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Abstract. We pose the problem of identifying the set K(G, Ω) of Galois num-
ber fields with given Galois group G and root discriminant less than the Serre
constant Ω ≈ 44.7632. We definitively treat the cases G = A4, A5, A6 and
S4, S5, S6, finding exactly 59, 78, 5 and 527, 192, 13 fields respectively. We
present other fields with Galois group SL3(2), A7, S7, PGL2(7), SL2(8),
ΣL2(8), PGL2(9), PΓL2(9), PSL2(11), and A2

5.2, and root discriminant less
than Ω. We conjecture that for all but finitely many groups G, the set K(G, Ω)
is empty.

1. Introduction

There is a large literature on number fields with small absolute discriminant.
Most of this literature is focused on number fields of small degree. A standard
resource summarizing much of this literature is [2], which tabulates results in de-
grees ≤ 7. In this paper, we focus instead on Galois number fields. Our fields have
relatively large degrees, but they are still accessible via their low degree subfields.

Fix a finite group G. Let K(G) be the set of Galois number fields K ⊂ C with
Gal(K/Q) isomorphic to G. For C ∈ [1,∞), let K(G, C) ⊆ K(G) be the subset of
fields with root discriminant ≤ C. It is a classical theorem that all K(G, C) are
finite.

For a given G, a natural computational problem is to explicitly produce K(G, C)
for C as large as possible. This is the sort of information presented at [2] in the
context of low degree fields. To keep the focus as much as possible on theory,
rather than on very long tables, we work here with a single rather small cutoff
Ω = 8πeγ ≈ 44.7632. Our main problem, for a given group G, thus becomes to
determine K(G, Ω). Also of interest for us is dG, the smallest root discriminant of
any field in K(G).

The constant Ω was introduced first by Serre in 1975 [22]; see also [19]. It is
an interesting cutoff for the following reason. Let Kall(C) be the set all number
fields in C with root discriminant ≤ C. Let K(C) ⊆ Kall(C) be the subset of
Galois fields, so that K(C) = ∪GK(G, C). Then it is known that Kall(C) is finite
for C < Ω/2, and that the Generalized Riemann Hypothesis implies that Kall(C) is
finite for C < Ω as well. So, of course, K(C) is finite for C < Ω/2 and conditionally
finite for C < Ω too.

We have tried to take our computational results far enough so as to get some
feel for how the answer to our main problem looks for general G. First of all, we
expect that our cutoff is indeed extremely low in the following sense:

Conjecture 1.1. K(G, Ω) is empty for all but finitely many groups.
1
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This conjecture is plausible just from the theoretical discussion in the preceding
paragraph, as indeed the Generalized Riemann Hypothesis would imply it is true
with Ω replaced by any smaller number. The real general import of our computa-
tions is that the sets K(G, Ω) seem to be quite small indeed. It seems even possible
that the only non-abelian simple groups involved in a G with nonempty K(G, Ω)
are the five smallest,

SL2(4) ∼= PSL2(5) ∼= A5, (see §5,12)
PSL2(7) ∼= SL3(2), (see §7,8)
PSL2(9) ∼= A6, (see §5,10)
SL2(8), (see §9)

PSL2(11), (see §11)

and the eighth-smallest, A7 (see §7). These simple groups have orders 60, 168, 360,
504, 660, and 2520 respectively.

Computing root discriminants in our Galois context is substantially harder than
computing root discriminants in the traditional low degree setting. Section 2
sketches how we do this, and details are given in [12].

Section 3 determines K(G, Ω) for abelian groups G, where one can make use
of the Kronecker-Weber theorem. We find in particular that there are exactly
7063 abelian fields with root discriminant ≤ Ω, the one of largest degree being
Q(e2πi/77) of degree sixty with with root discriminant 75/6119/10 ≈ 43.80. In Sec-
tion 4, we consider the class fields of these 7063 abelian fields, getting more elements
of K(Ω), of which the largest has degree 212 · 3 · 7 = 86,016 with root discriminant
31/22927/28 ≈ 44.54.

Section 5 determines K(G, Ω) for most groups G embeddable in S6. We find that
for G = A4, A5, A6, and S4, S5, S6, there are exactly 59, 78, 5, and 527, 192, 13
fields in K(G, Ω).

In the remaining sections, we restrict attention to groups G of the form Hm.A
for H a non-abelian simple group, m a positive integer, and A a subgroup of the
outer automorphism group of Hm. In fact, m = 1 in all our examples except for
the case A5 where we consider also m = 2. We make this restriction only to keep
the current paper within reasonable bounds.

Section 6 describes how one can use holomorphic modular forms on the upper
half plane as well as less classical automorphic forms to search for sub-Ω fields.
We revisit the A6 fields from the previous section as examples. In the next four
sections, we will indicate how this automorphic approach complements our direct
search for defining equations.

Section 7 treats the three nonsolvable groups which can be realized as transitive
subgroups of S7. We find seventeen fields in K(SL3(2),Ω) and one field in K(A7,Ω)
the lists being complete out through root discriminant 39.52. For G = S7, we know
only |K(G, Ω)| ≥ 1 with our best field showing dS7 ≤ 23/237/656/7 ≈ 40.49.

Sections 8, 9, 10, and 11 present sub-Ω fields for certain nonsolvable subgroups
of S8, S9, S10, and S11 respectively, namely PGL(7), SL2(8), ΣL2(8), PGL2(9),
PΓL2(9), and PSL2(11). For SL2(8) we use the modular approach. For the re-
maining groups, our main method is to suitably specialize three point covers.

Section 12 uses the lists from §5 to prove that K(G, Ω) is empty for certain G, for
example G = A5 ×A5. In contrast, it reports on a field K with Gal(K/Q) ∼= A2

5.2
and root discriminant 251/16315/18 ≈ 41.90.



GALOIS NUMBER FIELDS WITH SMALL ROOT DISCRIMINANT 3

Section 13 reports on our efforts to find small root discriminant Galois fields
for other non-solvable groups. While we naturally obtained upper bounds for dG,
we did not find any more sub-Ω fields. We illustrate the general nature of these
searches by treating the case G = ΣL2(16) in some detail. In this case, we specialize
two three point covers and find dΣL2(16) ≤ 2101/6033/4523/20 ≈ 46.60.

The computations behind this paper made extensive use of the Pari library [20].
Also we made substantial use of the ATLAS [6] as a source of group-theoretical facts.
To remove potential ambiguities, we use the “T notation” for transitive permutation
groups as well as descriptive notation. This T notation was introduced in [3] and
is used also in [20] and [14].

The website [9] is a companion to this paper. For various G, it gives the currently
known fields in K(G, Ω) and indicates through what cutoff the list is known to be
complete. We plan to consider G beyond those discussed in this paper, and place
our findings on this website.

2. Computing Galois root discriminants via slope data

Let f(x) ∈ Z[x] be a monic irreducible degree n polynomial. Consider the
abstract field F = Q[x]/f(x) and also the splitting field K ⊂ C associated to f .
The abstract field F is typically non-Galois and K is the Galois closure of any
embedding of F in C. Let N = [K : Q] so that N = |Gal(K/Q)|. Then n divides
N , which in turn divides n!.

Let D(F ), D(K) ∈ Z be the corresponding field discriminants. Let d(F ) =
|D(F )|1/n and d(K) = |D(K)|1/N be the corresponding root discriminants. The
main quantity for us is d(K). We call it the Galois root discriminant of f , F , or
K, and abbreviate “Galois root discriminant” by GRD.

One has
d(F ) ≤ d(K),

with equality iff K/σ(F ) is unramified for one or equivalently any embedding σ :
F → C. More sharply, one has canonical factorizations

d(F ) =
∏
p

pαp ,(2.1)

d(K) =
∏
p

pβp ,(2.2)

with all exponents rational numbers. One has

(2.3) αp ≤ βp,

with equality iff K/σ(F ) as above is unramified at p.
To compute the Galois root discriminant d(K), we work one prime at a time,

computing each of the βp. The p-adic computation of βp never sees the typically
large globally-defined number N . If p is tamely ramified, the computation is rela-
tively easy, going as follows. Let Qun

p be the maximal unramified extension of Qp.
Factor f over Qun

p and let e1, e2, . . . , eg be the degrees of the factors. We call
(e1, . . . , eg) the ramification partition of f at p. Let t be the least common multiple
of the ei’s. Then

(2.4) βp = 1− 1
t
.
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For comparison,

αp =
1
n

g∑
i=1

(ei − 1).

So equality holds in (2.3) iff all the ei coincide. Of course, for all but finitely many
p, all the ei are 1 and αp = βp = 0.

When p is wildly ramified, the computation of βp is much harder, and focuses on
wild slopes. Suppose the p-inertia group Ip has order pkt with t prime to p. Then
one has k wild slopes at p, which we always index in ascending order,

s1 ≤ s2 ≤ · · · ≤ sk−1 ≤ sk,

all wild slopes being rational numbers greater than one. One then has

(2.5) βp =

 k∑
j=1

p− 1
pk+1−j

sj

 +
1
pk

t− 1
t

with βp ≥ 1 iff k ≥ 1. When describing a given Galois number field K we often
give the slope data p[s1, · · · , sk]t, rather than just the number βp. When p is tame,
so that there are no wild slopes, we simply write pt. Let t0 be the prime-to-p part
of the least common multiple of the denominators of the sk. Always t0 divides t.
When t0 is equal to t, a very common occurence in the setting of this paper, we
typically omit the subscript t from the notation. Thus 2[4/3, 4/3]3 is abbreviated
2[4/3, 4/3] and 3[3/2]2 is abbreviated 3[3/2]. For a discussion of how one goes about
computing the sj , and for web-based software which carries out such computations,
see [12].

If 2 divides the discriminant of a number field, then it contributes at least 22/3 to
the field’s Galois root discriminant. Any odd prime p dividing the discriminant of
a number field contributes at least p1/2. So one immediately has restrictions on the
set S of primes dividing the discriminant of a field K in K(Ω). If S is empty, then
K = Q. If S = {p}, then p must be one of the 304 primes ≤ 2003 as Ω2 ≈ 2003.75.
For S = {p, q}, {p, q, r}, and {p, q, r, s}, there are respectively 533, 264, and 36
possiblities. Already S = {p, q, r, s, t} is impossible as 22/3(3 · 5 · 7 · 11)1/2 ≈ 45.32.

The 1137 possible non-empty S come in two types. For some, wild ramification
is locally possible, and then there are infinitely many locally possible GRDs less
than Ω. For the rest, only tame ramification is possible and then there are only
finitely many possible GRDs. The case S = {p} is of the first type exactly for the 14
primes p ≤ 43. For S = {p, q}, {p, q, r}, and {p, q, r, s}, there are respectively 167,
116, and 16 possibilities where wild ramification is allowed. Of course if a group
G is fixed, only some slopes are possible, and one has only finitely many locally
possible sub-Ω GRDs. The case G = S6 is explained in more detail in Section 5.

3. Abelian fields

To get started, we consider abelian fields. This section explains the proof of the
following proposition.

Proposition 3.1. For G an abelian group, |K(G, Ω)| is as given in Table 3.1. In
particular, only 59 abelian groups G have |K(G, Ω)| > 0 and altogether there are
7063 abelian fields in K(Ω).
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We use the standard complete classification of abelian fields in terms of their ram-
ification. Thus in this section, we do not need to work with the fields themselves.

For r in the group Q/Z, let ζr be the root of unity exp(2πir). The field Qab

generated by these complex numbers is known to be the maximum abelian extension
of Q in C. So Qab is the union of the subfields Q(ζ1/n)

Let Ẑ be the profinite completion of the integers Z, so that Ẑ = lim
←−

Z/n. A unit

a ∈ Ẑ× = lim
←−

(Z/n)× acts on Qab via σa(ζr) = ζar. Via this action one has an

isomorphism Ẑ× ∼→ Gal(Qab/Q) : a 7→ σa.
The ring Ẑ factors canonically into a product over all primes p of the p-adic

integers Zp, with Zp = lim
←−

Z/pj . On the level of unit groups, this becomes

(3.1) Ẑ× =
∏
p

Z×p .

Let Tp be the torsion subgroup of Z×p . For p odd, reduction modulo p gives an
isomorphism Tp → F×p and so |Tp| = p− 1; also T2 = {1,−1} and so |T2| = 2. For
p odd, let Pp be the group of principal units 1 + pZp and define also P2 = 1 + 4Z2.
Then in all cases

(3.2) Z×p = Tp × Pp.

Quotient groups of Tp are indexed by their cardinality, which can be any divisor
of |Tp|. Finite quotient groups of |Pp| are also indexed by their cardinality, the
possibilities being 1, p, p2, . . . . For p odd, quotients of Z×p are just the products
of a quotient of Tp and a quotient of Pp; we let Ip,c denote the unique quotient of
cardinality c. For p = 2, we use the following notation for quotients of Z×2 . Let
u = −1 be the generator for T2 and work with v = 5 as a generator for P2. Then
for c = 2, 4, 8, . . . , we let

I2,c+ = Z×2 /〈u, vc〉,
I2,2,c/2 = Z×2 /〈vc/2〉,

I2,c− = Z×2 /〈(uv)c/2〉.

Also we let I2,1 be the 1-element quotient of Z×2 and abbreviate I2,2,1 by I2,2.
In the factorization (3.1), Z×p is exactly the inertia subgroup Ip. For p odd, Tp

is identified with the tame quotient, and so is associated with the slope 1. Pp is
thus the wild inertia subgroup, and its associated slopes are j + 1 as j runs over
the positive integers, each slope appearing with multiplicity 1. All of I2 = Z×2 is
wild, the slopes being 2, 3, 4, . . . . For the quotient I2,2,2j−1 , the slopes are 2, . . . ,
j + 1 while for the quotients I2,2j+ and I2,2j−, the slopes are 3, . . . , j + 2.

To find all abelian fields 6= Q with root discriminant less than Ω we proceed in
three stages. First, we restrict attention to fields ramified at exactly one prime.
For p odd, these are the Kp,tpj such that

(3.3) βp =
1
pj

t− 1
t

+
j∑

i=1

p− 1
pj+1−i

(i + 1)
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Table 3.1. Information about the 7062 abelian fields different
from Q having root discriminant ≤ Ω.

|G| G # KG,1 dG |G| G # KG,1 dG

2 2 1220 32 1.73 22 22 7 2322 19.94
3 3 47 73 3.66 23 23 1 4723 39.76
4 4 228 54 3.34 24 24 1 73178 43.66
4 2, 2 2421 2232 3.46 24 12, 2 73 5476 16.92
5 5 7 115 6.81 24 6, 2, 2 70 223276 17.53
6 6 399 76 5.06 28 28 2 2928 25.71
7 7 4 297 17.93 28 14, 2 1 322914 39.49
8 8 23 178 11.93 30 30 8 3130 27.65
8 4, 2 581 3254 5.79 32 8, 4 1 54178 39.89
8 2, 2, 2 908 22,232 6.93 32 16, 2 7 321716 24.67
9 9 3 199 13.70 32 4, 4, 2 4 22,454 26.75
9 3, 3 9 3373 15.83 32 8, 2, 2 4 22,832 27.71

10 10 69 1110 8.65 32 4, 2, 2, 2 10 22,23254 23.17
11 11 1 2311 17.30 32 2, 2, 2, 2, 2 1 22,2325272 40.99
12 12 66 1312 10.50 36 36 1 3736 33.47
12 6, 2 391 3276 8.77 36 6, 6 6 3676 26.30
13 13 1 5313 39.05 36 12, 3 1 731312 38.42
14 14 8 2914 22.80 36 18, 2 9 321918 27.94
15 15 4 3115 24.66 40 40 1 4140 37.36
16 16 9 1716 14.24 40 20, 2 5 541110 28.94
16 4, 4 16 24±54 22.49 40 10, 2, 2 7 22321110 29.98
16 8, 2 30 22,8 16.00 42 42 2 742 35.43
16 4, 2, 2 195 223254 11.58 44 22, 2 3 322322 34.55
16 2, 2, 2, 2 73 22,23252 15.49 46 46 1 4746 43.23
18 18 24 318 15.59 48 12, 4 1 541312 35.10
18 6, 3 19 3673 19.01 48 12, 2, 2 9 325476 29.31
20 20 8 520 16.72 48 6, 2, 2, 2 2 22,23276 35.06
20 10, 2 56 321110 14.99 56 28, 2 1 322928 44.54
21 21 2 721 33.82 60 30, 2 1 761110 43.80

is less than logp(Ω). For p = 2, we have

K2,2+ = Q(
√

2),
K2,2 = Q(i),

K2,2− = Q(
√
−2).

For d ≥ 2 a power of 2, we let K2,2,d be the full cyclotomic field Q(ζ1/4d), with
non-cyclic Galois group isomorphic to Z/2×Z/d. The remaining cases have cyclic
Galois group, with K2,c+ being the totally real field Q(ζ4c)+ and K2,c− being totally
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imaginary. Here one has

β2(K2,2,2j−1) =
1
2
(j + 1) +

1
4
(j) + · · ·+ 1

2j
2 = j,(3.4)

β2(K2,2j±) =
1
2
(j + 2) +

1
4
(j + 1) + · · ·+ 1

2j
3 = j + 1− 1

2j
.(3.5)

One finds that there are exactly 421 abelian fields ramified at exactly one prime.
Second, we take composita of the one-prime fields obtaining fields with root

discriminant
∏

d(Kp,cp
). Here cp is a cardinality, augmented perhaps with a sign

if p = 2. One gets 1785 more fields. Finally, one looks within each composed field
Kc to find proper subfields K with d(K) = d(Kc). This is a somewhat intricate
computation with abelian groups.

Table 3.1 summarizes our calculations. The abelian group G is given by its in-
variant factors, so that e.g. 6, 2 represents the group C6 ×C2. The column # gives
the number |K(G, Ω)|. The column KG,1 gives the fields with the minimal root
discriminant dG, with a field Kp,c being represented by the symbol pc. So, for ex-
ample, 22,454 stands for the compositum K2,2,4K5,4, which in turn is Q(ζ1/16, ζ1/5).
With this convention, if KG,1 is tame then we are printing exactly its slope data.
Note also that our conventions allow one to recover G from the subscripts in the
KG,1 column.

4. Class fields of abelian fields

Suppose K is a number field with narrow class number h. Then the narrow
Hilbert class field H of K is an unramified degree h extension of K, so that H and
K have the same root discriminant. In particular, if K ∈ K(Ω) then H ∈ K(Ω)
too.

The fields in the previous section are all small enough so that we are able to
compute their narrow class numbers. In contrast to the previous section, our com-
putations here actually involve fields.

Figure 4.1 plots the pairs (d(H), log10[H : Q]) for the resulting narrow Hilbert
class fields. Its purpose is to give one a first intuitive feel for the set K(Ω). For
example, from the previous section we know that the primes 2, 3, 5, 7, 11, 13, and
23, can divide the degree of a field in K(Ω). From the computations behind this
section, we also know that 17, 19, 29, 31, 37, 41, 43, 61, 67, 73, 89, 97, 109, 139,
151, 163, 211, 271, and 331 can divide the degree of a field in K(Ω). Sections 5–12
do not produce any more such primes; in fact, they only reproduce 2, 3, 5, 7, and
11.

The fields Q(exp(2πi/87)) and Q(exp(2πi/77)) occurring as the last two entries
of Table 3.1 have class numbers 1536 = 293 and 1280 = 285. The corresponding
Hilbert class fields, of degree 56 · 1536 = 86016 and 60 · 1280 = 76800, account for
the two highest points on Figure 4.1.

For every d < Ω, there is an upper bound u(d) on the degree of a number field
satisfying the generalized Riemann hypothesis with root discriminant ≤ d. The
upper bound is drawn in Figure 4.1 from the data given in [18]. The large empty
region beneath the curve on the right is supportive of our expectation that the
entire set K(Ω) is finite.

The previous section can be viewed as the first step towards finding K(G, Ω)
for all solvable G, by induction on the solvable length of G. In this light, the
current section represents a relatively easy part of the second step. To pursue the
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Figure 4.1. The ordered pairs (d(H), log10[H : Q]) for H the
class field of K, and K running over the 7063 abelian fields with
d(K) < Ω. Different K can have the same H and different H can
give rise to the same point. Altogether, there are 3954 distinct
ordered pairs plotted on this figure.

second step completely, one would have to make a careful analysis of ray class
fields. As an indication of how many more fields we would find if we took the
second step completely, consider the semidirect product groups S3 = C3 : C2,
A4 = V : C3, D5 = C5 : C2, and F5 = C5 : C4. In each case, a field K with
Galois group G = G2 : G1 is seen by the techniques of this section if and only if the
relative extension K/K1 corresponding to G2 is unramified. In this section, we see
respectively 217, 2, 118, and 38 fields in these K(G, Ω). From Theorem 5.1 of the
next section, we know that there are respectively 393, 57, 28, and 64 more fields in
K(G, Ω).

5. Degrees 3-6

This section centers on the following theorem.
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Theorem 5.1. One has

|K(S3, Ω)| = 610,

|K(D4, Ω)| = 1425, |K(A4, Ω)| = 59, |K(S4, Ω)| = 527,

|K(D5, Ω)| = 146, |K(F5, Ω)| = 102, |K(A5, Ω)| = 78, |K(S5, Ω)| = 192,

|K(C2
3 .C4, Ω)| ≥ 17, |K(C2

3 .D4, Ω)| ≥ 137, |K(A6, Ω)| = 5, |K(S6, Ω)| = 13.

If a degree n field has Galois root discriminant d, then its absolute discriminant is
at most dn. For n = 3, 4, this means that the fields we seek are all splitting fields of
polynomials in the tables of [2]. For n = 5 and especially n = 6, the tables do not
go nearly far enough. We ran computer searches for degree n fields whose Galois
closures are the fields we want. Some details of these searches are given in the case
n = 6 at the end of this section.

Our searches are guaranteed to find a degree n field only when the field is primi-
tive, i.e. has no subfield besides Q and itself. For the prime degree n = 5, this does
not pose a problem, and our search found all sub-Ω fields with the five possible
Galois groups C5, D5, F5, A5, and S5.

Table 5.1. The field with the minimal Galois root discriminant
dG for some small groups G.

G Defining polynomial Slope data dG

S3 x3 − x2 + 1 232 4.80
D4 x4 − x3 − 3x2 − x + 1 33 72 6.03
A4 x4 − 2x3 + 2x2 + 2 2[2, 2] 73 10.35
S4 x4 − 2x3 − 4x2 − 6x− 2 2[ 43 , 4

3 ] 114 13.56
D5 x5 − 2x4 + 2x3 − x2 + 1 472 6.85
F5 x5 − 2 25 5[ 54 ] 11.08
A5 x5 − x4 + 2x2 − 2x + 2 2[2, 2] 173 18.70
S5 x5 − 2x4 + 4x3 − 4x2 + 2x− 4 2[ 83 , 8

3 ] 35 52 21.54
C2

3 : C4 x6 + 6x4 − 3x3 + 9x2 − 9x + 1 3[2, 2] 54 ≤ 23.57
C2

3 : D4 x6 + x4 − 2x3 + 3x2 − x + 1 3[ 32 ] 114 ≤ 21.76

For the composite degree n = 6, there are twelve possible imprimitive Galois
groups and four possible primitive Galois groups, with all imprimitive groups be-
ing solvable and all primitive groups non-solvable. Among the twelve imprimitive
Galois groups, five have been seen before, T1 ∼= C6, T2 ∼= S3, T4 ∼= A4, and
T7 ∼= T8 ∼= S4. Five are product groups, T3 ∼= S3×C2, T5 ∼= S3×C3, T6 ∼= A4×C2,
T9 ∼= S3 × S3, and T11 ∼= S4 × C2. In these product cases, K(Q1 × Q2,Ω) can
be obtained by composing fields in K(Q1,Ω) and K(Q2,Ω) and selecting out those
fields which are sub-Ω, in the spirit of Section 12. The most interesting imprimitive
cases are T10 ∼= C2

3 : C4 and T13 ∼= C2
3 : D4. Here we expect that the list of fields

our search found is complete but there is no guarantee. To rigorously obtain the
complete list, one could carry out class field theory computations as in [10, §3.4] or
implement a targeted version of the relative searches first introduced in [16]. The
primitive groups are T12 ∼= A5, T14 ∼= S5, T15 = A6 and T16 = S6. The groups
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Table 5.2. The five fields in K(A6,Ω). For each, a twin pair of
defining polynomials is given.

# GRD Polynomials Slope data
1 31.66 x6 − 3x5 + 3x4 − 6x2 + 6x− 2 2

[
8
3 , 8

3

]
3[2, 2]

x6 − 3x4 − 12x3 − 9x2 + 1

2 37.23 x6 − 6x3 − 6x2 − 6x− 2 2
[
4
3 , 4

3

]
3
[
3
2 , 3

2

]
132

x6 − 3x5 + 3x4 − 2

3 41.17 x6 − 3x5 + 6x4 + 17x3 − 57x2 + 69x− 47 3
[
3
2 , 5

2

]
74

x6 − 3x5 + 3x4 + 9x3 − 18x2 − 9x + 18

4 43.41 x6 − 3x3 − 3x + 4 3
[
3
2 , 3

2

]
293

x6 − 3x5 − 3x4 + 11x3 + 6x2 + 75x + 50

5 44.67 x6 − x5 + 2x4 − 3x2 + 2x− 4 73 1492

x6 − 6x4 − 7x3 + 19x2 + 7x− 15

A5 and S5 were already treated by the quintic search, so the main purpose of the
sextic search is to find the A6 and S6 fields.

For the groups besides A6 and S6, information on the field with the smallest root
discriminant is given in Table 5.1. The corresponding list of sub-Ω fields is given at
[9]. For A6 and S6 we give these lists here. For each field K, we give two polyno-
mials fa(x) and fb(x) defining non-isomorphic root fields Q[x]/fa(x) 6∼= Q[x]/fb(x)
embeddable in the common splitting field K. Similar twinning phenomena appear
again for PSL2(7) and PSL2(11) in Sections 7 and 11 respectively.

Our sextic search consisted of a great many individual cases, with each case
consisting of one ramification pattern for each ramifying prime. Each individual
case was a Hunter-type search, as described in [5, §9.3], with the search region
reduced by p-adic conditions, as described in [11]. The possible contribution of p
to a Galois root discriminant of a sextic field is pβp where

β2 ∈
{
0, 2

3 , 4
5 , 1, 7

6 , 4
3 , 3

2 , 19
12 , 7

4 , 11
6 , 2, 25

12 , 13
6 , 9

4 , 7
3 , 31

12 , 11
4 , 3

}
,

β3 ∈
{
0, 1

2 , 3
4 , 4

5 , 7
6 , 43

36 , 4
3

25
18 , 3

2 , 31
18 , 16

9 , 11
6 , 37

18 , 25
12 , 13

6

}
,

β5 ∈
{
0, 1

2 , 2
3 , 3

4 , 5
6 , 23

20 , 13
10 , 31

20 , 8
5 , 39

20

}
,

and otherwise βp ∈
{
0, 1

2 , 2
3 , 3

4 , 4
5 , 5

6

}
. This yields 8154 possible GRDs in the

interval (1,Ω), with 482, 3424, 3874, and 374 GRDs corresponding to 1, 2, 3, and
4 ramifying primes respectively.

A given possible GRD typically corresponds to several searches. Consider for
example the common case of βp = 1/2. This means that p ≥ 3 and the p-adic
ramification structure is either 21111, 2211, or 222 corresponding to p, p2, or p3

exactly dividing the discriminant of the sextic field sought. In this case, p would
contribute a factor of 3 to the number of searches associated to the given GRD. The
searches belonging to a given GRD can vary substantially in length. For example,
for the 20031/2 search, the 21111 search took approximately 1 second and looked
at 18 polynomals. The 2211 search took approximately 22 minutes and looked at
2200 polynomials. We did not have to do the 222 search because sextic twinning
takes fields with discriminant ±p into fields of ±p3.
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Table 5.3. The thirteen fields in K(S6,Ω).

# GRD Polynomials Slope data
1 33.50 x6 − 2x5 − 4x4 + 12x3 − 14x2 + 8x− 4 2[2, 2, 3] 35 53

x6 − 2x5 − x4 + 6x3 − 2x2 − 4x− 1

2 37.53 x6 − 3x5 + 5x3 − 5 23 3
[
5
4 , 5

4

]
5
[
5
4

]
x6 − 3x5 + 5x3 + 3x + 1

3 38.15 x6 − 2x5 + 5x4 − 5x2 + 10x− 5 2
[
8
3 , 8

3 , 3
]

5
[
5
4

]
x6 − 2x5 + 5x4 − 10x2 + 8x− 6

4 38.40 x6 + 3x4 − 4x3 + 9x2 − 6x + 1 25 3
[
9
4 , 9

4

]
52

x6 + 3x4 − 8x3 − 9x2 − 12x + 1

5 39.08 x6 − 2x5 + 4x4 − 8x3 + 2x2 + 24x− 20 2[2, 2, 3] 32 75

x6 − 4x4 − 2x3 + x2 − 2x− 5

6 39.44 x6 − x5 − 4x4 + 6x3 − 6x + 5 112 413

x6 − x5 + 7x4 − 6x3 + 11x2 − 10x + 4

7 40.92 x6 − 3x5 + 3x4 + 8x3 − 12x2 + 12x− 4 2[2, 2] 3[2] 54

x6 + 2x4 − 2x3 − 3x2 − 6x− 3

8 41.05 x6 − 9x4 − 2x3 + 9x2 + 6x + 2 2[2] 3[2] 75

x6 + 5x4 − 2x3 + 9x2 − 8x + 16

9 41.80 x6 − 6x4 − 4x3 + 18x2 + 12x− 26 2
[
4
3 , 4

3 , 3
]

3
[
9
4 , 9

4

]
x6 + 3x4 − 4x3 − 6x− 2

10 42.25 x6 − 6x4 − 4x3 + 6x2 − 6 2
[
8
3 , 8

3 , 3
]

3[2, 2]
x6 − 6x4 − 4x3 + 6x2 − 4

11 43.55 x6 − 2x5 + 3x4 + 6x3 − 6x2 + 15x + 15 35 52 233

x6 − 2x5 + 2x4 − 2x2 − 7x− 1

12 44.26 x6 − 9x4 − 16x3 − 9x2 − 6x− 1 25 3[2, 2] 132

x6 − 3x5 + 4x3 − 4

13 44.35 x6 − 2x5 − 3x4 + 6x3 + 16x2 − 32x + 8 2
[
4
3 , 4

3 , 2
]

53 76

x6 − 2x5 + 6x4 − 8x3 − 4x2 + 8x− 4

All together, the sextic searches here required several months of computer time.
For comparison, consider the determination in [10] and [11] respectively of all prim-
itive sextics and all septics ramified at 2 and 3 only. In each case, we had to search
root discriminants well beyond Ω, in fact to 23313/6 ≈ 86.47 and 237/12313/6 ≈ 91.61.
However these searches now take 2 hours and 13 hours respectively, as reported in
more detail in [11].

6. Connections with automorphic forms

Some number fields are related to classical holomorphic forms on the complex
upper half plane. We review this connection here using the A6 number fields on
Table 5.2 as examples. Our discussion in this section explains the meaning of the
identities involving modular forms in the next four sections, as well as our entire
approach to SL2(8) fields in Section 9. Other number fields are related to other
sorts of automorphic forms and we also mention such connections here and in later
sections.
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We work inside the formal power series ring C[[q]]. For each N , one has a finitely
generated subring M(N) =

⊕
k Mk(N) of modular forms on the group Γ1(N), with

the weight k running over 0, 1/2, 1, . . . . Elements of M(N) can be thought of as
functions on the upper half z-plane via q = e2πiz. Another conceptual point of
view is that M(N) is a projective coordinate ring for the modular curve X1(N).
However neither of these viewpoints enters into the rest of the discussion, and it
will suffice to think of modular forms simply as power series.

For k integral, one has the space of cuspidal newforms Snew
k (N) inside Mk(N).

This space is a direct sum of subspaces Snew
k (N,χ) indexed by Dirichlet characters

χ : (Z/NZ)× → C× satisfying χ(−1) = (−1)k. The only characters which will
appear explicitly in this paper are the trivial character χ1 and the quadratic Jacobi
symbol characters χD(·) =

(
D
·
)

for D a discriminant of a quadratic field.
For p a prime not dividing N , one has the Hecke operator Tp on Snew

k (N,χ)
given by Tp(

∑
anqn) =

∑
(apn + χ(p)pk−1an/p)qn, with an/p understood to be 0

if n/p is not integral. The Tp are semisimple commuting operators and all their
simultaneous eigenspaces have dimension one. Say an eigenform is normalized if
a1 = 1. The set Sprim

k (N,χ) of normalized eigenforms is then a basis for Snew
k (N,χ).

These primitive forms are tabulated for a broad range of (k, N, χ) at [24].
Let Z ⊂ C be the ring of algebraic integers. Any primitive form f lies in Z[[q]].

For a prime `, fix an ideal in Z with residue field F`, an algebraic closure of F`.
Via this choice, a primitive form gives an element of F`[[q]].

A representation ρ : Gal(Q/Q) → GL2(F`) is said to correspond to a prim-
itive form f ∈ F`[[q]] if and only if it is unramified at primes not dividing N`
and for all such primes the Frobenius class ρ(Frp) has characteristic polynomial
x2 − apx + χ(p)pk−1. Every f has a corresponding ρ. Henceforth we restrict at-
tention to ρ which are semisimple, i.e. either irreducible or the the sum of two
irreducibles. Then ρ is unique up to conjugation. Also ρ is odd in the sense that
ρ(complex conjugation) has eigenvalues −1 and 1. Much of the ramification of ρ
can be given directly in terms of f .

Conversely, suppose we are given an odd semisimple ρ : Gal(Q/Q) → GL2(F`).
Then Serre’s conjecture says that it should come from a modular form via the above
construction. From the ramification in ρ, one can even specify the data (k, N, χ).
In fact, the examples we give in this paper illustrate many aspects of the recipe in
[23].

Consider now Galois fields K ⊂ C with Gal(K/Q) of the form PGL2(λ) for
λ = `f a prime power. If ` 6= 2 we allow also the index two subgroup PSL2(λ)
but suppose further that K is not totally real. Then, since any homomorphism
Gal(Q/Q) → PGL2(F`) lifts to a representation Gal(Q/Q) → GL2(F`), all such
K are expected to come from primitive forms.

Explicitly, such a K can be given as the splitting field of a degree λ+1 polynomial
f(x) ∈ Z[x]. For p not dividing the discriminant of K, information on the Frobenius
element Frp can be obtained by the partition µp of λ+1 whose parts give the degrees
of the irreducible factors of f(x) ∈ Zp[x]. The possible partitions are (u, . . . , u, 1, 1)
for any factorization λ− 1 = um, (u, . . . , u) for any factorization λ + 1 = um, and
also (`, . . . , `, 1). The order of the Frobenius element is the least common multiple
of the parts of µp, i.e. just u, u, and ` in the three cases. The field K comes from
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a primitive form f =
∑

anqn if and only if

the order of the Frobenius element Frp
?=(6.1)

the order of
(

0 −1
χ(p)pk−1 ap

)
in PGL2(λ)

for p not dividing N`. The right side depends only on the quotient a2
p/χ(p)pk−1

in Fλ ⊂ F`. Also u
?= v means u = v or (u, v) = (1, `). In the cases PSL2(7) ∼=

GL3(2), PSL2(9) ∼= A6 and PSL2(11), we will work with polynomials of degree 7,
6, and 11 rather than 8, 10, and 12 respectively.

One way to construct modular forms is by θ-series. For t a positive integer, let

θt =
∞∑

k=−∞

qk2t = 1 + 2qt + 2q4t + 2q9t + · · · .

The form θt lies in M1/2(4t). As an example of the usefulness of theta series, one
has M(8) = C[θ1, θ2]. In general, it is useful to introduce the abbreviations

θ̂t =
1
2
θt −

1
2
θ4t,

θ̌t = 2θt − θt/4

to keep formulas relatively simple. Here the latter abbreviation is used only when
t is a multiple of 4.

Let f6a and f6b denote the first two polynomials in Table 5.2 with common
splitting field KA6,1. A primitive modular form giving rise to KA6,1 is

fA6,1 = θ̂1θ4θ8θ̌32

[
(−1−

√
2)θ2

4 + (2 +
√

2)θ2
8

]
+

iθ̂1θ̂2θ̌16θ̌32

[
2θ2

4 + 2
√

2θ2
8

]
∈ Sprim

3 (128, χ−4).

Table 6.1 illustrates the correlation between the factorization patterns µ6a,p and
µ6b,p of f6a and f6b over Zp on the one hand, and the quantities dp = a2

p/χ−4(p)p2

in F9 = F3[i] on the other.

Table 6.1. Behavior of primes 5 ≤ p ≤ 97 in the first A6 field
KA6,1 and the matching modular form fA6,1.

Class µ6a,p µ6b,p dp Primes
1A 16 16 1
2A 2211 2211 0 67
3A 3111 33 1
3B 33 3111 1 11, 73, 79
4A 42 42 2 13, 19, 31, 47, 71, 89
5A 51 51 i 5, 7, 37, 41, 43, 53, 83
5B 51 51 −i 17, 23, 29, 59, 61, 97

To see definitively that KA6,1 really comes from fA6,1 one can proceed as follows.
Certainly fA6,1 gives rise to an A6 field K ramified only at 2 and 3. However
there are only four such fields [10], and the three fields different from KA6,1 do



14 JOHN W. JONES AND DAVID P. ROBERTS

not match the Frobenius data in Table 6.1. Therefore K = KA6,1. We have
used complete tables to obtain similar definitive matching for many of the A5

∼=
SL2(4) ∼= PSL2(5) and S5

∼= PGL2(5) fields found by the search of the previous
section. Similarly, for the next three A6 fields one has definitive matches fA6,2 ∈
Sprim

2 (104, χ13), fA6,3 ∈ Sprim
4 (49, χ1), and fA6,4 ∈ Sprim

2 (29, χ1). However, even in
this small group setting, the desired primitive form may be beyond the tables in [24]
when ` does not ramify in K. Thus we do not presently have a matching form for
the fifth A6 field. If one allows also purely characteristic ` modular forms, then these
unramified-at-` fields should match modular forms of weight 1. Sections 7, 8, 10,
and 11 provide several examples of fields for which the corresponding characteristic
` weight one form has not been found.

The matches in the next four sections require not only the theta series we have
introduced, but also the twisted theta series

(6.2) φt =
∞∑

n=−∞
χ8(n)qtn2

∈ M1/2(256t).

Also we use the eta-function

(6.3) ηt = qt/24
∞∏

k=1

(1− qtk).

If t is a multiple of 24 then ηt ∈ M1/2(24t).
Some of the matches in the next sections are only numeric in the sense that

we have checked agreement in (6.1) for p ≤ 1000 but we haven’t established full
agreement rigorously. To definitively establish these matches, one approach would
be to try to use an effective Chebotarev density theorem. Of course, theoretical
results towards Serre’s conjecture might immediately settle the issue. There is such
a result in the case of PSL2(9) and PGL2(9) [8]. It applies to our second through
fourth A6 fields, since its hypothesis on ramification at 3 is satisfied. It doesn’t
apply to our first or fifth A6 field, nor to (10.1).

To find automorphic matches for the S6 fields of the previous section, one needs
to go beyond classical modular forms. When the quadratic subfield F is real, the
setting of Hilbert modular forms over F should provide matches. For example,
KS6,j contains F = Q(

√
5) for j = 2, 4, 7, and 11. These four fields have been seen

numerically by Diamond and Dembele in their computations with Hilbert modular
forms over Q(

√
5). Another place that should provide matches for S6 fields is Siegel

modular forms of genus two, via S6
∼= Sp4(2).

7. Degree 7

There are three non-solvable septic groups, SL3(2), A7, and S7. Run times
would be too long to fully compute K(G, Ω) for all three groups. However early on
we found

(7.1) fA7(x) = x7 − 3x6 + 3x5 + 3x4 − 9x3 + 3x2 + x− 3

with Galois group A7, slope data (27, 3[3/2, 3/2], 75), and Galois root discriminant
26/7325/1874/5 ≈ 39.516. We carried out a search for alternating septics only and
cutoff 39.52, obtaining the following result:

Theorem 7.1. One has |K(SL3(2), 39.52)| = 8 and |K(A7, 39.52)| = 1.
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Table 7.1. The eight fields in K(SL3(2), 39.52) and then nine
more fields in K(SL3(2),Ω).

# GRD Polynomials Slope data
1 32.25 x7 − x6 − 9x5 − x4 + 19x3 + 21x2 − 23x− 13 27 34

x7 − x6 − 9x5 − x4 + 19x3 + 21x2 + 21x + 9 117

2 32.25 x7 − 2x6 + 2x4 − 2x3 + 2x2 − 2 27 3172

x7 − 3x6 + 3x5 − x4 − 5x3 + 5x2 + 3x− 1

3 35.06 x7 − x6 + 2x5 − 12x4 − 14x3 + 10x2 + 10x− 2 2
[
8
3 , 8

3

]
117

x7 − 3x6 + 7x5 − 5x4 − 12x3 + 32x2 − 36x + 4

4 37.64 x7 − x6 − 3x5 + x4 + 4x3 − x2 − x + 1 132 1092

x7 − 2x6 − x5 + 4x4 − 3x2 − x + 1

5 38.13 x7 − 3x6 + 3x5 + x4 − 3x3 + x2 − x− 1 27 4432

x7 − 3x6 + x5 + 3x4 − x3 + x2 − 3x− 1

6 38.72 x7 − 2x6 + 2x5 + 2x4 − 4x3 + 4x2 − 4 27 4572

x7 − 2x6 − 2x5 + 6x4 − 4x3 − 2x2 + 4x− 2

7 39.16 x7 − x6 + x5 + x4 − 3x3 + 5x2 − 2x− 1 74 194

x7 − x6 + x5 − 6x4 + 4x3 + 5x2 − 2x− 1

8 39.20 x7 − x6 − 9x5 − x4 + 8x3 − 12x2 − 12x− 2 2
[
4
3 , 4

3

]
52

x7 − 2x6 + 8x5 − 8x4 − 4x3 + 12x2 − 20x + 8 117

39.54 x7 − x6 + 3x5 − 5x4 + 3x3 + 9x2 − 7x + 1 27 614

x7 − 2x6 − 4x5 + 6x4 + 8x3 − 22x2 + 16x− 2

39.55 x7 − x6 + 13x5 − 23x4 + 8x3 − 23x2 + 21x + 9 32 53

x7 − x6 − 9x5 + 21x4 − 3x3 − 23x2 + 10x + 9 117

40.08 x7 − 7x− 3 3
[
3
2

]
7
[
4
3

]
x7 − 7x4 − 21x3 + 21x2 + 42x− 9

41.35 x7 − 2x5 − 4x4 − 2x3 − 2x2 + 2 27 5212

x7 − 3x6 + 5x5 − 7x4 + 5x3 − 3x2 − x + 1

43.26 x7 − 14x4 − 21x3 − 42x2 − 28x + 30 2
[
4
3 , 4

3

]
32

x7 − 7x5 + 21x3 − 14x2 − 7x + 4 7
[
4
3

]
43.40 x7 + 2x5 − 12x3 − 2x2 + 6x− 2 27 74

x7 − 2x6 − 2x5 + 2x4 − 8x2 + 4x + 4 312

44.10 x7 − 3x6 + 3x5 + 3x4 − 18x3 + 28x2 − 24x + 8 2
[
4
3 , 4

3

]
534

x7 − 7x5 − 10x4 + 3x3 + 3x + 2

44.27 x7 − 2x6 − 4x5 + 10x3 + 4x2 − 10x− 6 27 32

x7 − 2x6 − 6x5 + 14x4 − 70x2 − 42x + 18 533

44.50 x7 − 7x5 − 14x4 − 7x3 − 7x + 2 2[2, 3] 7
[
4
3

]
x7 − 14x3 − 14x2 + 7x + 22

One reason for restricting attention to alternating septics is simply to cut down
on the number of cases. Another is that a particularly difficult p-adic ramification
partition is 2221. In the setting of sextics, we twinned away from 222 when it
occurred for a problematically large prime. Here twinning is not available, but
when one restricts to alternating septics, the structure 2221 simply does not occur.
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All together, the septic search behind Theorem 7.1 took several months, just like
the sextic search discussed at the end of Section 5.

From partial searches we know further that

|K(SL3(2),Ω)| ≥ 17,

|K(S7,Ω)| ≥ 1.

The S7 field is defined by

(7.2) fS7(x) = x7 − 3x6 + 6x5 − 5x4 + 6x2 − 8x + 6,

with slope data (2[2, 2], 3[3/2], 57) yielding root discriminant 23/237/656/7 ≈ 40.49.
The seventeen SL3(2) fields are given on Table 7.1. The first two fields on this
SL3(2) table are properly ordered, as the first has GRD dSL3(2) = 26/733/4116/7 ≈
32.247 while the second has GRD 26/73171/2 ≈ 32.252.

The eleventh listed field on the SL3(2) table is the famous Trinks field. A
modular form numerically matching the Trinks field via SL3(2) ∼= PSL2(7) was
given by Mestre in [23, §5.5]. We find that a modular form numerically matching
the last field in Table 7.1 is

f44.50 = φ1θ8

(
1
2
θ̌2
32θ

2
8 −

√
−2θ̂2θ̌

3
32 + 2θ̂2

2θ
2
8 + 4

√
−2θ̂3

2 θ̌32

)
∈ Sprim

3 (256, χ−4).

The fields KSL3(2),j for j = 2, 5, 6, are numerically matched with automorphic
forms on GL3 in [1].

8. Degree 8

There are four non-solvable groups in degree eight of the form Hm.A discussed in
the introduction, PSL2(7), PGL2(7), A8, and S8. The group PSL2(7) was already
treated in the previous section via PSL2(7) ∼= SL3(2). Here we report on twenty
sub-Ω fields with G = PGL2(7). By extrapolation from lower degrees, and also
from partial octic searches, we expect that there are no sub-Ω fields with G = A8

or S8.
Thirteen of the twenty known fields in K(PGL2(7),Ω) were found by specializing

three point covers. We worked with four covers with numerical invariants as in

Table 8.1. Information corresponding to four octic three point covers.

N λ0 λ1 λ∞ g dN (t) Bad p

8a 3311 2222 71 0 −7 2 3 7
8b 611 22211 71 0 −7t(t− 1) 2 3 7
8c 44 22211 611 0 −7(t− 1) 2 3 7
8d 44 2222 71 1 −7 2 7
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Table 8.1 and equations as follows:

f8a(t, x) = (x2 + 5x + 1)3(x2 + 13x + 49)− 2633tx,

f8b(t, x) = x6(x2 − x + 7)− 2233t(x− 1),

f8c(t, x) = 33(x2 + 7)4 − 210t(7x2 − 6x + 63),

f8d(t, x) = (1− t)(x2 + 14x + 21)4+

(x4 + 28x3 + 238x2 + 588x− 455)2t− 216(t− 1)tx.

In cases 8a, 8b, and 8c, as well as most cases in the sequel, the cover is a map
from a projective line P1

x to a projective line P1
t , ramified only over t = 0, t = 1,

and t = ∞. Case 8d is more complicated as the covering curve has genus one.
Always we indicate the corresponding ramification partitions by λ0, λ1, and λ∞.
The fact that the cover is ramified only above 0, 1, and ∞ is reflected in polynomial
discriminants, e.g.,

D8a(t) = −24832477t4(t− 1)4.

Specializing a cover means essentially plugging in a number τ ∈ Q − {0, 1} for t,
and, to get a Galois field, taking the splitting field KN,τ of fN (τ, x) in C. The
contribution from p to the root discriminant of KN,τ is a p-adically continuous
function of τ . This function is complicated reflecting wild ramification for a finite
set of bad primes. It is simple at the remaining primes, where the ramification can
be at worst tame. The final column to explain in Table 8.1 is headed by dN (t).
This gives the discriminant DN (t) modulo squares in Q(t)×. So Covers 8a and
8d are only capable of yielding fields containing Q(

√
−7) while Covers 8b and 8c

can yield PGL2(7) fields containing any quadratic field and also PSL2(7) fields.
See Section 13 for two examples treated in some detail, and also [21] for a more
systematic presentation of the general technique of constructing number fields by
specializing three point covers.

Cover 8a, 8b, 8c, and 8d yielded respectively 9, 1, 0 and 7 fields. Some fields
were repeated, giving thirteen distinct fields in all. We also did a naive search
for fields given by polynomials with small coefficients. This yielded some of the
same thirteen fields, and five more fields; these five extra fields were already in [14].
Finally a search tailored to find fields with discriminant of the form 2a3b found two
more fields.

Tables 8.2 and 8.3 indicate a connection with elliptic curves and in the next
four paragraphs we explain this connection. Cover 8a can be identified with the
modular curve X0(7) covering the j-line X0(1). A cubic base-change of this cover
is X0(14) → X0(2). This last map is equivariant with respect to the Atkin-Lehner
operator w2. Cover 8d is the corresponding quotient X0(14)/w2 → X0(2)/w2. The
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Table 8.2. The first ten known fields in K(PGL2(7),Ω).

GRD Polynomial Sources Elliptic Slope data
27.35 x8 − x7 + 3x6 − 3x5 + 2x4 536

−2x3 + 5x2 + 5x + 1

30.46 x8 − 4x6 − 8x5 + 32x3 a −75/2138 18816C1 2
[
8
3 , 8

3

]
37

+16x2 − 1 72

31.49 x8 − 2x7 + 7x4 − 14x2 a 24233/3357 1960C1 2
[
4
3 , 4

3

]
7
[
3
2

]
+8x + 5 a 2272/33 392B1

d 1/26

31.60 x8 − 4x7 + 21x4 − 18x + 9 a (6 j’s) and 24A1-6 2
[
4
3 , 4

3

]
37

d (5 t’s); see (8.3) 78

31.64 x8 − 6x4 − 48x3 − 72x2 2
[
2, 3, 7

2 , 9
2

]
37

−48x− 9

35.49 x8 − x6 − 3x5 − x4 + 4x3 53 73

+4x2 − 2x− 1 112

35.82 x8 − x7 + 7x6 + 7x5 − 7x4 a −2233/21432 2646B1 27 3
[
3
2

]
+49x3 − 35x2 + 41x− 20 78

38.05 x8 − 2x7 + x6 + 4x5 − x4 2[3] 1812

+6x3 + 3x2 − 8x + 4

39.62 x8 − 4x7 + 14x4 − 8x + 4 a 2/33 128A1 2
[
8
3 , 8

3

]
7
[
7
6

]
a 73/2133 128A2
d −1/23

39.67 x8 − 2x7 + 14x4 − 16x + 4 a −1/33 1568D1 2[2, 2] 7
[
3
2

]
a 313/2333 1568D2
d −72/25

situation is thus as follows:

(8.1)

8a 8d

X0(14)
↙ ↓ ↘

X0(7) X0(2) X0(14)/w2

↓ ↙ ↘ ↓
X0(1) X0(2)/w2.

To discuss more than one cover at once, it is convenient to introduce new param-
eters. For a coordinate on X0(1) we replace t by j. On X0(2) we use a suitable
coordinate u. On X0(2)/w2 we use our previous t. With these conventions, the two
lower maps in (8.1) are given by

j =
(4u− 1)3

27u
,

t =
−(u− 1)2

4u
.
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Table 8.3. The remaining ten known fields in K(PGL2(7),Ω).

GRD Polynomial Sources Elliptic Slope data
39.79 x8 − x7 − 4x5 + 8x3 27 32

+2x2 − 2 56 112

41.34 x8 − x7 + x6 + 4x5 − x4 17092

−3x3 + 5x2 − 2x + 1

42.43 x8 − 2x7 − 3x5 + 6x4 37 296

+3x3 − 3x2 + 3

42.59 x8 − x7 − 7x6 + 7x2 a 227/33 196A1 23 7
[
11
6

]
−27x− 1 a 2271613/33 196A2

d 7/24; b 2272/33

43.23 x8 − 14x5 − 35x4 − 42x3 d 1/22 2[2, 2] 32

−14x2 − 16x− 14 7
[
7
6

]
43.65 x8 − 3x7 + 7x4 − 7x2 a −112/2633 121A2 7

[
7
6

]
113

−x− 4 a −1111313/2632 121A1
44.25 x8 + x7 − 7x4 + 8x + 1 52 78

132

44.30 x8 + 2x7 − 7x4 + 4x + 1 a 25/33 200B1 2
[
4
3 , 4

3

]
52

a 173/2233 200B2 7
[
7
6

]
d 52/24

44.45 x8 − 16x5 + 42x4 − 96x3 2
[
2, 3, 7

2 , 9
2

]
3
[
3
2

]
+136x2 − 48x− 33

44.46 x8 − 2x6 − 2x5 + 6x4 32 6592

+8x3 + 5x2 + x + 1

The equation

(8.2) h(j, t) = 729j2 − 54(512t2 − 414t + 27)j + (16t + 9)3 = 0

gives the curve X0(2) as a correspondence between the base projective line P1
j of

8a and the base projective line P1
t of 8d.

If a field K appears in Table 8.2 or 8.3 with “a j” listed as a source, then, for
any elliptic curve E with J-invariant 1728j, K embeds into the GL2(7) field LE

generated by the 7-torsion points of E. Because of quadratic twisting, LE depends
on the choice of E, but K doesn’t. The table gives an elliptic curve with minimal
conductor from [4] for every j.

For seven of the nine fields K coming from 8a, more than one j gives rise to K.
This multiplicity is explained by isogenies in all cases except the one involving the
non-isogenous curves 1960C1 and 392B1. The isogenies are 2-isogenies except for
196A1 3∼ 196A2 and 121A1 11∼ 121A2.

A rational number τ 6= 0, 1, considered as a point in X0(2)/w2, corresponds to an
unordered pair of elliptic curves E1 and E2 with a 2-isogeny between them, with the
J-invariants of E1 and E2 being 1728 times the roots of the polynomial h(j, τ) in
(8.2). In cases 31.49, 42.59, and 43.23, the j-invariants of E1 and E2 are conjugate
quadratic irrationalities. In cases 39.62, 39.67, and 44.30, the j-invariants of E1 and
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E2 are both rational, and correspond to the previously discussed specializations of
8a. The case 31.60 is similar but with a more complicated 2-isogeny tree:

(8.3) 1933

2434
74

263

VVVVVVVVVVVV 11533

2535

133

2235

54

2632 733

2437

−74

2734

WWWWWWWWWWWW

174

2732 hhhhhhhhhhhh

25

34

−1

243

hhhhhhhhhhhhh 473

25311

Here, the vertices are labelled with j, and edges by t. Our cover 8b is similarly
identified with X0(21)/w3 → X0(3)/w3. The cover 8c is naturally identified with a
map of Shimura curves associated with the quaternion algebra ramified at 2 and 3.

Some simple formulas for matching modular forms are as follows:

f31.49 = η4
2η4

4 ∈ Sprim
4 (8, χ1),

f31.60 = η2η4η6η12 ∈ Sprim
2 (24, χ1),

f39.62 = θ̂1θ̌8θ̌16θ̌32 ∈ Sprim
2 (128, χ1),

f39.67 = θ̂1θ2θ4θ̌8(θ2
2 θ̌

2
8 + 8θ̂2

1θ
2
4) ∈ Sprim

4 (32, χ1),

f42.59 = η12
2 ∈ Sprim

6 (4, χ1).

These formulas are known rigorously through the connection with elliptic curves,
which is direct in the cases of 31.60 and 39.62. Via PGL2(7) = SL3(2).2, the fields
on Tables 8.2 and 8.3 containing an imaginary quadratic field F should also arise
from holomorphic modular forms on U2,1 over F .

9. Degree 9

Besides A9 and S9, there are two non-solvable degree nine groups, the simple
group T27 = SL2(8) and its automorphism group T32 = ΣL2(8) = SL2(8).3. In
this section, we present the fields we know in K(G, Ω) for the latter two G and how
we found them.

For SL2(8), [7] says that there are modular forms in characteristic two of weight
1 for the prime conductors p = 1429, 1567, 1613, 1693, and 1997 which conjecturally
give rise to fields K ⊂ C with Gal(K/Q) ∼= SL2(8) and root discriminant

√
p < Ω.

We wrote a specialized search program which inputs a prime p and outputs certain
polynomials

f(x) = x9 +
9∑

i=1

aix
9−i.

The program loops over small values of a1, a2, a3, and a4. It finds the integers
a5, a6, a7, a8, and a9 in (−p/2, p/2) such that f(x) factors modulo p into a linear
polynomial times a quartic squared. It then outputs polynomials whose discrimi-
nant is a square. Looking among the polynomials output by the program, we found
polynomials for each of the primes p.

Also for SL2(8), we searched the modular forms database [24] for conductors
N in weight 2 which from the factorization modulo 2 of the Hecke polynomials on
new forms should give rise to SL2(8) fields. We found that 10 appropriate forms,
assuming generic behavior at 2, all coming from prime power conductors, namely
N = pe = 97, 109, 113, 127, 139, 149, 151, 169 = 132, 243 = 35, and 289 = 172.
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Table 9.1. The fifteen known fields in K(SL2(8),Ω). Each of
them was found starting from a known modular form. R here is
an abbreviation for 2[2, 2, 2].

GRD Polynomial Slope data
30.31 x9 − 3x8 + 12x6 − 14x5 − 2x4 + 12x2 + x + 1 R 137

32.18 x9 − 6x6 + 18x5 − 18x4 + 36x3 + 18x2 + 27x + 22 R 3
[
3
2 , 5

2

]
33.13 x9 − x8 + 12x6 − 12x5 − 28x4 + 48x3 − 20x2 + 5x− 1 R 972

35.12 x9 − x8 − 16x6 + 36x5 − 12x4 − 8x3 − 3x− 1 R 1092

35.76 x9 + 4x7 − 10x5 + 12x4 − 12x2 + 10x− 4 R 1132

37.80 x9 + x7 − 4x6 − 12x4 − x3 − 7x2 − x− 1 14292

37.91 x9 − x8 + 8x7 − 18x6 + 28x5 − 56x4 + 68x3 − 56x2 + 26x− 6 R 1272

39.59 x9 − 2x8 + 10x7 − 25x6 + 34x5 − 40x4 + 52x3 − 45x2 + 20x− 4 15672

39.66 x9 + 8x7 − 16x6 + 30x5 − 64x4 + 80x3 − 56x2 + 22x− 4 R 1392

40.16 x9 − 2x8 + 6x6 − 8x5 − 12x4 + 12x3 + 12x2 − x + 1 16132

41.06 x9 − 4x8 + 10x5 + 20x4 − 72x3 − 8x2 + 161x− 128 R 1492

41.15 x9 − 18x7 − 2x6 + 85x5 + 24x4 − 8x3 + 19x2 + 5x− 14 16932

41.33 x9 − 2x8 + 2x7 + 10x6 − 18x5 + 30x4 + 66x3 − 42x2 + 71x + 152 R 1512

41.74 x9 + 34x5 − 136x4 + 272x3 − 340x2 + 238x− 68 R 179

44.69 x9 − 3x8 + 4x6 + 5x5 − 18x4 + 23x3 − 25x2 + 16x− 4 19972

We searched in the manner described in [11], simultaneously targeting behavior
at 2 and p. Assuming generic behavior at 2, the decomposition group at 2 is the
full group T25 = C3

2 .C7 of upper triangular matrices in SL2(8). Certainly this
implies that f(x) factors 2-adically as an octic g(x) ∈ Z2[x] times a linear factor.
Moreover, from the complete enumeration of 2-adic octic fields [13], we know that
there are only two possibilities for L = Q2[x]/g(x), namely L1 = Q2[x]/g1(x) and
L2 = Q2[x]/g2(x) with

g1(x) = x8 + 2x7 + 2x4 + 2,

g2(x) = x8 + 2x7 + 2x6 + 2.

Local computations then say that for an octic Eisenstein polynomial g(x) ∈ Z2[x],
one has Q2[x]/g(x) ∼= Lj iff g(x) ≡ gj(x) (4). This statement formed the basis of
our targeting at 2. The targeting at p, corresponding to tame ramification in every
case except pe = 35, was easier. We found a field for each of the ten N .

The modular form we started from to compute the second field first appeared in
[15]:

f32.18 = (α− 1 + T2)(η5
9η81/η3η27 + η3η

5
27/η9η27) +(9.1)

(α2 − α− 2)(η2
3η9η81 + 3η3η27η

2
81) ∈ Sprim

2 (243, χ1).

For the others, we do not know of similarly explicit formulas.
Our fifteen fields in K(ΣL2(8),Ω) were found by specializing three point covers,

with numeric invariants as in Table 9.2 and equations as follows:
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Table 9.2. Invariants of three covers with generic Galois group
ΣL2(8) = SL2(8).3. The three point cover 9b has ramification
points,

√
−3, −

√
−3, ∞ rather than the usual 0, 1, ∞.

N λ0 λ1 λ∞ g Res(t) Bad p

9a 333 22221 9 1 Q(cos(2π/9)) 2 3
9b (33111 33111) 9 0 Q[x]/r9b(t, x) 2 3
9c 333 22221 711 0 Q(cos(2π/9)) 2 3 7

f9a(t, x) = (x3 − 9x2 − 69x− 123)3−
214t(9x4 − 42x3 − 675x2 − 1485x− 441)− 228t2,

f9b(t, x) = x9 + 108x7 + 216x6 + 4374x5 + 13608x4 + 99468x3+

215784x2 + 998001x + 663552t + 810648,

f9c(t, x) = 4(x3 + 4x2 + 10x + 6)3 − 27t(4x2 + 13x + 32).

Cover 9a was originally found by Elkies and Cover 9b by Matzat. For more on both,
see [21, §6]. In particular for Cover 9a, some of the fields on Table 9.3 come from
even more specialization points than listed on Table 9.3, and this phenomenon is
explained in large part by isogenies, like in Section 8. The cubic subfield associated
to 9b is the only one which varies with t, it being given by

r9b(t, x) = x3 − (9t2 + 27)x− (9t3 + 9t2 + 27t + 27).

This cover is the only one of the three which has specializations with Galois group
SL2(8), such as those given in [21, §6]. However Cover 9b is not a very fecund
source for SL2(8) fields, as it seems all the SL2(8) fields it gives have slope data
2[2, 2, 2] at 2. At any rate, we did not find any SL2(8) fields with GRD less than Ω
from 9b. Note finally that non totally real fields with Galois group ΣL2(8) should
correspond to Hilbert modular forms on the totally real cubic subfield.

10. Degree 10

In this section we focus on the non-solvable group T35 = PΓL2(9) = PSL2(9).22

and its index two subgroups T30 = PGL2(9) and T31 = M10. Another interesting
class of non-solvable decic groups, A2

5 and its index 2, 4, and 8 overgroups, will be
treated in Section 12.

Table 10.1 shows seven triples (λ0, λ1, λ∞) of partitions of ten. All of them give
rise to decic three point covers with Galois group PΓL2(9), equations being
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Table 9.3. The fifteen known fields in K(ΣL2(8),Ω). All of them
were found by specializing three point covers.

GRD Polynomial Sources Slope data
34.36 x9 − 3x8 + 4x7 + 16x2 + 8x + 8 c 73/2133 2

[
20
7 , 20

7 , 20
7

]
79

35.52 x9 − x8 + 2x7 + 28x5 − 28x4 c 5175/213 2
[
8
7 , 8

7 , 8
7

]
+28x3 + 24x2 + 200x− 204 53 79

35.72 x9 − 6x6 − 12x3 − 36x2 a −23 2
[
12
7 , 12

7 , 12
7

]
3
[
3
2 , 2, 5

2

]
−18x− 4 a −32/24

36.12 x9 − 3x8 + 12x7 − 20x6 + 36x5 a 113/23 2
[
18
7 , 18

7 , 18
7

]
3[2, 2]

−36x4 + 40x3 − 24x2 + 12x− 4

37.18 x9 − 6x6 − 18x5 − 54x4 − 90x3 a 22 2
[
8
7 , 8

7 , 8
7

]
3[2, 2, 3]

−90x2 − 54x− 16 a −243
37.57 x9 − 24x6 + 48x3 + 216x2 a −113/28 2

[
10
7 , 10

7 , 10
7

]
3[2, 3]

−108x− 296 a 3/22

40.18 x9 − 3x8 + 6x7 − 10x6 + 12x5 a −53/26 2
[
8
7 , 8

7 , 8
7

]
3[2, 2]

−12x4 + 8x3 − 12x2 − 4 72

40.41 x9 − 3x8 + 12x6 − 6x5 − 18x4 a 1/2 2
[
20
7 , 20

7 , 20
7

]
3
[
3
2 , 2

]
+48x3 − 84x2 + 63x− 17

41.78 x9 − 3x8 + 6x7 + 8x6 − 24x5 a −24/5 2
[
8
7 , 8

7 , 8
7

]
3
[
3
2 , 2

]
+42x4 + 6x3 + 30 a 22/53 53

41.79 x9 − x8 − 4x7 + 28x3 + 26x2 c −53/26 2
[
8
7 , 8

7 , 8
7

]
+9x + 1 c 227/33 7

[
5
3

]
41.90 x9 − 3x8 + 4x7 + 6x2 + 3x + 3 c 25/34 29 37

c 2772/38 7
[
7
6

]
41.98 x9 − 3x8 + 4x7 − 8x2 − 4x− 4 c 53/33 2[2, 2, 3]

c −72173/3357 7
[
7
6

]
42.96 x9 − 12x5 − 24x4 + 16x3 + 48x2 b 0 2

[
20
7 , 20

7 , 20
7

]
3[2, 2]

+12x + 16

43.69 x9 − 3x8 − 24x6 + 18x5 + 18x4 a 32 2[2, 2, 3] 3
[
3
2 , 2, 13

6

]
−24x3 + 9x− 3 a 53/33

44.68 x9 − 24x6 + 18x5 + 144x3 a −233 2
[
12
7 , 12

7 , 12
7

]
3[2, 3]

−216x2 + 81x + 24 a 1/22

f10a(t, x) = 4(x3 + 6x2 + 15x + 12)3x + 27t(3x2 + 14x + 27),

f10b(t, x) = x8(x− 3)2 − 27t(3x2 − 2x + 3),

f10c(t, x) = (5x2 − 81)4(5x2 + 50x + 189)− 214312t,

f10d(t, x) = (15x2 + 10x + 3) + 12tx5(5x + 2) + 64t2x10,
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Table 10.1. Information corresponding to seven decic three
point covers with generic Galois group PΓL2(9).

N λ0 λ1 λ∞ g S6 PGL2(9) M10 Bad p

10a 3331 22222 811 0 −(t− 1) 2 −2(t− 1) 2 3
10b 82 2221111 811 0 t 2t(t− 1) 2(t− 1) 2 3
10c 4411 2221111 (10) 0 t 5t(t− 1) 5(t− 1) 2 3 5
10d 4411 222211 55 0 −15 5 −3 2 3 5
10e 3331 22222 (10) 1 −(t− 1) 5 −5(t− 1) 2 3 5
10f 442 22222 82 1 −5(t− 1) 10t −2t(t− 1) 2 5
10g 4411 22222 (10) 1 −3(t− 1) 5 −15(t− 1) 2 3 5

f10e(t, x) = (1− t)(x3 − 60x− 200)3(x− 20)+

t(x5 − 10x4 − 140x3 + 100x2 + 2600x− 14504)2 + t(t− 1)26314,

f10f (t, x) = 16(1− t)x2(x2 + 5x + 5)4+

t(4x5 + 40x4 + 140x3 + 200x2 + 105x + 34)2 + (t− 1)t(5x + 2)2,

f10g(t, x) = (1− t)(x2 − 15)4(x2 + 20x + 180)+

t(x5 + 10x4 + 10x3 − 700x2 + 2225x− 3046)2 + t(t− 1)2838.

For N = 10a, 10b, 10c, our polynomial fN (t, x) presents Cover N in the usual
simple form P1

x → P1
t . Cover 10d is also of genus zero, but it is more complicated

as it has no rational points, in fact no real points and no points over Q5. Covers
10e, 10f , and 10g all have genus one. The Galois group of the number field KN,t

is in H if the quantity printed in the (N,H) slot in Table 10.1 is a square in Q×.
Table 10.2 gives the sub-Ω fields we found. Although all covers except for 10d

are capable of producing M10 fields, we did not find any sub-Ω M10 fields. The
covers also reproduced some of the A6 and S6 fields on Tables 5.2 and 5.3.

A form numerically matching the first field on Table 10.2 is

f38.52 =(2−
√

2)θ̂1θ16θ32θ̌256 + (
√

2− 1)θ̂1θ8θ16θ̌256

+ 2i

√
2 +

√
2θ̂1φ2θ32θ̌256 − i

√
4 + 2

√
2θ̂1φ2θ8θ̌256(10.1)

− 2iφ1φ4θ16θ32 + i
√

2φ1φ4θ8θ16

− 2
√

4− 2
√

2φ1φ2φ4θ32 −
√

8− 4
√

2φ1φ2φ4θ8 ∈ Sprim
2 (1024, χ8).

To get matches for the PΓL2(9) fields, one would have to work with GL2 over the
quadratic subfield corresponding to PGL2(9), thus holomorphic Hilbert modular
forms in the case this subfield is real.
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Table 10.2. The two known fields in K(PGL2(9),Ω) and the
fourteen known fields in K(PΓL2(9),Ω)

GRD Polynomial Sources Slope data
36.79 x10 − 3x8 + 12x6 − 24x5 b −1 2[2, 3, 4] 3

[
3
2 , 3

2

]
+12x4 + 45x2 − 24x + 9

43.91 x10 − 2x9 + 9x8 − 7x2 b 36/7 2[2, 3, 4] 78

+14x− 7

38.61 x10 − 4x9 + 6x8 − 9x6 + 3x4 d 53/22 2[2, 2] 3
[
9
8 , 9

8

]
+18x3 − 12x + 6 58

39.28 x10 − 6x8 + 9x6 − 12x5 + 24x4 a 22 2[2, 3, 3] 3
[
15
8 , 15

8

]
+21x2 + 4x + 18

40.12 x10 − 2x9 + 3x8 − 12x6 + 24x5 a 53/22 2[2, 2, 3, 4] 3
[
3
2 , 3

2

]
−12x4 + 21x2 − 74x + 55 a 156133/38118

40.45 x10 − 5x9 + 15x8 − 30x7 + 45x6 e 25/32 3
[
9
8 , 9

8

]
5
[
7
4

]
−51x5 + 30x4 − 15x2 − 15x + 42 d 335/28

41.19 x10 − 3x8 + 18x6 − 30x4 + 39x2 a 53/33 2
[
2, 3, 7

2 , 9
2

]
3
[
9
8 , 9

8

]
−16x + 3

41.65 x10 − 2x9 + 15x6 + 12x5 + 18x4 a 26 2
[
4
3 , 4

3 , 3
]

3
[
5
4 , 5

4

]
+12x3 + 12x2 + 8x + 2 72

42.83 x10 − 2x9 + 3x8 + 9x6 − 18x5 a 133/2235 2[2, 2, 3, 3] 3
[
15
8 , 15

8

]
+9x4 + 27x2 − 18x + 9

43.01 x10 − 4x9 + 6x8 + 24x2 a 113/23 2[2, 3, 4, 5] 310

+32x + 16

43.52 x10 + 9x8 + 6x6 − 30x4 − 48x3 a −53/37 2[2, 3, 4] 3
[
13
8 , 13

8

]
−36x2 − 16x− 12

43.87 x10 − 2x9 + 3x8 − 6x6 + 12x5 a −53/26 2[2, 2, 3, 3] 310

−30x4 − 15x2 − 2x− 41 72

43.93 x10 − 5x8 − 10x7 + 10x6 + 8x5 e 2/33 2[2]5 38

+10x4 + 50x3 + 85x2 − 60x + 1 5
[
5
4

]
44.09 x10 − 4x9 + 6x8 − 12x2 a 133/2454 2

[
2, 2, 3, 7

2

]
310

−16x− 8 52

44.20 x10 − 15x7 − 27x5 + 75x4 e 22 3
[
15
8 , 15

8

]
5
[
5
4

]
+135x2 + 10x + 81

44.74 x10 − 4x9 + 12x8 − 24x7 a 25/33 2
[
8
3 , 8

3 , 3
]

3
[
9
8 , 9

8

]
+39x6 − 48x5 + 48x4 − 36x3 52

+24x2 − 12x + 6

11. Degree 11

In degree 11, we know of only one non-solvable sub-Ω field, the splitting field K
of either

f11a(x) = x11 − 2x10 + 3x9 + 2x8 − 5x7 + 16x6 − 10x5 + 10x4 +
2x3 − 3x2 + 4x− 1,
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f11b(x) = x11 − 2x10 + x9 − 5x8 + 13x7 − 9x6 + x5 − 8x4 + 9x3 −
3x2 − 2x + 1.

One has Gal(K/Q) ∼= PSL2(11) and d(K) = 18311/2 ≈ 42.79. Here Q[x]/f11a(x)
and Q[x]/f11b(x) are twin fields, corresponding to two non-conjugate embeddings
of the order 60 group A5 into the order 660 group PSL2(11).

The polynomial f11a(x) appears at [14]. Here we sketch the resolvent construc-
tion we used to compute f11b(x) from f11a(x). Let αj be the complex roots of
f11a(x) with approximate values as follows:

4 6 9 11
j 1 2 7

3 5 8 10
αj −1.6 −0.7 0.1± 1.0i 0.2± 1.2i 0.3 0.4± 0.7i 1.3± 1.3i

An element of Gal(K/Q) is complex conjugation

(11.1) σ = (3, 4)(5, 6)(8, 9)(10, 11).

We need to complement this element with others to obtain all of Gal(K/Q).
The degree 165 polynomial with roots αi+αj +αk factors over Z into irreducibles

as f55(x)f110(x). Say that i, j ∈ {1, . . . , 10} are adjacent iff αi + αj + α11 is a root
of the degree 55 polynomal f55(x). This definition yields the valence 3 graph P
in Figure 11.1 (called the Petersen graph, see e.g. [25]). The automorphism group
A(P ) of this graph is isomorphic to S5. Its alternating subgroup A(P )+ is the
subgroup of Gal(K/Q) fixing α11. Since A(P )+ is a maximal subgroup of PSL2(11)
and σ 6∈ A(P )+, σ and A(P )+ together generate all of Gal(K/Q).

Figure 11.1. Adjacency relations among α1, . . . , α10.
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An element of A(P )+ evident from Figure 11.1 is “clockwise rotation by 1/5
turn,” or

(11.2) r = (1, 2, 8, 10, 9)(5, 3, 4, 7, 6).

Let H be the subgroup 〈σ, r〉 of Gal(K/Q). One can check that it is a transitive
subgroup with sixty elements. Let C be the set of right cosets of H in Gal(K/Q).
For c ∈ C, define

βc =
∑
g∈c

αg1αg2αg3.

Define F11b(x) ∈ Z[x] to be the monic degree 11 polynomial with roots βc. Our
polynomial f11b(x) is obtained by applying Pari’s polredabs to F11b(x).
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12. Composita

Let G be a group with surjections i1 : G → Q1 and i2 : G → Q2 such that
(i1, i2) : G → Q1×Q2 is an injection. Then any field K ∈ K(G, C) is a compositum
K1K2 with Ki ∈ K(Qi, C).

We have looked at all composita K = K1K2 with each Ki different fields in one
of the identified sets K(Q,Ω) with Q = A5, S5, A6, or S6. In all cases, the root
discriminant of K is above Ω, proving the following result.

Corollary 12.1. Let G be one of the twelve groups Am ×An, Am × Sn, Sm ×2 Sn

or Sm × Sn with (m,n) = (5, 5), (5, 6), or (6, 6). Then K(G, Ω) is empty.

Several times, basic invariants of K1 and K2 allowed the possibility that K1K2

might be sub-Ω, but in every such case computation of more refined invariants re-
vealed that K1K2 has root discriminant above Ω. One such instance is the following.
Consider

f1(x) = x5 − 2x4 + 13x3 − 9x2 + 36x− 12
f2(x) = x5 + 19x2 − 57,

both of which have Galois group A5. Both splitting fields Ki have root discriminant
37/6194/5 ≈ 37.9878. At issue is the root discriminant 3β319β19 of K1K2. At 19,
both K1 and K2 are tame with t = 5, so β19 = 4/5. At 3, both root fields Q[x]/fi(x)
factor 3-adically as a wildly ramified cubic with unique wild slope 3/2 times a tamely
ramified quadratic. This leaves two possibilities, as the cubic and the quadratic
could both have discriminant 3 or both −3 in Q×3 /Q×2

3 . For f1 this discriminant
is −3 while for f2 this discriminant is 3. This causes K1K2 to have slope of 3/2
with multiplicity two, rather than one. So β3 is (8/9)(3/2) + (1/9)(1/2) = 25/18
rather than (2/3)(3/2) + (1/3)(1/2) = 7/6. So the root discriminant of K1K2 is
325/18194/5 ≈ 48.4921.

Consider next groups G = A2
m.H ⊆ S2m, with m = 5, 6 and H a subgroup of

D4. We have just considered the cases with H not switching the two factors of Am.
The remaining cases correspond to C2 ⊆ H ⊆ D4, i.e. H = C2, V , C4, and D4. In
the case m = 5, these groups are T40, T41, T42, and T43 respectively, while for
m = 6 they are T296, T297, T298, and T299 respectively. Given Corollary 12.1,
one might expect that there are very few sub-Ω fields for these groups. If fact, we
have found only one, the splitting field for

(12.1) x10 + 2x8 − 8x7 − 8x6 − 16x5 − 16x4 − 8x3 − 14x2 − 4,

with Galois group A2
5.2, slope data [2, 2, 3, 7/2, 7/2] at 2 and [3/2, 3/2] at 3, and

root discriminant 251/16325/18 ≈ 41.90.
The way we first encountered the splitting field of (12.1) was as follows. We

considered the family x6 + 2ax3 + 3bx2 + c which has polynomial discriminant
2636c(a4b3 − 16b6 + a6c − 20a2b3c − 3a4c2 − 8b3c2 + 3a2c3 − c4). Plugging in a,
b, and c all from the same quadratic field will generically give all of A2

6.D4 as a
splitting field over Q. However we found a = −b = c = −1+

√
2 multiplied with its

conjugate gives a degree twelve polynomial with the above Galois root discriminant.
Its Galois group is not the 1,036,800-element group A2

6.D4, but rather the 7,200-
element group T269 = PGL2(5)2.2. Twinning down over Q(

√
2), we get the decic

polynomial (12.1).
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13. Larger degrees

In the previous sections, we presented non-solvable sub-Ω fields with Galois group
involving the first through fifth and then eighth simple group, in order of size, as
listed in Section 1. The sixth and seventh groups are PSL2(13) and PSL2(17).
The ninth through twenty-first groups are PSL2(19), SL2(16), SL3(3), SU3(3),
PSL2(23), PSL2(25), M11, PSL2(27), PSL2(29), PSL2(31), A8, PSL3(4), and
SU4(2). We have specialized at least one three point cover corresponding to these
fifteen groups, and more three point covers for larger simple groups as well, but
have not found any corresponding sub-Ω fields.

Here we will report on just one of the computations that did not result in a
sub-Ω field. We choose this one because we think it gives the best candidate for a
minimal root discriminant dG. Otherwise, the computation is quite representative
of the others we have done.

Our group is ΣL2(16) ∼= SL2(16).4 with SL2(16) having order 4080 = 24 ·3·5·17.
The first necessity is to find corresponding degree |P1(16)| = 17 three point covers,
as this is the smallest degree group omitted from Table 10 in the appendix of the
standard reference [17]. The most promising class triples are (3A, 2A, 15ABCD)
and (4A, 2B, 15ABCD), corresponding to partition triples (3512, 281, 15 · 12) and
(441, 2615, 15 · 12) respectively. We find the corresponding covers to be

f1(t, x) = 22(x5 + 3x4 + 12x3 + 18x2 + 27x + 9)3(x2 + 3x + 6)−
t36(4x2 + 3x + 24),

f2(t, x) = 33(x4 + 2x3 + 4x2 + 28x− 4)4(x− 2) +
t21255(2x2 − 3x + 18),

with discriminants D1(t) = 2603124518t10(t−1)8 and D2(t) = 22323605106t12(t−1)6.
The generic Galois group is indeed SL2(16).4 in both cases. However the mon-
odromy group is SL2(16) and SL2(16).2 in the two cases. The quartic extensions
of Q(t) corresponding to the .4 are

g1(t, x) = x4 − x3 − 4x2 + 4x + 1,

g2(t, x) = x4 − 15t2x2 + 15tx2 + 45t4 − 90t3 + 45t2.

The first of these comes from the constant field extension Q(ζ1/15)+ of Q. The
second gives quartic C4 fields varying with t, but all containing Q(

√
5) and all with

discriminant exactly divisible by 53.
A specialization point τ ∈ Q−{0, 1} gives a degree 17 algebra Q[x]/fi(τ, x). To

keep the discriminant of this algebra of the form 2α3β5γ , a necessary and sufficient
condition is that τ can be written in the form −axp/czr with

axp + byq + czr = 0,

a, b, c integers with all prime factors in {2, 3, 5}, and x, y, z integers. Here (p, q, r)
is (3, 2, 15) for the first cover and (4, 2, 15) for the second.

We found over 400 such specialization points for f1 and over 200 for f2. Exactly
three points for f1 and two points for f2 gave a Galois root discriminant less than
Ω. These are indicated in Table 13.1. As one can tell from the three specialization
points for f1, ramification can be made tame at any of 2, 3, and 5, Similarly
one can see from either of the two specialization points that 3 can even be made
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Table 13.1. The three specialization points τ for f1 and the
two for f2 giving sub-Ω Galois root discriminants. All five poly-
nomials fi(τ, x) factor as an irreducible degree d polynomial times
an irreducible polynomial of degree 17 − d, showing immediately
that the Galois group G is not all of SL2(16).4. In each case, the
Galois group is given, and also a polynomial with degree < d and
the same splitting field.

τ GRD d G Another defining polynomial
−275/36 24/531/2531/20 ≈ 36.54 16 24.F5 x10 − 20x6 + 80x2 − 16
52173/210 27/634/5523/20 ≈ 38.41 12 S5 ×2 4 (x5 + 15x− 6)·

(x4 − x3 − 4x2 + 4x + 1)
27/3 24/5311/653/4 ≈ 43.63 12 S5 ×2 4 (x5 − 2x4 + 4x3 + 2x2 − 4x− 10)·

(x4 − x3 − 4x2 + 4x + 1)
−3352 22571/60 ≈ 26.86 15 F5 × S3 (x5 + 5x3 + 5x− 2)·

(x3 − x2 + 2x + 2)
335/28 27/6531/20 ≈ 27.20 12 S5 ×2 4 (x5 − 10x2 − 10x− 16)·

(x4 − x3 + x2 − x + 1)

unramified for f2. Accordingly, we also tried more specialization points for each
cover, allowing other primes to ramify, but did not find any more which gave a
Galois root discriminant less than Ω.

As explained in some detail on the table, our five specialization points all gave
a field with Galois group not containing SL2(16). This phenomenon was seen very
often while specializing our other covers. It, and similar behaviors such as that
described in the last paragraph of Section 12, give support to the expectation that
there are very few sub-Ω fields for the groups in question.

The smallest GRD we found for a field with Galois group containing SL2(16) is

2101/6033/4523/20 ≈ 46.60,

coming from the splitting field of f1(−8, x) with slope data

(13.1)
(

2
[
26
15

,
26
15

,
26
15

,
26
15

]
, 34, 5

[
5
4

])
.

and Galois group all of ΣL2(16). A polynomial with smaller coefficients having the
same splitting field is

f(x) = x17 − x16 + 4x15 + 20x12 − 20x11 + 20x10 + 10x9 − 50x8 +
44x7 − 24x6 + 16x5 + 20x4 − 60x3 − 12x2 − 3x− 13.

The derivation of (13.1) requires more than our usual mechanical appeal to our
database at 2 and 5, so we sketch our procedure here for 2, the harder of the two
cases. We begin by factoring f(x) over Q2, getting a totally ramified degree 16
factor with discriminant 226 and a degree 1 factor. Let α1 ∈ Q2 be the root of
the degree one factor and let α2,. . . ,α17 be the roots of the degree 16 factor in an
algebraic closure of Q2. Consider the polynomial d(x) ∈ Z[x] with roots αi − αj .
We calculate this algebraically and then take its 2-adic Newton polygon, finding it
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to have slopes 3/16 with multiplicity 32 and 7/30 with multiplicity 240. The 3/16
can only be the 2-adic valuation of the roots αi − αj with 1 ∈ {i, j} and the 7/30
must be the 2-adic valuation of the remaining roots. The odd part of 30 is 15, so
15 must divide, hence be, the size of the tame inertia group. This forces there to
be four wild slopes, all equal, hence all 26/15.
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(2) 2 (1990), no. 1, 119–141.

[20] PARI/GP, version 2.1.6. The PARI Group, Bordeaux, 2004, available from http://www.

pari.math.u-bordeaux.fr.
[21] D. Roberts. An ABC construction of number fields, Number Theory (Montreal, 2002),

H. Kisilevsky and E. Z. Goren, eds., CRM Proc. Lecture Notes, vol. 36, Amer. Math.
Soc., Providence RI, 2004, 237–267.

[22] J.-P. Serre, Minorations de discriminants, note of October 1975, published in Œuvres.
Vol. III, Springer, 1986, 240–243.

[23] Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke Math. J. 54
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