32 6

C̃2
3 .D4 1k 11− 11k 0 -18 24 14 9i -2 3 16 11k 3 3 42 42 3 32 6 6 2

50.41 s32 f10 54 -144 96 12 2i 3 42 42 32 6 222 32

Ĉ2
3 .D4 3i 13− 5i 2 -1 -4 14 10i 3 -2 13 5i -3 c 42 42 33 6 32 32 222

50.41 2.75 1.83 -2 4 6 12 3i -2 2 0+ -1 42 42 6 32 2 6

C̃2
3 .D4 1k 11− 11k 0 0 0 14 9i -2 3 16 11k 3 3 42 42 33 32 222 6 32

72.71 s32 f210 -27 -36 -12 12 2i 3 42 42 2 222 6 2

Ĉ2
3 .D4 3i 13− 9i 0 6 8 14 10i 3 -2 13 4+ -1 42 42 3 6 2 32 6

72.71 2.75 2.17 27 0 24 12 3i -2 13 5i -3 b 42 42 222 2 32 222

C̃2
3 .D4 1k 11− 11k 0 -18 24 14 9i -2 3 16 11k 3 3 42 42 3 32 6 6 32

72.71 s32 f210 81 -216 132 12 2i 3 42 42 32 6 6 32

Ĉ2
3 .D4 3i 13− 9i 0 -12 8 14 10i 3 -2 13 5i -3 a 42 42 33 6 32 32 6

72.71 2.75 2.17 54 -72 24 12 3i -2 13 4+ -1 42 42 6 32 32 6

D4 1k 9k 2− 0 -2 0 14 9k -2 3 12 1k 3 4 4 22 2 22 22 2

11.65 s32 1 -2 12 1k 3 4 4 2 22 22 2

D4 2− 10k 1k 0 2 0 14 10k 3 -2 12 1k 3 4 4 22 22 2 2 22

11.65 2.75 0.50 3 4 4 22 2 2 22

C2
3 .D4 1k 11+ 9i 0 -6 -12 14 9k -2 3 16 9i 3 3 42 42 22 32 222 6 32

44.62 s32 2t1 9 36 -12 12 2i 3 42 42 32 6 6 2

C2
3 .D4 3i 13+ 7k 0 -6 4 14 10k 3 -2 13 3k 3 42 42 22 6 2 32 6

44.62 3 2.75 1.72 9 -12 12 12 3i -2 13 4+ 1 c 42 42 6 32 32 222

S̃6 1k 11− 9k 0 -9 8 14 11− 2 -2y 16 9k 3 3 5 5 5 6 6 32 6

53.06 4320 2t10 0 0 4 2 0+ -3 5 5 6 32 32 32

Ŝ6 3i 13− 7i 0 6 4 14 11i -2 2x 13 4+ -1 5 5 5 32 32 6 32

53.06 3.00 1.72 15 12 12 12 2i 3 13 3i -3 5 5 32 6 6 6
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Discriminant class: -3

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 1k 0+ 1i 0 3 2 0+ -3 12 1i -3 – + – + – + –

1.73 0 1 – + + – + –

D4 1k 11k 2− 0 4 0 14 11k -2 6 12 1i -3 2 4 22 4 22 22 2

11.65 430 1 -2 12 1i -3 2 4 4 22 22 2

D4 2− 11i 1i 0 -4 0 14 11i 6 -2 12 1i -3 22 4 2 4 2 22 22

11.65 2.75 0.50 6 22 4 4 2 22 22

C2
3 .D4 1k 14− 7k 0 -6 8 14 11k -2 6 16 7k -3 -3 32 42 6 42 6 22 32

24.24 430 t10 -6 0 4 12 3k 6 32 42 42 6 22 32

C2
3 .D4 3i 14− 3i 2 -1 0 14 11i 6 -2 13 3i -3 6 42 32 42 32 22 6

24.24 2.75 1.17 2 -4 2 12 3i -2 3 0+ 1 6 42 42 32 22 6

C2
3 .D4 1k 14− 11k 0 -18 12 14 11k -2 6 16 11k -3 -3 2 42 222 42 6 22 32

72.71 430 f21 81 -108 -180 12 3k 6 32 42 42 6 22 32

C2
3 .D4 3i 14− 9i 0 6 -4 14 11i 6 -2 13 5i -3 a 222 42 2 42 32 22 6

72.71 3 2.75 2.17 27 -36 12 12 3i -2 13 4+ 1 a 6 42 42 32 22 6

C2
3 .D4 1k 14− 11k 0 -18 12 14 11k -2 6 16 11k -3 -3 32 42 6 42 222 22 32

72.71 3 430 f21 81 -108 12 12 3k 6 2 42 42 222 22 2

C2
3 .D4 3i 14− 9i 0 6 -4 14 11i 6 -2 13 5i -3 b 6 42 32 42 2 22 6

72.71 3 2.75 2.17 81 36 12 12 3i -2 13 4+ 1 b 222 42 42 2 22 222

C2
3 .D4 1k 14− 11k 0 -18 12 14 11k -2 6 16 11k -3 -3 32 42 6 42 6 22 2

72.71 430 f21 27 -36 12 12 3k 6 32 42 42 6 22 32

C2
3 .D4 3i 14− 9i 0 -12 16 14 11i 6 -2 13 4+ 1 c 6 42 32 42 32 22 222

72.71 3 2.75 2.17 54 -144 96 12 3i -2 13 5i -3 c 6 42 42 32 22 6

D̃4 1k 11i 2+ 0 -4 0 14 11i -2 6 22 2+ 1 V 2 4 22 4 22 e 2

11.65 430 10 -2 2 4 4 22 e 2

D4 2− 11k 1k 0 4 0 14 11k 6 -2 12 1k 3 22 4 2 4 2 e 22

11.65 2.75 0.50 6 2 0+ -1 22 4 4 2 e 22

C̃2
3 .D4 1k 14+ 9i 0 -12 16 14 11i -2 6 16 9i -3 -3 32 42 6 42 6 3 32

34.96 430 210 -18 48 -32 12 3k 6 2 42 42 6 33 32

Ĉ2
3 .D4 3i 14+ 5k 2 1 -4 14 11k 6 -2 13 4+ -1 6 42 32 42 32 33 6

34.96 2.75 1.50 -11 14 33 12 3i -2 12 1k 3 222 42 42 32 3 6

S6 1k 12− 11k 0 -9 -24 14 10i 3 -2 16 11k -3 -3 6 5 32 5 6 22 32

72.71 s320 f21 9 72 3 12 2i -1 4 5 3 6 5 32

S6 3i 12− 9i 0 6 -12 14 9k -2 3 13 5i -3 c 32 5 6 5 32 22 6

72.71 2.75 2.17 21 0 2 12 3k 6 13 4+ 1 c 4 5 33 32 5 6
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Discriminant class: -2

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 1k 3i 0+ 0 2 12 3i -2 – – + – + + –

2.83 3 – – – + + –

D̃4 1k 10i 0+ 0 2 0 14 10i -1 2 4 0+ -1 -1 22 2 4 22 22 4 2

6.73 s32 00 -1 22 2 22 e 4 2

D4 2− 9− 0+ 0 -2 0 14 9− 2 -1 4 0+ -1 -1 2 22 4 2 22 4 22

6.73 2.75 2 2 22 2 e 4 22

C̃2
3 .D4 1k 13i 8+ 0 0 8 14 10i -1 2 23 8+ 1 -1x 222 32 42 6 22 42 32

47.43 s32 2200 -18 -24 8 12 3+ 2 6 32 6 3 42 32

Ĉ2
3 .D4 3i 11k 8+ 0 0 8 14 9− 2 -1 23 8+ 1 -1y 2 6 42 32 22 42 6

47.43 2.75 1.78 9 12 20 12 2i -1 32 6 32 33 42 6

D4 1k 10k 2− 0 -6 0 14 10k -1 2 22 2− -1 -1 22 2 4 22 e 4 2

11.65 s32 10 -9 22 2 22 22 4 2

D4 2− 9+ 2− 0 6 0 14 9+ 2 -1 22 2− -1 -1 2 22 4 2 e 4 22

11.65 2 2.75 0.50 18 2 22 2 22 4 22

C2
3 .D4 1k 13k 6− 0 -6 4 14 10k -1 2 23 6− 1 -1x 6 32 42 6 33 42 32

30.94 s32 tt10 9 -12 -4 12 3+ 2 6 2 222 22 42 32

C2
3 .D4 3i 11i 6− 0 0 0 14 9+ 2 -1 23 6− 1 -1y 32 6 42 32 3 42 6

30.94 2.75 1.39 9 -12 4 12 2i -1 32 222 2 22 42 6

resolvent quartic for Kt
a, Kt

b, . . . . Correspondingly, the twin pair (F T , F tT ) is
followed by twin pairs of C2

3 .D4 sextics associated to it. Similarly, each C4 quartic
is followed by the twin pairs of C2

3 .C4 sextics for which it is the resolvent. Next come
the S6 or A6 sextics in twin pairs. Note that much of the information about K t can
be deduced from the corresponding information about K. We have printed the K t

information in accordance with our general policy that redundancy is acceptable if
it improves clarity; here the tables make it clear how sextic twinning works on a
practical level, both locally and globally.

The entries in the SCp slots are slightly different from those in Table 1. For a
pair of twin fields, we print the slope content as before for the first field. For its
twin we print the Galois mean slopes to two decimal places for p = 2 and p = 3.
Recall from §1.2 that these are rational numbers α and β satisfying grd(K) = 2α3β.

Similarly, the labeling convention here is slightly different from the convention
in Table 1. We label p-adic fields of degree ≤ 5 just as before, to distinguish among
fields with the same invariants (f e, cw, d, s). Old sextic p-adic fields are typically not
determined by their invariants (f e, cw, d, s). The worst case is sextic 3-adic fields
with (fe, cw, d, s) = (16, 11k,−3,−3), where there are 15 different fields. These old
fields are distinguished by the invariants—including labels—of their twin algebras;
accordingly we do not label old sextic fields. There are no new sextic 2-adic fields;
there are 12 new sextic 3-adic fields, which we label when necessary as before.
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Discriminant class: -1

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 1k 2i 0+ 0 1 12 2i -1 2 0+ -1 + – – + + – –

2.00 2 0 + – + + – –

D̃4 1k 6+ 3i 2 0 -4 14 6+ -3 3 14 3i -3 3 4 22 2 22 4 22 2

6.45 220 110 -2 4 22 e 4 22 2

D4 2− 4k 3k 0 0 0 22 4k 3 -3 14 3k 3 -3 4 2 22 22 4 2 22

6.45 1.50 0.75 3 4 2 e 4 2 22

C̃2
3 .D4 1k 8i 10+ 0 -6 2 14 6+ -3 3 16 10+ -1 3a 42 6 32 22 42 6 32

27.90 220 [9/4]110 9 -6 -2 12 2i 3 42 222 33 42 6 32

Ĉ2
3 .D4 3i 4k 10+ 0 3 -2 22 4k 3 -3 16 10+ -1 -3a 42 32 6 22 42 32 6

27.90 1.50 2.08 9 -12 4 2 0+ -3 42 2 3 42 32 6

D̃4 1k 8+ 3i 0 0 0 14 8+ -3 3 14 3i -3 3 4 22 2 e 4 22 2

9.12 320 110 -3 4 22 22 4 22 2

D4 2− 6k 3k 0 0 0 22 6k 3 -3 14 3k 3 -3 4 2 22 e 4 2 22

9.12 2.00 0.75 12 4 2 22 4 2 22

C̃2
3 .D4 1k 10i 10+ 0 -6 8 14 8+ -3 3 16 10+ -1 3b 42 6 32 33 42 222 2

39.45 320 [9/4]110 9 -24 4 12 2i 3 42 6 22 42 6 32

Ĉ2
3 .D4 3i 6k 10+ 0 3 -4 22 6k 3 -3 16 10+ -1 -3b 42 32 6 3 42 2 222

39.45 2.00 2.08 9 30 52 2 0+ -3 42 32 22 42 32 6

D̃4 1k 11− 3k 0 0 0 14 11− -6 6x 14 3k 3 -3 22 22 22 4 4 2 2

18.24 432 110 -24 e 22 4 4 2 2

D4 2− 11i 3i 0 0 0 14 11i 6 -6x 14 3i -3 3 22 2 2 4 4 22 22

18.24 2 3.00 0.75 6 e 2 4 4 22 22

C̃2
3 .D4 1k 14i 10+ 0 -18 12 14 11− -6 6x 16 10+ -1 -3b 22 6 222 42 42 32 32

78.90 432 [9/4]110 27 -108 36 12 3k 6 3 222 42 42 32 2

Ĉ2
3 .D4 3i 14k 10+ 0 -6 4 14 11i 6 -6x 16 10+ -1 3b 22 32 2 42 42 6 6

78.90 2 3.00 2.08 63 60 28 12 3− -6 33 2 42 42 6 222

D̃4 1k 11− 3k 0 0 0 14 11− -6 6y 14 3k 3 -3 e 22 22 4 4 2 2

18.24 432 110 -6 22 22 4 4 2 2

D4 2− 11i 3i 0 0 0 14 11i 6 -6y 14 3i -3 3 e 2 2 4 4 22 22

18.24 2 3.00 0.75 24 22 2 4 4 22 22

C̃2
3 .D4 1k 14i 10+ 0 -6 20 14 11− -6 6y 16 10+ -1 -3b 33 6 6 42 42 32 32

78.90 432 [9/4]110 9 -60 4 12 3k 6 22 6 42 42 32 2

Ĉ2
3 .D4 3i 14k 10+ 0 12 -16 14 11i 6 -6y 16 10+ -1 3b 3 32 32 42 42 6 6

78.90 2 3.00 2.08 36 -96 160 12 3− -6 22 32 42 42 6 222
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Discriminant class: -1 (continued)

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 1k 2i 0+ 0 1 12 2i -1 2 0+ -1 + – – + + – –

2.00 2 0 + – + + – –

D̃4 1k 11i 0+ 0 0 0 14 11i -2 2x 2 0+ -1 4 2 22 4 22 22 2

8.00 432 0 -2 2 0+ -1 4 2 4 22 22 2

D4 2− 11− 0+ 0 0 0 14 11− 2 -2x 2 0+ -1 4 22 2 4 22 2 22

8.00 3.00 2 4 22 4 22 2 22

C̃2
3 .D4 1k 14i 8+ 0 0 16 14 11i -2 2x 23 8+ -1 -1 42 32 6 42 22 222 32

56.40 432 220 -18 -48 32 12 3+ 2 42 32 42 22 222 2

Ĉ2
3 .D4 3i 14k 8+ 0 -6 12 14 11− 2 -2x 13 4+ -1 42 6 32 42 22 2 6

56.40 3 3.00 1.78 9 -36 68 12 3i -2 13 4+ 1 a 42 6 42 22 2 222

D̃4 1k 11i 2+ 0 0 0 14 11i -2 2y 22 2+ 1 V 4 2 22 4 e 22 2

13.86 432 10 -18 4 2 4 e 22 2

D4 2− 11− 2+ 0 0 0 14 11− 2 -2y 12 1k 3 4 22 2 4 e 2 22

13.86 2 3.00 0.50 18 12 1i -3 4 22 4 e 2 22

C̃2
3 .D4 1k 14i 6+ 0 -6 4 14 11i -2 2y 23 6+ -1 -1 42 32 222 42 3 6 32

36.79 432 tt10 -9 12 -4 12 3+ 2 42 32 42 33 6 32

Ĉ2
3 .D4 3i 14k 6+ 0 6 -4 14 11− 2 -2y 13 3i -3 42 6 2 42 33 32 6

36.79 3.00 1.39 9 -12 12 12 3i -2 13 3k 3 42 6 42 3 32 6

C̃2
3 .D4 1k 14i 10+ 0 -18 36 14 11i -2 2y 23 10+ -1 -1 42 32 6 42 33 6 32

59.95 432 f10 -81 108 36 12 3+ 2 42 32 42 3 6 2

Ĉ2
3 .D4 3i 14k 6+ 2 -1 0 14 11− 2 -2y 13 5i -3 a 42 6 32 42 3 32 6

59.95 3.00 1.83 10 4 2 12 3i -2 12 1k 3 42 6 42 33 32 222

C̃2
3 .D4 1k 14i 10+ 0 -18 36 14 11i -2 2y 23 10+ -1 -1 42 2 6 42 33 6 32

76.53 432 ft10 81 -324 252 12 3+ 2 42 32 42 3 6 32

Ĉ2
3 .D4 3i 14k 8+ 0 6 12 14 11− 2 -2y 13 5i -3 b 42 222 32 42 3 32 6

76.53 3.00 2.06 27 36 36 12 3i -2 13 3k 3 42 6 42 33 32 6

C̃2
3 .D4 1k 14i 10+ 0 -18 12 14 11i -2 2y 23 10+ -1 -1 42 32 6 42 3 222 2

76.53 432 ft10 81 -108 -36 12 3+ 2 42 2 42 33 222 32

Ĉ2
3 .D4 3i 14k 8+ 0 -6 4 14 11− 2 -2y 13 3k 3 42 6 32 42 33 2 222

76.53 3.00 2.06 27 -36 12 12 3i -2 13 5i -3 c 42 222 42 3 2 6

S̃6 1k 10i 10+ 0 -6 8 16 10i -1 16 10+ -1 -3b 5 4 6 5 33 6 32

49.71 [8/3]210 [9/4]110 0 -24 28 42 32 5 5 32 6

Ŝ6 3i 10k 10+ 0 -6 4 14 8− -3 16 10+ -1 3b 5 4 32 5 3 32 6

49.71 2 2.33 2.08 27 -48 28 12 2i 3 42 6 5 5 6 32

S̃6 1k 14i 10+ 0 -6 4 14 11+ 2 2y 16 10+ -1 -3a 5 6 32 3 5 6 32

78.90 432 [9/4]110 -9 -12 52 12 3i -2 5 6 42 5 32 6

Ŝ6 3i 14k 10+ 0 12 4 14 11− 2 2y 16 10+ -1 3a 5 32 6 33 5 32 6

78.90 2 3.00 2.08 27 -12 10 12 3i -2 5 32 42 5 6 32
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Discriminant class: 1

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C4 0+ 11+ 0+ 0 -4 0 14 11+ 2 2x 4 0+ -1 -1 4 22 4 4 e 4 22

6.73 43 00 2 4 e 4 22 4 e

C4 2− 11− 0+ 0 4 0 14 11− 2 2x 4 0+ -1 -1 4 e 4 4 e 4 e

6.73 43 00 2 4 22 4 22 4 22

C2
3 .C4 2− 14− 8+ 0 6 -12 14 11− 2 2x 23 8+ 1 -1x 42 3 42 42 33 42 e

47.43 43 2200 9 -36 28 12 3+ 2 42 22 42 22 42 22

C2
3 .C4 2− 14− 8+ 0 0 -8 14 11− 2 2x 23 8+ 1 -1y 42 33 42 42 3 42 e

47.43 2.75 1.78 -18 -48 -16 12 3+ 2 42 22 42 22 42 22

C4 2− 11+ 2− 0 12 0 14 11+ 2 2y 22 2− -1 -1 4 22 4 4 22 4 e

11.65 2 43 10 18 4 e 4 e 4 22

C2
3 .C4 2− 14+ 6− 0 6 4 14 11+ 2 2y 23 6− 1 -1x 42 22 42 42 22 42 3

30.94 43 tt10 -9 -12 -4 12 3+ 2 42 33 42 33 42 22

C2
3 .C4 2− 14+ 6− 0 6 -4 14 11+ 2 2y 23 6− 1 -1y 42 22 42 42 22 42 33

30.94 2.75 1.39 9 -12 -4 12 3+ 2 42 3 42 3 42 22

C4 0+ 11− 2− 0 -12 0 14 11− 2 2y 22 2− -1 -1 4 e 4 4 22 4 22

11.65 43 10 18 4 22 4 e 4 e

A6 2− 10− 8+ 0 -3 12 16 10− 1 23 8+ 1 -1x 5 5 3 42 5 42 5

31.66 [8/3]10 2200 -9 0 1 5 42 5 5 5 42

A6 2− 8− 8+ 3 3 2 14 8− -3 23 8+ 1 -1y 5 5 33 42 5 42 5

31.66 2.17 1.78 -3 -3 -1 2 0+ -3 5 42 5 5 5 42

A6 2− 12+ 10− 0 -3 12 14 10k -1 -6 13 5i -3 a 5 42 5 5 5 42 5

64.35 s32 ft1 -6 0 2 12 2i -1 13 5i -3 b 3 42 42 42 5 42

A6 2− 12+ 8− 0 6 -4 14 9− -6 -1 13 3i -3 5 42 5 5 5 42 5

64.35 2.75 2.06 -3 -12 -12 12 3− -6 13 5i -3 c 33 42 42 42 5 42

A6 2− 12+ 10− 0 6 -12 14 10k 3 -2 13 5i -3 b 5 5 42 42 5 42 5

64.35 s32 ft1 -15 36 -40 12 2i 3 13 5i -3 c 5 42 5 3 5 42

A6 2− 12+ 8− 0 0 8 14 9k -2 3 13 3i -3 5 5 42 42 5 42 5

64.35 2.75 2.06 9 0 -6 12 3i -2 13 5i -3 a 5 42 5 33 5 42

A6 2− 14+ 10− 0 6 12 14 11− -6 6y 13 5i -3 b 42 5 5 42 5 5 3

76.53 432 ft1 57 36 -4 12 3− -6 13 5i -3 a 5 5 3 5 42 22

A6 2− 14+ 8− 0 0 -12 14 11i 6 -6y 13 3i -3 42 5 5 42 5 5 33

76.53 3.00 2.06 21 12 -34 12 3k 6 13 5i -3 c 5 5 33 5 42 22
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Discriminant class: 2

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 0+ 3+ 0+ 0 -2 12 3+ 2 2 0+ -1 – + – – + – +

2.83 3 1 – + – + – +

D̃4 0+ 10i 3k 0 -6 0 14 10i 3 6 14 3k 3 -3 2 4 22 22 4 2 22

15.33 s32 110 3 2 4 22 4 2 22

D̃4 0+ 9k 3i 0 -6 0 14 9k 6 3 14 3i -3 3 22 4 2 2 4 22 22

15.33 2.75 0.75 6 22 4 2 4 22 22

D4 2− 10k 3k 0 6 0 14 10k 3 6 14 3k 3 -3 2 4 22 22 4 2 e

15.33 2 s32 110 3 2 4 22 4 2 e

D4 2− 9i 3i 0 6 0 14 9i 6 3 14 3i -3 3 22 4 2 2 4 22 e

15.33 2 2.75 0.75 6 22 4 2 4 22 e

C2
3 .D4 2− 13− 6+ 0 0 -4 14 10k 3 6 16 6+ -1 -3 32 42 6 6 42 32 3

24.99 s32 [5/4]110 -3 -12 -2 12 3k 6 32 42 6 42 32 33

C2
3 .D4 2− 11− 6+ 0 3 -4 14 9i 6 3 16 6+ -1 3 6 42 32 32 42 6 33

24.99 2.75 1.19 0 0 -2 12 2i 3 6 42 32 42 6 3

C2
3 .D4 2− 13− 10+ 0 -6 16 14 10k 3 6 16 10+ -1 -3a 2 42 6 6 42 32 33

66.35 s32 [9/4]110 -45 24 40 12 3k 6 2 42 222 42 32 3

C2
3 .D4 2− 11− 10+ 0 -6 8 14 9i 6 3 16 10+ -1 3a 222 42 32 32 42 6 3

66.35 2.75 2.08 -18 48 -32 12 2i 3 222 42 2 42 6 33

C2
3 .D4 2− 13− 10+ 0 12 16 14 10k 3 6 16 10+ -1 -3b 32 42 222 6 42 2 3

66.35 2 s32 [9/4]110 36 96 -32 12 3k 6 32 42 6 42 2 33

C2
3 .D4 2− 11− 10+ 0 -6 4 14 9i 6 3 16 10+ -1 3b 6 42 2 32 42 222 33

66.35 2.75 2.08 9 -12 -44 12 2i 3 6 42 32 42 222 3

C2
3 .D4 2− 13− 10+ 0 -6 4 14 10k 3 6 16 10+ -1 -3c 32 42 6 222 42 32 33

66.35 s32 [9/4]110 9 -12 -20 12 3k 6 32 42 6 42 32 3

C2
3 .D4 2− 11− 10+ 0 12 -8 14 9i 6 3 16 10+ -1 3c 6 42 32 2 42 6 3

66.35 2.75 2.08 9 -12 4 12 2i 3 6 42 32 42 6 33

S6 2− 7− 10+ 0 3 -4 14 4+ -3 16 10+ -1 -3c 6 5 4 6 5 32 5

41.80 3[4/3]10 [9/4]110 0 -6 -2 12 3− -6 32 5 6 33 6 42

S6 2− 11− 10+ 0 -6 4 16 11− 2 16 10+ -1 3c 32 5 4 32 5 6 5

41.80 2.08 2.08 18 -12 -26 6 5 32 3 32 42

S6 2− 11− 8+ 0 -6 4 16 11− 2 13 4+ 1 c 6 5 6 32 42 4 3

42.25 3[8/3]10 220 6 0 -6 13 4+ -1 32 5 6 5 4 42

S6 2− 11− 8+ 0 -6 4 14 8+ -3 23 8+ -1 -1 32 5 32 6 42 4 33

42.25 2.58 1.78 6 0 -4 12 3− -6 6 5 32 5 4 42
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Discriminant class: 2 (continued)

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 0+ 3+ 0+ 0 -2 12 3+ 2 2 0+ -1 – + – – + – +

2.83 3 1 – + – + – +

S6 2− 9− 10+ 0 3 6 14 6− 1 23 10+ -1 -1 6 5 32 4 5 32 42

45.51 3220 ft10 12 -36 -2 12 3+ 2 32 42 32 5 32 5

S6 2− 9− 8+ 0 0 2 32 9− 2 13 5i -3 c 32 5 6 4 5 6 42

45.51 2.25 2.06 -3 -6 -3 13 3k 3 6 42 6 5 6 5

S6 2− 9− 10+ 0 -9 6 14 6− 1 16 10+ -1 3b 4 42 6 4 5 32 42

46.92 3220 [9/4]110 0 0 -18 12 3+ 2 6 5 6 5 32 42

S6 2− 9− 10+ 0 -6 10 32 9− 2 16 10+ -1 -3b 4 42 32 4 5 6 42

46.92 2.25 2.08 -9 6 1 32 5 32 5 6 42

S6 2− 11− 8+ 0 0 8 16 11− 2 13 5i -3 b 6 42 4 32 5 6 42

57.33 3[8/3]10 ft10 -12 12 -6 13 3k 3 4 5 4 5 32 33

S6 2− 11− 10+ 0 -6 12 14 8+ -3 23 10+ -1 -1 32 42 4 6 5 32 42

57.33 2.58 2.06 -6 0 4 12 3− -6 4 5 4 5 6 3

S6 2− 13− 10+ 0 -6 16 14 10i -1 -6 16 10+ -1 -3c 6 5 6 6 3 4 5

66.35 s320 [9/4]110 -18 24 4 12 3i -2 4 3 32 42 4 5

S6 2− 9− 10+ 0 -6 8 14 9− -6 -1 16 10+ -1 3c 32 5 32 32 33 4 5

66.35 2.75 2.08 18 -24 -32 2 0+ -3 4 33 6 42 4 5

S6 2− 11− 10+ 0 -9 -12 14 9i -2 3 16 10+ -1 -3b 6 5 6 6 5 4 42

66.35 2 s320 [9/4]110 0 0 -18 12 2i -1 32 5 4 22 32 3

S6 2− 13− 10+ 0 12 -16 14 10k 3 -2 16 10+ -1 3b 32 5 32 32 5 4 42

66.35 2 2.75 2.08 -9 -96 -2 12 3k 6 6 5 4 22 6 33

S6 2− 11− 8+ 3 9 14 14 11− -6 6x 13 5i -3 a 6 5 6 6 33 4 3

76.53 4320 ft10 3 3 3 2 0+ -3 13 3k 3 6 22 6 42 6 42

S6 2− 13− 10+ 0 -6 12 14 11i 6 -6y 23 10+ -1 -1 32 5 32 32 3 4 33

76.53 3.00 2.06 -15 36 -8 12 2i 3 32 22 32 42 32 42

S6 2− 13− 8+ 0 -3 8 14 11i -2 6 13 5i -3 a 6 5 32 6 5 32 5

76.53 4320 ft10 0 0 12 12 2i -1 13 3k 3 6 42 32 5 4 3

S6 2− 13− 10+ 0 -6 12 14 11i 6 -2 23 10+ -1 -1 32 5 6 32 5 6 5

76.53 3.00 2.06 3 -36 28 12 2i 3 32 42 6 5 4 33

S6 2− 13− 8+ 0 -6 4 14 11i -2 2y 13 3k 3 4 42 6 32 42 4 42

76.53 432 ft10 9 -36 -24 12 2i -1 13 5i -3 b 6 5 6 5 6 42

S6 2− 11− 10+ -3 6 8 14 11− 2 -2y 23 10+ -1 -1 4 42 32 6 42 4 42

76.53 3.00 2.06 -30 42 -20 32 5 32 5 32 42
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Discriminant class: 2 (continued)

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 0+ 3+ 0+ 0 -2 12 3+ 2 2 0+ -1 – + – – + – +

2.83 3 1 – + – + – +

S6 2− 13− 8+ 0 3 8 14 11i 6 -2 13 5i -3 c 4 42 6 6 5 6 33

76.53 4320 ft10 -27 48 -29 12 2i 3 13 3k 3 32 5 4 5 32 5

S6 2− 13− 10+ 0 -9 -24 14 11i -2 6 23 10+ -1 -1 4 42 32 32 5 32 3

76.53 3.00 2.06 -27 0 -9 12 2i -1 6 5 4 5 6 5

S6 2− 11− 10+ -3 0 4 14 11− 2 -2y 16 10+ -1 -3c 6 5 4 32 5 6 42

78.90 432 [9/4]110 12 -36 16 32 5 6 42 4 5

S6 2− 13− 10+ 0 -6 20 14 11i -2 2y 16 10+ -1 3c 32 5 4 6 5 32 42

78.90 3.00 2.08 -9 12 -20 12 2i -1 6 5 32 42 4 5

S6 2− 11− 10+ -3 9 -14 14 11− -6 6y 16 10+ -1 3c 6 33 6 32 5 4 5

78.90 4320 [9/4]110 21 -9 1 2 0+ -3 32 3 32 42 32 5

S6 2− 13− 10+ 0 3 8 14 11i 6 -6x 16 10+ -1 -3c 32 3 32 6 5 4 5

78.90 3.00 2.08 27 -24 -71 12 2i 3 6 33 6 42 6 5

Discriminant class: 3

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 0+ 2i 1k 0 -3 12 2i 3 12 1k 3 – – + + – – +

3.46 2 1 – – + – – +

S6 2− 10i 9i 0 -3 4 16 10i 3 13 4+ -1 4 6 5 42 6 4 5

54.47 [8/3]210 f210 9 0 -9 13 5i -3 a 6 6 22 32 32 5

S6 2− 10k 11k 0 -9 24 14 8− -3 16 11k 3 3 4 32 5 42 32 4 5

54.47 2.33 2.17 27 -72 69 12 2i -1 32 32 22 6 6 5

S6 2− 12i 9i 0 6 -12 14 9+ -6 -1 13 5i -3 c 6 6 5 5 32 32 33

72.71 s320 f210 -15 0 2 12 3i -2 13 4+ -1 32 6 3 6 6 22

S6 2− 10k 11k -3 -3 14 14 10k -1 -6 16 11k 3 3 32 32 5 5 6 6 3

72.71 2.75 2.17 -39 51 -23 2 0+ -3 6 32 33 32 32 22

S6 2− 14k 11k 0 0 -36 14 11k 6 -2 16 11k 3 3 6 6 3 42 6 4 42

86.47 4320 f210 63 -36 6 12 3+ 2 2 4 5 6 6 5

S6 2− 14i 9i 0 -6 -16 14 11k -2 6 13 4+ -1 32 32 33 42 32 4 42

86.47 3.00 2.17 6 0 -12 12 3− -6 13 5i -3 a 222 4 5 32 32 5

S6 2− 14i 9i 0 6 24 14 11− 2 -2y 13 4+ -1 6 32 42 3 32 4 5

86.47 4320 f210 30 0 -4 12 3k 6 13 5i -3 c 32 4 42 6 6 5

S6 2− 14k 11k 0 -18 48 14 11i -2 2x 16 11k 3 3 32 6 42 33 6 4 5

86.47 2 3.00 2.17 -18 0 -12 12 3− -6 6 4 42 32 32 5
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Discriminant class: 6

G ∞ 2 3 a1 a2 a3 Over p = 2 Over p = 3 5 7 11 13 17 19 23

grd h SC2 SC3 a4 a5 a6 fe cw d s L fe cw d s L 29 31 37 41 43 47

C2 0+ 3k 1i 0 -6 12 3k 6 12 1i -3 + – – – – + +

4.90 3 1 + – – – + +

S6 2− 11i 5i -2 1 0 16 11i 6 13 5i -3 a 5 6 6 6 6 5 42

44.91 3[8/3]10 f10 1 -2 -1 3 0+ 1 33 4 32 6 42 42

S6 2− 11k 11k 0 0 12 14 8− -3 16 11k -3 -3 5 32 32 32 32 5 42

44.91 2.58 1.83 27 0 -18 12 3i -2 3 4 6 32 42 42

S6 2− 11i 9i 0 -6 4 14 8+ -3 13 4+ 1 c 5 6 32 6 6 5 5

64.78 3[8/3]10 f21 18 24 4 12 3i -2 13 5i -3 c 5 2 6 6 42 5

S6 2− 11k 11k 0 0 12 16 11k 6 16 11k -3 -3 5 32 6 32 32 5 5

64.78 2.58 2.17 54 0 -18 5 222 32 32 42 5

S6 2− 13i 9i 0 6 16 14 10i 3 6 13 5i -3 c 5 6 32 32 4 22 42

72.71 s32 f21 18 72 -12 12 3+ 2 13 4+ 1 b 5 32 32 32 42 5

S6 2− 9k 11k -3 6 -10 14 9k 6 3 16 11k -3 -3 5 32 6 6 4 22 42

72.71 2.75 2.17 6 6 -8 5 6 6 6 42 5

S6 2− 13i 9i 0 -12 4 14 10k -1 2 13 5i -3 c 5 6 6 4 6 5 3

72.71 2 s320 f21 45 -36 -6 12 3− -6 13 4+ 1 a 42 6 32 32 5 42

S6 2− 11k 11k 0 -9 12 14 9− 2 -1 16 11k -3 -3 5 32 32 4 32 5 33

72.71 2 2.75 2.17 0 0 -6 12 2i 3 42 32 6 6 5 42

S6 2− 11i 9i 0 -3 8 14 11i -2 2y 13 5i -3 b 5 6 4 6 32 42 5

86.47 4320 f21 9 0 9 2 0+ -3 13 4+ 1 a 42 32 32 4 5 42

S6 2− 13k 11k 0 0 24 14 11− 2 -2x 16 11k -3 -3 5 32 4 32 6 42 5

86.47 3.00 2.17 54 0 -72 12 2i 3 42 6 6 4 5 42

S6 2− 13i 9i 0 3 8 14 11+ -6 -6y 13 5i -3 c 42 6 6 4 4 5 33

86.47 432 f21 -3 0 3 12 2i -1 13 4+ 1 b 42 4 32 6 22 5

S6 2− 13k 11k 0 -9 24 14 11− -6 -6y 16 11k -3 -3 42 32 32 4 4 5 3

86.47 3.00 2.17 27 -72 -123 12 2i -1 42 4 6 32 22 5

There are many patterns to be found on Table 6. Here we just make one
comment about the solvable sextics and one about the non-solvable sextics.

New solvable sextics. This comment is point-by-point analogous to the com-
ment made in §1.3. For the thirty-two G = C4 or D4 quartic fields F , the 2-
decomposition group Gal(F2) is always G itself. Up to conjugation the only sub-
groups of C2

3 .G surjecting onto G are C2
3 .G itself and G ⊂ C2

3 .G. Since there is no
surjection from Gal(Q2/Q2) onto C2

3 .G, the 2-decomposition group Gal(K2) for all
the new solvable sextics K is just G. In fact K2

∼= F2 ×L2 where L2 is the unique
quadratic subfield of F2. This accounts for the repetitiveness of the 2-local block
of columns.

New non-solvable sextics. The tables show that the 62 new non-solvable sextics,
besides being unramified outside {∞, 2, 3}, are all ramified at ∞, and all wildly
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ramified at 2 and 3. In fact, at 2 the largest possible order of the wild inertia
group P2 allowed by local conditions is 8. For 30 of the 31 pairs one has |P2| = 8;
the lone exception is our first-listed A6 pair which has |P2| = 4. At 3, the largest
possible order of P3 is 9. Again for 30 of the 31 twin pairs in fact |P3| = 9; the lone
exception is our first-listed d = 6 pair with |P3| = 3.

3.4. Completeness by class field theory. Let F be one of the twenty-
eight D4 quartics or one of the four C4 quartics with discriminant −j2a3b. Here
we use class field theory to determine the number of C2

3 .D4 or C2
3 .C4 sextics with

discriminant −j2a3b and resolvent quartic F . The results prove that our computer
search, which was not guaranteed to find all the C2

3 .C4 and C2
3 .D4 sextics, in fact

did.
Let L ⊂ F be the unique quadratic subfield and σ ∈ Gal(F/L) be the involution

fixing exactly L. Let K̃ be a maximal abelian pro-3-extension of F ramified only

in S = {∞, 2, 3}. The field K̃ is the compositum over F of two disjoint subfields

K̃+ and K̃−. Here σ acts trivially on G+
3 := Gal(K̃+/F ) and by inversion on

G−3 := Gal(K̃−/F ).

Let σ̃ ∈ Gal(K̃−/L) be any lift of σ ∈ Gal(F/L). Let H ⊂ G−

3 be a subgroup

of index 3. For clarity we remark that [K̃H : Q] = 12. However more to the point,

one has [K̃H,σ̃ : Q] = 6. The map

{index 3 subgroups of G−3 } → {Sextic fields with resolvent quartic F}
H 7→ K̃H,σ̃

is always surjective. It is moreover 1-to-1 if Gal(F ) = D4 and 2-to-1 if Gal(F ) = C4.
We are thus reduced to describing the abelian group G−

3 modulo cubes. In

fact, in each case we will describe G−

3 itself. Let U
(1)
3 ⊂ F×3 be the group of 3-adic

1-units. Let E ⊂ F× be the group of global units, E(1) the subgroup of global

units which are 1-units at 3, and finally E
(1)
3 its 3-adic completion. The involution

σ ∈ Aut(F/Q) acts, decomposing both E
(1)
3 and U

(1)
3 into a (+)-eigenspace and a

(−)-eigenspace.
For each of our quartic C4 or D4 base fields, the class number is prime to 3

as can be seen from the tables in §3.3. There are two D4 fields where the 2-adic
units have non-trivial pro-3 completion, namely those with f = 2 and e = 2 at 2.
Here the pro-3 completion is just F×4

∼= Z/3. However the quadratic subfield L has
f = 2 and e = 1, and so this Z/3 contributes to G+

3 and not G−3 .
Class field theory gives an idelic description of G−

3 . Because of the vanishing
described in the previous paragraph, this idelic description reduces to the 3-adic
description

G−3 = Coker(φ : E
(1)−
3 → U

(1)−
3 ).

In each case, one knows E
(1)−
3 abstractly from Dirichlet’s theorem. Similarly, it is

easy to determine U
(1)−
3 abstractly from the D4 and C4 entries in the tables in §3.3.

Also, it follows from general principles that the groups E
(1)−
3 , U

(1)−
3 , and Coker(φ)

are isomorphic for a dihedral quartic field F and its twin F t.
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For the thirty-two ground fields F in question, only four pairs of abstract groups

(E
(1)−
3 , U

(1)−
3 ) arise, according to which we divide into cases A–D :

E
(1)−
3 U

(1)−
3 Minimal Coker |C2

3 .D4 Fields| |C2
3 .C4 Fields|

A Z2
3 Z2

3 {0} 0, 1, 4 0, 2
B Z3 Z2

3 Z3 1, 4
C Z3 Z2

3 + Z/3 Z3 + Z/3 4, 13
D {0} Z2

3 Z2
3 4 2

The four cases match up with the C4 and D4 ground fields as they are listed in §3.3
as shown here:

−6 −3 −2 −1 1 2
C C B B A A

B B B B D D
B D
B A
B
C

Thus the first twin pair of D4 quartics for d = −6 lie in Case C and so on. The
cases worked out below correspond to the entries in boldface.

The entries in the |C2
3 .D4 Fields| column give the number of C2

3 .D4 fields corre-
sponding to various possible cokernels. The smallest number is printed in boldface;
this is the number of C2

3 .D4 fields if and only if the map φ is as surjective as
possible, yielding the minimal cokernel tabulated. Similar remarks apply to the
|C2

3 .C4 Fields| although there are fewer possibilities.
Note that the number of fields found by the computer search is always the

number in boldface. Thus, proving that the table is complete is equivalent to
proving the following proposition.

Proposition 3.1. For each of the 32 quartic ground fields F in question, the

cokernel of φ : E
(1)−
3 → U

(1)−
3 is minimal.

Of course, in Case D there is nothing to prove. As remarked, for the dihedral
cases A–C we have only to prove the statement either for F or F t. This leaves 15
cases, which we considered separately.

In each of these cases, we presented F by an even polynomial

F = Q[x]/(x4 + ax2 + b).

The involution σ then acts simply by σ(x) = −x. We then used Pari to find one

or two global units in the group E
(1)−
3 , either u1 in Cases B and C or u1, u2 in

Case A. We then verified that u1 or u1, u2, u1u2, u1/u2 are not cubes in U
(1)−
3 .

For this last step it suffices to work modulo a sufficiently large power of 3. Note,
Pari can be pushed to guarantee a basis for global units, and the ui we obtained

most likely form a basis of E
(1)−
3 . However, in this case it is unnecessary to know

the value of φ applied to a basis of E
(1)−
3 . We need only know that there exist

global units which are not cubes, as described above. We now outline two typical
calculations.
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Typical Case C computation. Consider the first pair of D4 twins in the table for
discriminant class −6. We worked with F = Q[x]/(x4 − 2x2 + 3). Here OF = Z[x].
Both F and its quadratic subfield are totally imaginary so E+

3 and E−

3 have ranks
0 and 1 respectively, the latter group containing v = x3 + x2 − x− 2. One has the
factorization x4 − 2x2 + 3 = (x2 + 3)(x2 + 4) ∈ OF /9. This corresponds to the
factorization into quadratic rings OF3

= Z3[
√
−3] × Z3[

√
−4] given on the tables.

The factor Z3[
√
−3] has third roots of unity and thus contributes Z3×Z/3 to U

(1)−
3 .

On the other hand the factor Z3[
√
−4] contributes Z3 to U

(1)−
3 . Thus indeed we

are in Case C.
The residue fields for Z3[

√
−3] and Z3[

√
−4] are F3 and F9 respectively. Thus,

to insure we have a 1-unit, we let u = v8 and so

u = −4904x3 − 9024x2 − 2792x + 4225

≡ x3 + 3x2 + 7x + 4 (mod 9).

Let x̄ be the image of x in the unramified factor Z3[
√
−4]; so x̄ is a unit and satisfies

the congruence x̄2 +4 ≡ 0 (mod 9). The image of u in Z3[
√
−4] is the 1-unit 3x̄+1.

Since 3 is a uniformizer, the cube of any 1-unit in Z3[
√
−4] is congruent to 1 modulo

9. Hence 3x̄ + 1 is not a cube in Z3[
√
−4], and we conclude that u ∈ E

(1)−
3 is not

a cube in U
(1)−
3 .

Typical Case A computation. Consider the first D4 field from the tables with
discriminant class 2. Then f(x) = x4 − 6x2 + 3, an Eisenstein polynomial for
p = 3. Thus, OF3

= Z3[x] and x is a local uniformizer. Since F is totally real,
E+

3 has rank 1 and E−

3 has rank 2. The group E3 contains v1 = x3 + x2 − 5x− 4,
v2 = x3 + 2x2 − x − 1, and v3 = x3 − 2x2 − x + 1. It is easy to check that
σ(v1)v1 = 1. We then anti-symmetrize v2 to produce v2/σ(v2) = −2x3−4x2+2x+1.
Taking squares to produce 1-units (since the residual degree is clearly 1), we have
u1 = v2

1 = −6x3− 4x2 + 34x+ 25 and u2 = (v2/σ(v2))
2 = 76x3 + 176x2− 44x− 95.

In this case we work modulo x6. A brief computation shows that elements of
OF3

/(x6) can be written uniquely in the form ax3 + bx2 + cx + d where a and b are
taken modulo 3, and c and d are taken modulo 9. It is easy to compute the cube of
this expression; cubes are of the form c3x3 + 3cd2x + d3. Reducing the units above
modulo x6, we find

u1 ≡ 2x2 + 7x + 7

u2 ≡ x3 + 2x2 + x + 4

u1u2 ≡ 2x3 + 2x2 + 2x + 4

u1/u2 ≡ 2x3 + 1.

Thus each expression is not a cube mod x6, hence not a cube in U
(1)−
3 .

Added in proof: We have now incorporated into our programs the improvements
described in §2.5. We have obtained analogous complete lists for sextics ramified
within other small sets of primes. The case of {∞, 2, 3} septics also has been
completed. Tables, similar in format to Table 1 and Table 6, are available at [J].
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pp. 147–179.

[MS] J. R. Merriman and N. P. Smart, The calculation of all algebraic integers of degree 3 with

discriminant a product of powers of 2 and 3 only, Publ. Math. Debrecen 43 (1993), no. 3-4,
195–205.

[Ol] M. Olivier, Corps sextiques primitifs, Ann. Inst. Fourier (Grenoble) 40 (1990), no. 4, 757–
767.
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