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Abstract. We present the first explicitly known polynomials in Z[x] with nonsolvable

Galois group and field discriminant of the form ±pA for p ≤ 7 a prime. Our main polyno-
mial has degree 25, Galois group of the form PSL2(5)5.10, and field discriminant 569. A

closely related polynomial has degree 120, Galois group of the form SL2(5)5.20, and field

discriminant 5311. We completely describe 5-adic behavior, finding in particular that the
root discriminant of both splitting fields is 125 · 5−1/12500 ≈ 124.984 and the class number

of the latter field is divisible by 54.

1. Introduction

1.1. Background. Two of the most important invariants of a Galois number field L ⊂ C
are its Galois group G = Gal(L/Q) and the set S of primes dividing its field discriminant
disc(L/Q). In the mid-1990s, Gross circulated the observation that no Galois number fields
were known with G nonsolvable and S consisting of a single prime ≤ 7. In this connection,
Gross [11] developed a remarkable conjectural theory of algebraic modular forms which pre-
dicts with great specificity that indeed such fields exist. An example pursued by Lansky and
Pollack [16] is that there should exist a field with (G, S) = (G2(5), {5}).

In 2008, Dembélé [6] proved the existence of the first field meeting Gross’s specifications
by means of computations with Hilbert modular forms. Dembélé’s field has G = SL2(28)2.8
and S = {2}. In 2009, Dembélé, Greenberg, and Voight [7] similarly proved the existence of
fields for (G, S) = (PGL2(3k).9, {3}) for k = 18, 27, and 36. They also proved the existence
of fields for (G, {5}) with G involving one or more copies of the simple group PSL2(5k) for
k = 1, 2, 5, 10, 15, 25, 40.

Whenever one knows abstractly of the existence of an interesting Galois number field L,
a natural problem is to produce a polynomial g(x) ∈ Z[x] with splitting field L. For all of
the above cases but the pair (PSL2(5)5.10, {5}), the minimal degree of such a g(x) is very
large. Finding a defining polynomial in these cases seems well beyond current techniques.
On the other hand, for the group PSL2(5)5.10 the minimal degree is twenty-five. Dembélé,
Greenberg, and Voight specifically raised the problem of finding a defining polynomial for L
in this relatively modest case. The field L embeds in a field L̃ with Galois group SL2(5)5.20,
also ramifying at five only. One could also ask for a defining polynomial at this level, where
the minimal degree is 120.

1.2. The main results. The first main result of this paper consists of explicit polynomials
defining nonsolvable fields ramified at 5 only:
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Theorem 1.1. A. Let

g25(x) =
x25 − 25x22 + 25x21 + 110x20 − 625x19 + 1250x18 − 3625x17 + 21750x16

−57200x15 + 112500x14 − 240625x13 + 448125x12 − 1126250x11 + 1744825x10

−1006875x9 − 705000x8 + 4269125x7 − 3551000x6 + 949625x5 − 792500x4

+1303750x3 − 899750x2 + 291625x− 36535.

Then its splitting field L ⊂ C has Galois group Gal(L/Q) = PSL2(5)5.10 and its root field
K = Q[x]/g25(x) has discriminant disc(K/Q) = 569.

B. Let g120(x) be the degree 120 polynomial given in Table 5. Then its splitting field L̃ ⊂ C
is an unramified extension of L of relative degree [L̃ : L] = 26 and Galois group Gal(L̃/Q) =
SL2(5)5.20. The root field K̃ = Q[x]/g120(x) has discriminant disc(K̃/Q) = 5311.

The polynomials g25(x) and g120(x) as well as some related polynomials are available in a
form suitable for computer algebra systems on the author’s homepage.

Because of matching invariants, including Frobenius invariants as discussed below, the
evidence is overwhelming that our fields L and L̃ are exactly the same as the fields with the
same Galois groups appearing in [7]. Results towards Serre’s conjecture over totally real fields
are currently rapidly expanding. Our expectation is that the identity between our fields and
those of [7] is likely to shortly to be a consequence of general results.

An immediate consequence of Theorem 1.1 is that the degree N = 7, 776, 000, 000 field L

and the degree Ñ = 497, 664, 000, 000 field L̃ have discriminants 5αN and 5αÑ respectively, for
some common rational number α. Our second main result, Theorem 8.1, is a general statement
about a class of p-adic fields including the 5-adic completion of K. As a consequence, one finds
that α = 3−1/12500. The common root discriminant of L, L̃, and a similarly behaved solvable
field Ls is then 5α ≈ 124.984. Furthermore, the compositum L̃Ls is a very slightly ramified
elementary abelian extension of L̃ of degree 55. It contains an unramified subextension of
degree 54, proving that the class number of L̃ is divisible by 54.

1.3. Organization of this paper. Section 2 provides some optional context. An obvious
principle is that while nonsolvable fields ramified at two small primes only may be hard to
find, fields ramified at just one small prime are much harder to find. We present a quantitative
version of this principle in our setting of relative quintics. Section 3 discusses the polynomial
g25(x) and its factorization into five conjugate quintics over the cyclic field

(1) F = Q[π]/(π5 + 5π4 − 25π2 − 25π − 5).

Section 3 proves Part A of Theorem 1.1 but does not address at all the more interesting issue
of how we found g25(x).

Sections 4 and 5 describe how g25(x) was found. In brief, we worked with a one-parameter
family of polynomials

(2) f5(j, x) = x5 + 5x4 + 40x3 − 1728j

related to five-torsion points on elliptic curves. We looked at many specializations of this
family, eventually finding a suitable j2 ∈ F . The product of f5(j2, x) and its four conjugates
is a polynomial in Q[x] defining K. The polynomial g25(x) is then obtained by adjusting this
product polynomial to get a monic polynomial with relatively small integral coefficients defin-
ing the same field. Section 4 focuses on why we worked with f5(j, x) and Section 5 explains
how we found j2. Our main goal in these two sections is to communicate a practical sense of
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the search process. We aim to provide enough information to support similar computations
aimed at finding different fields in the future.

Section 6 uses division polynomials to get a degree 24 polynomial f24(j2, x). The product of
f24(j2, x) and its four conjugates is a polynomial in Q[x] and g120(x) of Part B of Theorem 1.1
is then obtained by reducing the size of coefficients as before. It is a simple fact that L̃/L is
unramified, and so Section 6 proves Part B of the theorem.

Section 7 computes Frobenius elements for our field L̃. We explain how complete Frobenius
information for L/F can be deduced from g25(x) alone. Similarly, complete Frobenius infor-
mation about an intermediate extension L(e2πi/5)/F easily follows by considering also the
class of primes modulo 4. Finally g120(x) resolves some but not all of the remaining two-fold
ambiguities to give further information about Frobenius elements for L̃/F . The Frobenius
elements we compute match the characteristic 5 Hecke eigenvalues tabulated in [7, Table 2.9].

Section 8 analyzes a general class of p-adic fields which includes the 5-adic completion
of K and summarizes the regularity found as Theorem 8.1. Section 9 applies this theorem
to get Corollary 9.1, applying to L and related fields, as explained above. Our analysis
in Sections 8 and 9 can be compared to Serre’s calculation [24] that Dembélé’s field for
(G, S) = (SL2(28)2.8, {2}) has root discriminant ≤ 55.395.

1.4. Previously known nonsolvable fields ramified at one prime. For some further
context, we should mention that from the theory of classical modular forms of level one
it has long been known that for each prime p ≥ 11 there exists a nonsolvable field with
G = PGL2(p) and S = {p}; see e.g. [28]. For some recently computed defining equations, see
[3]. For defining equations for some other nonsolvable fields ramified at one prime only, see
[12]. It is interesting to note that the field with G = PGL2(11) and S = {11} given by this
theory also arises from a specialization of the j-line. The polynomial f5(j, x) is replaced by a
degree 12 polynomial defining the modular curve X0(11) and the complicated j2 ∈ F above
is replaced by −64/297 ∈ Q. A degree 24 polynomial analogous to g120(x) with Galois group
SL±2 (11) is given in [12, §7].

2. Mass Heuristics

2.1. Local mass formulas. In [19] we combined the Krasner-Serre mass formula [22] with
generating function arguments to obtain the total mass λF,n of isomorphism classes of degree
n separable algebras over a given v-adic base field F . The contribution of an isomorphism
class [K/F ] is its mass 1/a, where a is the number of automorphisms of K which fix F .

One has λC,n = 1/n!, the mass all coming from the unique algebra Cn with its n! au-
tomorphisms. Similarly λR,n = in/n! where in is the number of elements of order at most
two in the symmetric group Sn. The other easy case is when n is greater than the residual
characteristic p of F . In this case, λFn

= λn, the number of partitions of n.
The remaining cases are all more complicated, but one of the results of [19] is that λF,n

depends on F only through p and the degree n0 = [F : Qp]. Accordingly, we write write
λF,n = λp,Q,n where Q = pn0 . The relevant quantities for quintics are

λC,5 =
1

120
, λ2,Q,5 = 2Q + Q2 + 4Q3,

λR,5 =
26
120

, λ3,Q,5 = 1 + 6Q,

λ5 = 7, λ5,Q,5 = 1 + 5Q.
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2.2. Global mass heuristics. Now let F be a number field. Let Σ be a finite set of places
of F . Let U be the set of real places of F not in Σ. Let Fieldsbig

F,n,Σ be the set of isomorphism
classes of degree n field extensions K of F such that the corresponding Galois closure M
over F satisfies Gal(M/F ) = An or Gal(M/F ) = Sn and all ramification is over Σ. Then,
adapting [2] to a somewhat different context, we argued in [19, §11] for the heuristic

(3) |Fieldsbig
F,n,Σ| ≈

1
2

∏
v∈U

1
n!

∏
v∈Σ

λFv,n.

Here the absolute values on the left are to be interpreted as total mass, but this agrees with
cardinality when n 6= 2, 3. The heuristic is to be understood with some caveats [19, §11]. In
particular, for very small Σ it seems that there are generally substantially fewer fields than
predicted.

2.3. Quintics. For quintics over Q and quintics over our quintic F the numbers work out as
follows.

F = Q F = Q[π]/(π5 + 5π4 − 25π2 − 25π − 5)
S {5} {3, 5} {2, 5} {2, 3, 5} {5} {3, 5} {2, 5} {2, 3, 5}

Predicted: 2.9 56 120 2, 200 3.7 5, 400 490, 000 720, 000, 000
Actual: 0 28 43 1, 415 ≥1 �33 �154 �905

Here Σ = {∞} ∪ S in the case of ground field Q and Σ = ν−1({∞} ∪ S) in the case of the
quintic ground field F , with ν being the natural map from places of F to places of Q. Thus
in the last column of the table, Σ has the form {∞1,∞2,∞3,∞4,∞5, 2, 3, π}.

The numbers in the predicted row are rounded to two significant digits. The numbers in
the actual row for Q are drawn from [14]. The numbers in the actual row for the quintic F are
the numbers of fields found in the modest search of Section 5. From searches in the context
of §4.1, §4.2, and §4.4, we know for sure that there are indeed many more fields, as indicated.
The main point of the numbers in the actual row for the quintic F is they faithfully capture
the ratios encountered by searches: it is very easy to find {2, 3, 5} relative quintics, much
harder to find {2, 5} relative quintics, perceptibly harder still to find {3, 5} relative quintics,
and very much harder still to find a {5} relative quintic.

2.4. Behavior over R. Note that in the language of this section, where C/R is considered
ramified, Gross’s original question asks for nonsolvable number fields ramified within Σ =
{∞, p} for some p ≤ 7. The currently known constructional techniques are quite restrictive
on the placement of complex conjugation in Galois groups. For example, the use of Hilbert
modular forms as in [7] requires the field F to be totally real, but, in the case p > 2, yields only
fields which are ramified above each real place of F . Reflecting these restrictions, real places
of F are preferred over complex places in the specialization technique of Section 5, because
two real places contribute two independent units while one complex place contributes only
one such unit. Furthermore, specializing nonsolvable three-point covers can only give fields
which have complex places over every infinite place of the specialization field F [23, §6].

One could of course ask about the existence of nonsolvable number fields ramified at exactly
Σ = {p}. The smallest prime p for which it is known that there exists a nonsolvable number
field for Σ = {p} is p = 1039 [12, §4]. The field has Galois group A5 and discriminant 10394.
There are no other fields with p ≤ 1039 and Galois group A5, S5, A6, or S6 [12, 14]. The
heuristics of this section suggest that nonsolvable fields for Σ = {p} should be much rarer
still than fields for Σ = {∞, p}. It is very plausible that for infinitely many primes p, they do
not exist.
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3. Discussion of g25(x)

In this section we discuss various aspects of g25(x). The discussion both proves Theo-
rem 1.1A and introduces the reader to some of the objects considered in subsequent sections.
Here and throughout this paper, many of our assertions can only be confirmed with the as-
sistance of a computer. However our presentation aims to emphasize various aspects of the
situation that can be easily seen without a computer.

3.1. Ramification at 5. The fact that K is highly ramified at 5 can be seen directly from
the coefficients of g25(x). Visibly, 5 divides the coefficient of each term except x25 and also 5
exactly divides the constant term −36535. Thus g25(x) is Eisenstein at 5. As 5 also divides
the degree 25, one gets that K is wildly ramified at 5 and so 525 divides disc(K/Q).

However one can easily go much further than simply 525|disc(K/Q). Note that 5 divides
many of the coefficients to quite high powers:

g25(x) = x25

+5
(
22x20 − 7307

)
+25

(
−x22 + x21 − 2288x15 + 69793x10

)
+125

(
−29x17 + 174x16 + 34153x7 − 28408x6 + 7597x5 − 7198x2 + 2333x

)
+625

(
−x19 + 2x18 + 717x12 − 1802x11 − 1611x9 − 1128x8 − 1268x4 + 2086x3

)
+3125

(
36x14 − 77x13

)
.

In general, if a polynomial g(x) ∈ Z[x] is Eisenstein at a prime p, then the contribution of
p to the field and polynomial discriminants agree and this common number can be read off
from congruential conditions on the coefficients of g(x). In our case, writing the general term
as aix

i, one has 5||a0, a20 and 52|a5, a10, a15, a21, a22, a23, a24 while 53 divides the remaining
ai. The 5-Eisenstein polynomials satisfying these conditions are exactly the ones contributing
569. A standard reference on this topic is [21, III.6]; our [19, §8] also treats this issue.

3.2. Lack of ramification away from 5. Applying say Pari’s nfdisc, one gets that g25(x)
has field discriminant exactly 569 in under a second. To see this more directly, one can work
with polynomial discriminants and factorization modulo primes. The polynomial discriminant
of g25(x) factors into primes as

D = 569 740 4572 6072 101932 337492 14336992

98659932 472273939992 1442562196204492 3468589981005857932.

For each of the nine factors p2, one can apply a simple test: in general, suppose p2 exactly
divides the polynomial discriminant of a degree n monic polynomial g(x) ∈ Z[x]; then p does
not divide the field discriminant if and only if g(x) has the form gn−2(x)(x − a)2 in Fp[x]
with gn−2(x)(x− a) having distinct roots. Applying the test in our cases shows that indeed
these p do not divide disc(K/Q). One can show directly that 7 does not divide disc(K/Q)
by a similar but more involved argument involving Newton polygons. We omit this argument
because it will be immediate conceptually from our construction in Sections 4 and 5 that in
fact all primes besides 5 do not divide disc(K/Q).

3.3. Notation for the ground field F . To go further in the analysis of K, it is best to
use a presentation of K more refined than K = Q[x]/g25(x). Consider the field F defined in
(1). Via π 7→ −c4 − c3 + 4c2 + 3c − 3 with c = 2 cos(2π/25), the field F is identified with
the unique quintic subfield of the degree twenty cyclotomic field Q(e2πi/25). The construction
of Dembélé, Greenberg, and Voight [7] shows that the field K can be viewed as a quintic
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extension of F , although these authors highlight the field element b = π + 1, rather than π.
Let

(4) σ(π) = 7−1(−4π4 − 18π3 + 9π2 + 92π + 40)

Then σ extends to an automorphism of F and Gal(F/Q) = {1, σ, σ2, σ3, σ4}.
Let R be the ring of integers of F . The polynomial discriminant of the polynomial defining

F in (1) is 5872 while the field discriminant is 58. Thus our standard basis 1, π, π2, π3, π4 for
F spans only an index seven lattice in R. This accounts for the ubiquity of inconsequential
7’s in denominators throughout this paper.

To carry out our computations over F , it is essential to have good control over the ideal
theory of R. Because F/Q is cyclic of prime order this ideal theory is particularly simple.
First, in R one has (5) = (π)5. Second, if p is congruent to 1, 7, 43, 49, 51, 57, 93 or 99
modulo 100, then (p) is the product of five conjugate ideals, all with residual field Fp. Third
and lastly, if p is otherwise then (p) is a prime ideal in R.

It is also essential for our purposes to have good control over the multiplicative group F×.
Because F has class number one, the multiplicative group F× is relatively easy to work with.
Some important elements besides π are

ui = σi−1(π) + 1, ω7,i = σi−1(π) + 2.(5)

The elements u1, u2, u3, u4, u5 are conjugate units. Any four of them together with −1
generate the unit group of F . We take ω7,i for i = 1, . . . , 5 as our standard generators for the
corresponding five prime ideals Π7,i above 7. For split primes p larger than 7, the five primes
Π above p are in natural bijection with the five roots r ∈ Fp of the polynomial defining F in
(1), according to the image of π in R/Π ∼= Fp. Viewing these roots as in {0, . . . , p−1}, we let
r1 be the smallest and let Πp,1 be the corresponding ideal. Then we label the other ideals so
that Πσ

p,i = Πp,i+1 always holds, and let ri correspond to Πp,i. This level of detail is necessary
to fully match Frobenius elements to Hecke eigenvalues, and how things look explicitly can
be seen in the left part of Table 7. When we need a generator ωp,1 of Πp,1, we choose one
arbitrarily. Then we get generators for the other ideals above p via ωσ

p,i = ωp,i+1. Note that
here and in the sequel we often use exponential notation for Galois actions, as in σ(π) = πσ.

3.4. Factorization over F . The needed notation having been set up, we can now give the
promised refined presentation of K. Let

α = −5
7
(
3π4 + 10π3 − 19π2 − 62π + 5

)
= u−2

1 u3
2u
−1
3 u−3

4 π6,(6)

ω7307,3 =
1
7
(−79π4 − 331π3 + 288π2 + 1803π + 566),(7)

and

f5(x) = x5 + αx2 − αx + πω7307,3.(8)

Then

(9) g25(x) =
5∏

i=1

fσi

5 (x).

Thus K = F [x]/f5(x) together with (1) is a two-step presentation of K.
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3.5. Polynomial discriminant. The polynomial discriminant of f5(x) is

D =
55

7
(
99432077π4 + 407302465π3 − 362208460π2 − 2145278225π − 552808790

)
= π29ω6

7,1ω
4
7,4ω

2
10193,1u

−8
1 u15

2 u−1
3 u−11

4 ,

with ω10193,1 = π4 + 4π3− π2− 19π− 23. One thus has D ∼ d = πu2u3u4, with ∼ indicating
equality in F×/F×2. One can check that πσ = πu1u3u4. Accordingly,

dσ

d
=

(πu1u3u4)u3u4u5

πu2u3u4
=

u1u3u4u5

u2
∼ u1u2u3u4u5 = 1.

Thus D is not itself a square, but it agrees with all its conjugates modulo squares.

3.6. Galois group. Because g25(x) has the factorization (9) and Gal(F/Q) = C5, the Galois
group G of g25(x) is a subgroup of the wreath product S5

5 .C5. Because the polynomial
discriminant of f5(x) is a nonsquare in F , but agrees with each of its conjugates up to a
square, one has that G is a subgroup of A5

5.C2.C5
∼= A5

5.10. The Frobenius elements tabulated
in Table 7 are then more than sufficient to force G to be all of A5

5.10.

3.7. T2-reduction. For a monic polynomial h(x) =
∏

i(x − αi) in Z[x], define T2(h) =∑
i |αi|2. If all roots of h(x) = xn + a1x

n−1 + a2x
n−2 + · · · are real, then the absolute values

are superfluous, and T2(h) is the integer a2
1 − 2a2. In general, T2(h) is an algebraic integer in

the splitting field of h. It is conventional to present number fields as Q[x]/h(x) with h chosen
to minimize T2(h), as typically coefficients are then fairly small as well. If h(x) minimizes T2

then (−1)nh(−x) also minimizes T2 and typically there are no other minimizing polynomials.
The command polredabs in Pari carries out this reduction. Our g25(x) and g30(x) just
below are T2-reduced with T2(g25) ≈ 110.92 and T2(g30) ≈ 102.84. On the other hand we
prefer to define F in (1) via π5 + 5π4 − 25π2 − 25π − 5 with its T2 of 25 rather than via
b5 − 10b3 − 5b2 + 10b− 1 with its T2 of 20 as in [7]. This is because using the uniformizer π
rather than the unit b = u1 = π + 1 makes 5-adic behavior more evident.

3.8. Sextic analog. One can work with the sextic polynomal (18) rather than the quintic
polynomial (2). Proceeding as before, including T2-reduction, one gets that

g30(x) = x30 − 5x29 + 10x28 + 15x27 − 170x26 + 429x25 + 550x24 − 8175x23

+33350x22 − 83150x21 + 122955x20 − 27500x19 − 375050x18 + 1050375x17

−1390025x16 + 309375x15 + 2499150x14 − 4752625x13 + 2829175x12

+2859125x11 − 6266355x10 + 3272775x9 + 1787275x8 − 3243075x7

+1099450x6 + 565746x5 − 468930x4 + 45160x3 + 53915x2 − 12845x− 2351

has the same splitting field as g25(x). The polynomial g30(x) factors into five sextics over F ,
namely

f6(x) = x6 + 7−1
(
−4π4 − 11π3 + 23π2 + 50π − 2

)
x5

+5x4 − 5x2 +
(
−3π3 − 7π2 + 20π + 24

)
(10)

and its four conjugates. The sextic analog f6 will prove convenient in Sections 6 and 7, as
the field K30 = Q[x]/g30(x) = F [x]/f6(x) is a subfield of the degree 120 field K̃ considered
there, while K = Q[x]/g25(x) = F [x]/f5(x) is not. On the other hand, f6 does not fit so
conveniently into the p-adic considerations of Sections 8 and 9. In fact, g30(x) factors modulo
5 as (x− 4)25(x− 1)5. This factorization corresponds to a 5-adic factorization (K30 ⊗Q5) ∼=
(K ⊗Q5)× (F ⊗Q5).
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4. Choosing a Family to Specialize

In this section, we explain why we chose the family (2) of quintic polynomials to exhaus-
tively specialize. In the process, we discuss two larger families that we rejected in favor of
(2), and also three other families which have just one parameter like (2). Any one of these
other families could be the best choice in similar searches for different relative quintics.

The main point in this section, appearing at the end of §4.3, is that the family (2) is
guaranteed to contain a specialization point corresponding to the field K sought, by a theorem
of Shepherd-Barron and Taylor [26]. This theorem is very particular to our exact situation
here, and the rest of our discussion gives some feel for how one might go about choosing the
most promising family in other situations.

4.1. All quintics. A natural place to start our considerations is the family

(11) f(a, b, c, d, e, x) = x5 + ax4 + bx3 + cx2 + dx + e

of all quintics. Driver and Jones [8] have successfully specialized this family to get complete
lists of quintics with certain prescribed ramification behavior over quadratic fields F .

Our search is for a single field only, and so the complications of ensuring that a list is
complete are not present. On the other hand, our base is quintic and this adds enormous
computational complexity in comparison with the quadratic case.

The discriminant D(a, b, c, d, e) has 59 terms each of which has weighted degree 20 when
a, b, c, d, e are respectively given weights 1, 2, 3, 4, 5. Standard searches take a, b, c, d, and
e in the ring of integers R of F , with a very small. The case a = 0 is representative of the
others, and for it we have

D(0, b, c, d, e) =
108b5e2 − 72b4cde + 16b4d3 + 16b3c3e− 4b3c2d2 − 900b3de2 + 825b2c2e2

+560b2cd2e− 128b2d4 − 630bc3de + 144bc2d3 − 3750bce3 + 2000bd2e2

+108c5e− 27c4d2 + 2250c2de2 − 1600cd3e + 256d5 + 3125e4.(12)

The search process involves plugging in (b, c, d, e) ∈ R4 and, in our case, immediately rejecting
those (b, c, d, e) for which the integer NormF/Q(D(0, b, c, d, e)) is not of the form 5f2. Even
for (b, c, d, e) very small, the integer |NormF/Q(D(0, b, c, d, e))| tends to be larger than 1015

and so it is very difficult for (b, c, d, e) to pass even this very first test.

4.2. Dodecahedral quintics. The degrees of the irreducible complex characters of A5 are
1, 3, 3, 4, and 5. The two three-dimensional characters have character field Q(

√
5) and are

conjugate; each corresponds to rotating a dodecahedron in real three space. Extended to the
group A5×{±1}, these representations are reflection representations, in fact number twenty-
three on the Shephard-Todd list [25]. Since the quotient space R3/(A5×{±1}) is just another
copy of R3, one can construct a corresponding family of polynomials for the original group
A5:

f(a, b, c, x) = x5 + (−10ab)x3 + (5ac + 40b2)x2 + (−15a3c− 55a2b2 + 5bc)x
+(8a5c + 40a4b2 + 5a2bc + c2).(13)

The polynomial discriminant of f(a, b, c, x) is

(14) D(a, b, c) = 55
(
a5 − 5a2b− c

)2
∆(a, b, c)2

where

(15) ∆(a, b, c) = 64a5c2 + 640a4b2c + 1600a3b4 − 80a2bc2 − 720ab3c− 1728b5 − c3.
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Here, when one gives a, b, and c weights 1, 3, and 5 respectively, ∆(a, b, c) has weighted degree
15. Very promisingly for finding our K, the discriminant can only be of the form 5f2. Not
relevant for us, but perhaps worth mentioning, is that ∆(a, b, c) is also involved in another
discriminant formula: disc(x5 + 5ax4 − 20bx2 − 4c) = 2855c∆(a, b, c).

In principle, the situation here should be similar to the case of general quintics, although
it has not been worked out in the literature. Namely any quintic field K over any number
field F with disc(K/F ) = 5 ∈ F×/F×2 should have infinitely many defining polynomials
f(a, b, c, x) ∈ R[x]. Moreover at least one defining polynomial should have a, b, c satisfying
certain bounds depending only on the signature of F and the size of the field discriminant
disc(K/F ).

Even though the full theory is not set up, one can carry out exploratory searches over small
parts of R3. The factor

(
a5 − 5a2b− c

)2 in (14) does not contribute to field discriminants and
is irrelevant for us. The factor ∆(a, b, c) is crucial for immediately eliminating polynomials,
for if a prime p exactly divides the integer NormF/Q(∆(a, b, c)) then p is necessarily ramified
in F [x]/f(a, b, c, x).

In terms of finding a defining polynomial for our particular K/F , searching via (13)–
(15) seems much more promising than searching via (11)–(12). However again one has the
fundamental problem that |NormF/Q(∆(a, b, c))| tends to be larger than 1015. Note however
that our choice of coordinates (a, b, c) in (13)–(15) has been made so that the numeric factor
in (14) is a power of 5. One could change coordinates in a number of natural ways to get
much smaller coefficients in (15) at the expense of getting factors of 2 and/or 3 in (14).

4.3. Modular quintics. When carrying our modest searches using (13)–(15) as just sketched,
it happened that almost all of the least ramified fields found had a equal to zero. To pur-
sue this, note first that ∆(0, b, c) = −1728b5 − c3. Carrying out the substitution (b, c, x) →
(j,−12j2,−12j/x), the polynomial f(0, b, c, x) becomes the polynomial of (2),

(16) f5(j, x) = x5 + 5x4 + 40x3 − 1728j = x5 + 5x4 + 40x3 − J,

with discriminant

(17) D(j) = 22431255j2(j − 1)2 = 55J2(J − 1728)2.

Here j is the coordinate we will use in the sequel, to keep within the standard conventions of
three point covers, where j = 0, 1, and ∞ are the special values. The alternative coordinate
J = 1728j is more natural in the setting of elliptic curves.

In fact, f5(j, x) is a familiar polynomial from the theory of elliptic curves as follows. The
projective line with coordinate j is naturally identified with the j-line X0(1) parametrizing
elliptic curves. One can view f5(j, x) as defining a degree 5 map from a curve X with function
field Q(x) to X0(1) with Galois group S5. This cover is the quintic version of the standard
cover X0(5) with defining polynomial

(18) f6(j, x) =
(
x2 − 10x + 5

)3
+ 1728jx

and Galois group PGL2(5).
The simplicity of the discriminant formula (17) is very promising, and accounts for the

experimental phenomenon of a commonly being 0 for the least ramified fields. However a new
fundamental concern arises. Certainly, not all quintic field extensions of a given number field
F with d = 5 ∈ F×/F×2 arise as specializations of (16). For (16) to be useful for us, we need
our K/F to so arise. If it does arise, then it arises infinitely often; see [9] for some related
explicit formulas in the case F = Q.
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Theorem 1.2 of [26] answers our fundamental concern. It says that for any ground field F
of characteristic zero, a PGL2(5) extension arises as a specialization of (16) if and only if it
lifts to a GL2(5) extension having cyclotomic determinant. This is the case for the PGL2(5)
extension of [7].

4.4. Other quintic three-point covers. Family (2) is a quintic cover of the j-line with
Galois group S5, ramified at the three points 0, 1, and ∞ only. There are other such covers,
all of them being base changes of four possibilities:

χ λ0 λ1 λ∞ f(j, x) D(j)
1/30 = 0.03 311 221 5 x3

(
x2 + 5x + 40

)
− 1728j 22431255j2(j − 1)2

−1/20 = −0.05 41 2111 5 x4(x− 5) +256j 23255j3(j − 1)
−1/12 = −0.083 32 221 41 x3(x− 10)2 −108(5x + 4)j −21831555j3(j − 1)2

−2/15 = −0.13 32 2111 5 x3(x− 5)2 −108j 2831255j3(j − 1)

Here (2) is reproduced on the first line, for easy comparison. In general, the partitions λ0,
λ1, and λ∞ measure ramification of the cover above τ = 0, 1, and ∞, respectively. Table 1
describes ramification in specializations of (2) and one can construct analogs of this table
for the remaining three covers. Just as for (2), for the last three covers also there are 2-adic
regions where 2 does not ramify and 3-adic regions where 3 does not ramify. Thus the last
three covers are a priori possibilities for finding the field K sought.

Even if one did not have Theorem 1.2 of [26], Cover (2) would seem the most promising
of these four covers. One reason is that only for (2) is the discriminant restricted to be
5 ∈ F×/F×2. Another reason concerns the Euler characteristic χ = 1

e0
+ 1

e1
+ 1

e∞
− 1, with

eτ the least common multiple of the parts of λτ . As this quantity becomes more negative,
the harder it becomes to find specialization points keeping ramification within a fixed set of
primes, as the exponents on x, y, and z in the analogs of (20), (21) become larger. Only in
the first case can there be infinitely many specialization points keeping ramification within
a given set of primes. See e.g. [5] for this finiteness statement and general background on
considerations involving Euler characteristics. An opposing argument in favor of the second-
listed cover is that only for it is 3 generically unramified.

4.5. Discussion. One should note that it is not the degree, five in our case, which di-
rectly governs computational complexity. For example, we are emphasizing f5(j, x) from
(2) throughout this paper, but this section and the next would change only trivially if we
had used f6(j, x) from (18). It is instead the nature of the discriminant formula which is the
central concern. Some three-point covers of large degree are possibilities to get fields ramified
at one prime only for other nonsolvable groups. The specialization considerations of the next
section would then serve as a model.

On the other hand, for three-point covers with larger groups it seems that most commonly
there are at least two primes at which all specializations ramify. Also, one expects no analogs
of Theorem 1.2 of [26] for larger groups, since this theorem is connected to the Euler char-
acteristic χ being positive. Thus it seems very possible that fields ramified at one prime will
arise naturally only in families with more than one parameter, such as those of §4.1 and §4.2.
Finding a correct specialization point would then remain a very difficult problem.

5. Specialization

Specializing three-point covers has both local and global aspects. We explain these aspects
in turn with reference to the modular family (2). We follow the notation of [20], where
specialization over the field Q was considered systematically. In particular we denote the
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affine curve P1 − {0, 1,∞} by T . In terms of finding g25(x) and g120(x), Eq. (23) identifying
j2 is the main point.

5.1. Local aspects. For this paragraph, let F be a p-adic field with ring of integers R, prime
ideal Π, and residue field R/Π having q elements. Consider the F -algebras Kj = F [x]/f5(j, x)
as j varies over T (F ) = F−{0, 1}. By Krasner’s Lemma the isomorphism type of Kj is locally
constant in j.

It is convenient to start the local analysis by focusing on a decomposition into open sets:

(19) T (F ) = T (F )gen
∐( ∞∐

i=1

T (F )0,i

)∐( ∞∐
i=1

T (F )1,i

)∐( ∞∐
i=1

T (F )∞,i

)
.

Here T (F )gen = R−Π and

T (F )0,i = Πi −Πi+1, T (F )1,i = (1 + Πi)− (1 + Πi+1), T (F )∞,i = Π−i −Π−i−1.

The natural measure µ on T (F ) gives T (F )gen mass q − 2 and each T (F )τ,i mass (q − 1)/qi

so that all of T (F ) has mass q + 1.
Table 1 has been normalized to facilitate applications to our global quintic F . Let j ∈

F − {0, 1} so that the discriminant disc(Kj/Q) is a positive integer. Let p be a prime and
consider the local discriminant-exponent c = ordp(disc(Kj/Q)). Suppose that p ≥ 7 is inert
in F . Then the last of the five blocks is relevant. If j ∈ T gen(F ), then c = 0, as indicated in
the first column. If j ∈ T τ,i(F ) then c is given in the (τ, i) slot of the block to the right, with
blank slots being determined by repeating the parenthesized segment. Thus, for example,
c = 0 if and only if (τ, i) has the form (0, 3k), (1, 2k), or (∞, 5k). If p ≥ 7 is a split prime
then the situation is similar, except one has five independent contributions to c, all computed
from the fourth of the five blocks on Table 1.

Table 1. The possibilities for the contribution of a p-adic prime ideal Π
to the discriminant-exponent of the local field Kj/Qp. Here and in the next
three tables, boldface indicates no ramification at 2 and italics indicate no
ramification at 3.

gen τ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Π = (2) 0 40 20,10 30 20 20 (0 10 10)

1 30 (30 40)
30,20 ∞ 40 20,10 30 20 20 (0 20 20 20 20)

Π = (3) 0 (30 20 20)
1 20 20 (0 10)

20,10 ∞ 20 20 (0 20 20 20 20)
Π = π 0 67 65 63 61 55,47 57 55 53 51 45,43 47 45 (43 41 43)

1 67 65 63 61 55,47 57 55 53 51 45,43 47 45 47 45 (43 43)
65∗ ∞ (69 69 69 69 65∗)

Π split 0 (2 2 0)
1 (2 0)

0 ∞ (4 4 4 4 0)
Π inert 0 (10 10 0)

1 (10 0)
0 ∞ (20 20 20 20 0)
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The blocks for the three wild primes 2, 3, and 5 have been computed non-rigorously by
interpolation. The most important point here is the presence of zeros in the 2-adic and 3-adic
blocks, some of these zeros following immediately from the polynomial discriminant formula
(17). The other numbers are included for a more complete picture. They shed light on the
distribution of global discriminants in Table 4 below, and also the local analysis of the final
two sections. Occasionally, there are two possibilities for c for j in a given region. In all cases,
the larger possibility is the more common, often by far. In one repeated situation, there are
actually six possibilities for c. Namely, a printed 65∗ indicates that the possibilities are 65,
61, 57, 53, 45, and 43. With respect to the measure µ, in each region these possibilities occur
with relative frequency 4/5, 4/52, 4/53, 4/54, 4/55, and 1/55 respectively.

Table 1 gives one a first feel for the difficulty of choosing j so that only 5 ramifies in
Kj . In terms of the measure µ, the fractions of Fp − {0, 1} yielding no ramification at p are
respectively

p = 2 : 2(64− 1)/(64 + 1)(646 − 1) ≈ 2.8× 10−11,

p = 3 : 2(27− 1)/(27 + 1)(273 − 1) ≈ 9.4× 10−5.

As we have to avoid ramification at both 2 and 3, this measure calculation suggests finding
the appropriate j may be difficult.

5.2. Specialization points. Let F be our quintic field (1) with ring of integers R and
consider the F -algebras Kj = F [x]/f5(j, x) indexed by j ∈ F − {0, 1}. The discriminant
disc(Kj/Q) is divisible only by the primes 2, 3, and 5 if and only if the following conditions
are satisfied. First, one must be able to express j in the form

(20) j = −ax3

cz5
,

with a, c invertible in R[1/30] and x, z in R. Second, there must likewise be b ∈ R[1/30]×

and y ∈ R such that

(21) ax3 + by2 + cz5 = 0.

Here the equations (20),(21) together are exactly what is needed to ensure that for each prime
Π different from 2, 3, and π, one has c = 0 from Table 1.

If j lies in Q − {0, 1}, then Kj
∼= Q[x]/f5(j, x) ⊗ F and so the associated Galois group is

within the subgroup S5×C5 of the the desired group A5
5.10. We exclude these j from consider-

ation. Conjugate j yield Kj which are isomorphic as extensions of Q, and so in our discussion
below we always take only one j from each conjugacy class {j, σ(j), σ2(j), σ3(j), σ4(j)}.

We find solutions j ∈ F − Q by a modest computer search. Note first, however, that
the j-line also parametrizes elliptic curves, and one may ask if the field we seek comes from
the mod 5 representation associated to an elliptic curve over F with good reduction outside
of 5. We expect the answer is no, because the field of coefficients in [7] is larger than Q.
Accordingly, the solution we seek should only come from ABC triples with z ∈ R not a unit.

Our computer search is designed to not only find the field sought, but also to get some
general perspective on the situation. We look at a great many j of the form (20) and select
those for which the sum ax3 + cz5 has the right form −by2. Our search is modest because
for x and z we take either 1 or one of the five ω7,i. These are very low cutoffs and increasing
the number possibilities for x and z would likely be the easiest way to get more fields. For
a/c we take numbers of the form 2α3βπγu with α ∈ [−6, 6], β ∈ [−3, 3], γ ∈ [−6, 6] and u
running over more than a thousand units. When x = z = 1 then a solution j yields another
one f2(j) = 4j(1−j) [20, §4]. Using this base change operator together with the direct search
gives a total of 647 different j.
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Table 2. Ordered pairs (ord2(j), ord3(j− 1)) for 647 j-invariants found by
the computer search of §5.2. Each of these j corresponds to a different Kj

and the splitting fields all have Galois group A5
5.10.

ord2(j)
−5 −4 −3 −2 −1 0 1 2 3 4 5 6

1 5 5 4
0 1 2 4 67 63 248 74 66 12 4 1

ord3(j − 1) −1 1 16 35 12 1
−2 5 9 8 3
−3 1

The distribution of the pair (ord2(j), ord3(j − 1)) is presented in Table 2. Note that these
pairs cluster about the mode at (0, 0). Some of the horizontal spread comes from the use of
the base change operator f2.

According to Table 1, the field Kj is not ramified at 2 if and only if ord2(j) is a non-zero
multiple of 6. Similarly, Kj is not ramified at 3 if and only if ord3(j−1) is a non-zero multiple
of 3. Table 2 says that the search finds one field of each type. The field corresponding to the
bold 1 comes from the ABC triple

26 − (ω7,1ω2399,4)2 − u1u
−1
4 π2ω5

7,4 = 0.

Explicitly,

j1 =
u1π

2ω5
7,4

26u4
=
−26

5 · 76
(68155π4 + 288368π3 − 125935π2 − 1495535π − 1089160).

The field Kj1 has discriminant 320569. The field coming from the italicized 1 has discriminant
240567. A Frobenius computation reveals that the 647 fields are pairwise non-isomorphic,
despite the repetition in field discriminants evident in Table 4 below. The lack of any repetition
in fields whatsoever strongly suggests that longer searches would find many more fields. The
same Frobenius computation also shows that all 647 fields have associated Galois group all of
A5

5.10.

5.3. Base change. Besides f2, there are two more simple base change operators which allow
one to pass from ABC triples of low height to ABC triples of larger height under certain
conditions [20, §4]:

f3(j) =
(4j − 1)3

27j
, f4(j) =

(9j − 1)3(1− j)
64j

.

If Kj has discriminant of the form 2a3b5c then so does Kf3(j) as long as one can take x = 1
in an ABC triple determining j. Similarly, if Kj has discriminant of the form 2a3b5c then so
does Kf4(1−j) as long as one can take y = 1 in an ABC triple determining j. Applying f3

and f4 to the appropriate j’s discussed in the previous subsection gives 409 and 99 new j’s
respectively. However now there is some repetition of fields, mostly because f3(j) 6= f3(1/j)
and f4(1− j) 6= f4(1− 1/j) but in each case both sides define the same fields. One gets 205
distinct fields from f3 and 53 distinct fields from f4. The original list of 647 fields and the
two new lists are pairwise disjoint giving a total of 905 fields. The associated Galois group in
all cases is all of A5

5.10.
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Table 3. Ordered pairs (ord2(j), ord3(j−1)) for 409 j-invariants of the form
f3(t) and 99 j-invariants of the form f4(1− t) with t one of the j-invariants
contributing to Table 2. Underlining, italics, and boldface respectively in-
dicate j’s which come as f4(1 − t), which yield a field unramified at 3, and
which yield a field unramified at 2.

−12 −11 −10 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5
1 3 4 1
0 4 8 3 7 50 7 4 2 3 4
−1 3 4 1
−2

ord3(j − 1) −3 1 3 5 55 31146 30 45 2
−4 1 2 9 19 5
−5 5 22 10 6
−6
−7 1 6 2 3

In particular, our desired specialization point is j2 = f3(j1). An ABC triple corresponding
to j2 is

(22) x3 + u4y
2 + 2633u2

1u4π
4z5 = 0,

with

x = ω7,1ω
2
7,2ω3982743607 = −51π4 − 255π3 + 176π2 + 1549π + 379,

y = ω7,3ω7,5ω257ω349

ω2399ω2693ω14249 = 7−1(−5142π4 − 26212π3 + 11706π2 + 138482π + 33507),

z = ω2
7,4 = 7−1(13π4 + 55π3 − 45π2 − 292π − 67).

Explicitly,

j2 =
−x3

2633u5
1u4π4z5

=
−1

263351711

(
16863524372777476π4 + 88540369937983588π3(23)

−11247914660553215π2 − 464399360515483572π − 353505866738383680
)
.

Note that each one of the five ω7,i appears in the expression for either x, y, or z. On the
other hand, for p > 7 it is not necessary here to distinguish between the different ωp,i and so
we have just written ωp instead.

It is fortunate that j2 arises via base change, as its large height makes it unlikely one could
find it via a direct computer search that did not use the base change operators. Note also the
factors of π2 and π4 in the denominator of j1 and j2 respectively. Via Table 1, these factors
explain why Kj1 and Kj2 both have the maximum possible 5-adic discriminant, namely 569.

Table 4 gives a summary of the fields found by our search. All fields are wildly ramified at
5 since even F is wildly ramified at 5. Of the 153 fields ramified exactly at 2 and 5, all are
wildly ramified at 2. Of the 32 fields ramified exactly at 3 and 5, all are wildly ramified at 3.
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Thus among the fields found by our modest search, the unique field ramified at 5 only is an
extreme outlier.

Table 4. The 905 fields K found by the search of §5.2 together with the
base change operators of §5.3, sorted by discriminant 2a3b5c. Fields with
b = 0 are emphasized by italics and fields with a = 0 are emphasized by
boldface.

30 310 320 330

551 561 563 565 567 569 565 567 569 551 555 557 561 563 565 567 569 555 557 561 563 565 567 569

20 1 1 3 4 4 19 1
210 1 2 4 1
220 2 1 3 5 29 2 3 5 15 30 43 56 1 4 10 6
230 1 1 3 6 61 2 1 2 15 17 62 60 95 1 2 4 15 11 12
240 1 1 4 8 4 23 2 3 2 4 7 19 54 44 75 1 2 2 6 3 13

6. Lifting to SL2(5)5.20

In this section, we work with five-torsion points on an elliptic curve to produce the poly-
nomial g120(x) appearing in Theorem 1.1B, so that K̃ = Q[x]/g120(x) has discriminant 5311.
We explain in the last subsection how suitably twisting K̃ gives three other degree 120 fields
with the same splitting field L̃.

6.1. Torsion points on elliptic curves. Let F be a field of characteristic zero, let j ∈
F − {0, 1}, and let d ∈ F×. The elliptic curve with affine equation

(24) d
j

288(j − 1)2
y2 = x3 − j

48(j − 1)
x +

j

864(j − 1)

has j-invariant j; see e.g. [27, III.1]. Our coefficients are chosen to keep coefficients in (25)
relatively small. As one varies the twist factor d, the curve (24) represents all isomorphism
classes of elliptic curves with j-invariant j. The isomorphism class of (24) depends exactly
on d ∈ F×/F×2.

The theory of division polynomials as very explicitly presented in [17] lets one pass from a
given elliptic curve (24) and any prime ` > 2 to a polynomial fj,`(x) ∈ F [x] of degree (`2−1)/2
whose roots in an algebraic closure F are exactly the x-coordinates of the primitive `-torsion
points of the elliptic curve. Taking the resultant of this polynomial with the difference of the
two sides of (24) gives a degree `2− 1 polynomial fj,d,`(y) ∈ F [y] whose roots are exactly the
y-coordinates of the same torsion points. The dependence on d is simple as fj,d,`(y) has the
form φj,d,`(dy2).

In the case ` = 5, this procedure gives

φj,d,5(u) = 125u12 − 9000ku11 + 5184k2u10 + 199566ku10 − 1188000k2u9

+622080k3u8 − 6763905k2u8 − 8132400k3u7 + 1166400k4u6

−4193100k3u6 + 3359232k5u5 − 2387232k4u5 + 1399680k5u4

−790965k4u4 − 29160k5u3 − 36450k5u2 + 729k6.(25)

On the right, we have used the abbreviation k = 1−j to keep the expression relatively concise.
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Table 5. Polynomials defining K̃ and its splitting field L̃. The polynomial
g120(x) ∈ Q[x] is the product of f24(x) and its four other conjugates in F [x]

7f24(x) = g120(x) =

7x24 x120

−52045π4x22 +75875x118

−243670π3x22 +4433249820x116

+68355π2x22 −49201372899625x114

+1259160πx22 +138875299401232325x112

+928935x22 −101630730811285492875x110

−3098395696π4x20 −248124441086303782196575x108

−14645353797π3x20 +35634806801377992492993875x106

+4009956421π2x20 +318408974415513728869132030700x104

+76372306067πx20 +252126474820211413936829970728725x102

+56546420285x20 +50615897530385648713130213945551020x100

+2773874326655π4x18 −1547671302312365597289015357757159050x98

+13108010975190π3x18 −154759439725991864908244317651498168250x96

−3593706901525π2x18 +4867821035798662923292789878435380731275x94

−68355532760945πx18 −1825744840675958747234460076428409907877000x92

−50607490833355x18 +183355635045492126273455847144209327570175630x90

+3445327389646550π4x16 −12545410937193923658182740896430423687246834050x88

+16282532224913110π3x16 +459261310158272577227447659732507856542982218700x86

−4461790749743685π2x16 −13500080692155205751662730917831194051213443590350x84

−84910514853024515πx16 +223998447190093432826958380639753256210548704633525x82

−62865746554585540x16 +8579732748368022156383811605492709480260120302317960x80

−64915331912241573π4x14 +123616196086224078121820189449830896908477085047500525x78

−306788411536562739π3x14 +3022556554362539911741796392500720116840988719162863550x76

+84066903698235388π2x14 +52992606247527446566227152921199876395356101211594768800x74

+1599847153512857137πx14 +70967405149762712834086387811367032744919012002687239075x72

+1184489339956417922x14 −610999645695700782702824336730471455464955570581534324199x70

+16395684334962892080π4x12 +6884138417860041391100099478847832963036373563732897532875x68

+77485635988243413765π3x12 +27782495675651014405953042050679797125905561943150775565770x66

−21232804266959253340π2x12 −39216695177883202937321313559681637310032558885380980037750x64

−404073843197898469565πx12 −75731890720731476616133692180329180110217875776398820214725x62

−299166801483805686500x12 +249716142646808981571496456344719378734670705246099171225800x60

−806208401194033597373π4x10 −295950483191199170372284296920913318734736256644201131805850x58

−3810122799898973212093π3x10 +208656518054759302557393512235934656518110000608655626950375x56

+1044059206995530702318π2x10 −70030378086580568870057606941351333373320275124602446683600x54

+19869114361884763910602πx10 −84308112549210547727068881597915286499333546901816086635875x52

+14710626515374478523745x10 +99266426189227207460831196479874800442313240117423472527130x50

+49914114653987435346555π4x8 −147872201924051495440662964793481361196523976593172134394375x48

+235892984986953311827240π3x8 +69880688111009054590334056007469337836768548034708051204375x46

−64639975082428982610600π2x8 −9833945613688517799337910282039965659143927742952406072500x44

−1230140061626430560489150πx8 +2284941239738993839775112265389393114644048651746550609375x42

−910766865526781903378800x8 −266143876548813269149483837514072445736398735971995520625x40

+259168445039899283210475π4x6 −1309200438172791546382244498663483683291550449885873150000x38

+1224824251390498512636175π3x6 +348778966853535897604216020127938263159274632067013484375x36

−335629349446786729506350π2x6 +17869799433615015214092277597074090333010388547543906250x34

−6387241147380399997523075πx6 +39791226289100453055028629221661591264363582821738796875x32

−4728963620184859488361800x6 +2832734472839931933240266147328146992179352403486228125x30

−374703185674075660931080π4x4 −3000021530697883715015667845051363549415692595292656250x28

−1770838841187742283091140π3x4 −264482167448226288302122595644666537885487172181562500x26

+485249608315811415853325π2x4 +40310752179414318523141208214136075210690520265156250x24

+9234610352442859495344350πx4 +5829819867309054032004971974393116491059610206640625x22

+6837089033532919676656600x4 +279934805745919811329900232016717272004275054765625x20

−40155900972025536030175π4x2 −4601229911030288915962388240493379793569199609375x18

−189775886255752341173625π3x2 −212640071168954997896970839385414233417365234375x16

+52002854427805448365000π2x2 +3452840068185293658743184347789640485082031250x14

+989647574415039942948125πx2 +9185656210180316707958328085359926464843750x12

+732711865455764618902375x2 −11491030818793623950911398798540009765625x10

−2531672977282853265340π4 −43737960212065352027885670181738281250x8

−11964629639571447753400π3 +2461738901861270226326789218750000x6

+3278577198110073504475π2 +54493544150449503776767001953125x4

+62393420656294097744100π +13389369229306566332128906250x2

+46194626070054783641000 +155844270112523439453125

6.2. Specialization. Applying this theory with j the specialization point j2 from (23) and

(26) d = − yu1u4

24ω6
7,4π

2



NONSOLVABLE POLYNOMIALS WITH FIELD DISCRIMINANT 5A 17

gives an even degree 24 polynomial fj,d,5(y) in F [y] with Galois group GL2(5). Here in (26),
y is the complicated quantity appearing in (22). The fact that z is a square in (22) plays an
important role in d being the right choice. Also only −u1u4 is the only element out of the
32-element group of units modulo squares that works in (26). All the other choices would
introduce ramification at 2.

The polynomial fj,d,5(y) is non-monic with large coefficients. We adjusted this polynomial
in an ad hoc fashion to obtain a polynomial f24(x) = f12(x2) with considerably smaller
coefficients defining the same field. The left column of Table 5 gives this better polynomial
f24(x) ∈ F [x]. The right column of Table 5 gives the product g120(x) = g60(x2) of the five
conjugates of f24(x).

The degrees of the polynomials are large enough that not all standard operations with
Pari are feasible. For example, a several-day computation trying to find the T2-reduction of
g60(x) did not reach a result. However Pari does succeed in computing the discriminant of
K̃ = Q[x]/g120(x) to be 5311 in well under a second.

The Galois group of f12(x) is the fiber product PGL2(5)×2 4, with the subscript 2 corre-
sponding to the extension F (

√
5)/F and the second factor 4 corresponding to the extension

F (e2πi/5)/F . The Galois groups of g60(x) and g120(x) respectively have the form PSL2(5).20
and SL2(5)5.20, there being group-theoretically no other possibilities.

6.3. Twisting and 5-adic behavior. The field K̃ = Q[x]/g120(x) has an order four auto-
morphism a : K̃ → K̃. Also the ground field Q has a unique extension with Galois group C4

ramified at 5 only, namely the standard cyclotomic field Q(e2πi/5). This is a standard set-up
for twisting. One gets that the field K̃ = Q[x]/g120(x) is one of four similar fields as follows.

For i = 0, 1, 2, 3, the map ti : GL2(5) → GL2(5) given by ti(g) = det(g)ig is an automor-
phism. As a special case of the definition one has

(27) ti

(
a b
0 1

)
=
(

ai+1 aib
0 ai

)
.

Let Di be the group of matrices of the form on the right of (27), with a ∈ F×5 and b ∈ F5. The

orbit sizes of Di on the four column vectors of the form
(
∗
0

)
are given in the column λ4 of

Table 6. Similarly the orbit sizes of Di on the remaining twenty column vectors are given in

Table 6. 5-adic behavior in the four fields K̃i.

λ24 λ120

i λ20 λ4 λ100 λ20 c
0 5, 5, 5, 5 4 2569, 2569, 2569, 2569 2035 311
1 20 2, 2 100279 1017, 1017 313
2 10, 10 4 50139, 50139 2035 313
3 20 1, 1, 1, 1 100279 58, 58, 58, 58 311

the column λ20 on the left. The partitions in the two columns under λ120 are obtained from
the partitions in the two columns under λ24 by multiplying all parts by 5.

The ith row corresponds to a field K̃i, with Di identified with the π-decomposition group.
Our field K̃ is the field K̃0, because K̃ factors 5-adically into four fields of degree 25 and
one field of degree 20. As indicated by the subscripts, the four fields of degree 25 all have
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discriminant 569, while the one field of degree 20 has discriminant 535. All together the sum
of the subscripts is 311, so that the the discriminant of K̃0 itself is 5311. Table 6 describes
the 5-adic behavior of each of the four fields in this way.

The field K̃2 is a quadratic twist of K̃0 and has g60(5x2) as defining polynomial. The fields
K̃1 and K̃3 are likewise quadratic twists of each other. However to obtain say K̃1 from K̃0

one has to use an explicit expression for the order four automorphism a. We do not enter into
this complication here, as our main focus is on the common splitting field L̃ of the four K̃i.

7. Frobenius Computations

In this section, we work mainly over the quintic field F , rather than over Q. The focus is
on f5(x), f6(x), f12(x), and f24(x) ∈ F [x] from (8), (10), Table 5, and Table 5 respectively.
The corresponding Galois groups are respectively

(28) S5
∼= PGL2(5)← GL2(5)/{±1} ← GL2(5).

Here the two covering maps indicated by arrows each have degree two. We consider the three
groups G in turn, and discuss computing Frobenius elements in the correspond set G\ of
conjugacy classes. These sets have 7, 14, and 24 elements respectively. The calculations of
this section are designed to be compared with Table 2.9 of [7] and we make the comparison
in the last subsection.

7.1. Frobenius elements at the projective level. To begin as naively as possible, we first
work over Q. For each prime p 6= 5, the degrees of the irreducible factors of g25(x) over the
p-adic integers Zp give a partition Λp of 25. To describe the possibilities for Λp, note first that
there are seven partitions of 5, namely the elements of S\

5 = {5, 311, 221, 11111, 41, 32, 2111}.
The four partitions listed first are even, meaning that they are realized as cycle partitions of
elements of A5. The three partitions listed last are odd, hence realized as cycle partitions of
elements of S5 −A5.

Suppose first that p is inert. Then all parts of Λp are multiples of 5. If p ≡ 1, 4 modulo 5
then the possibilities for Λp are 5(5), 5(311), 5(221), and 5(11111). If p ≡ 2, 3 modulo 5 then
the possibilities are 5(41), 5(32), and 5(2111).

Table 7. Frobenius data for the extensions K/F and K̃/F and small primes p.

Split Other
Primes Primes

p rp,1 rp,2 rp,3 rp,4 rp,5 [p] λp,1 λp,2 λp,3 λp,4 λp,5 p [p] λp

∞ −3.5 −0.3 2.3 −2.6 −0.9 1 221 221 221 221 221 2 2 41B
7 26 32 3 31 1 2 221 32 32 221 41B 3 3 2111

43 2 6 23 18 32 3 41B 41B 41B 32 32 5 − −
101 23 96 35 82 62 1 221 311B 5B 221 311B 11 1 221
107 17 20 79 39 54 2 41A 32 41B 41A 41B 13 3 32
149 15 90 103 99 135 4 5 311 5 5 221 17 2 2111
151 14 37 85 102 59 1 5A 311A 221 5B 221 19 4 5
157 5 87 113 51 53 2 2111 32 41A 32 41A 23 2 32
193 15 167 95 163 134 3 41A 32 32 41B 2111 29 4 5
199 26 137 154 117 158 4 5 221 5 5 5 31 1 5B
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Table 8. Different viewpoints on the 24-element set of conjugacy classes in GL2(5).

# λ5 λ6 λ12 det L min poly λ24 L min poly λ24

1 15 16 112 1 A (x− 1) 124 B (x− 4) 212

26 4 + (x− 3) 46 − (x− 2) 46

15 221 2211 26 1 (x− 3)(x− 2) 46

2414 4 (x− 4)(x− 1) 21014

20 311 33 34 1 A x2 − 4x + 1 38 B x2 − x + 1 64

62 4 + x2 − 2x + 4 122 − x2 − 3x + 4 122

24 5 51 5212 1 A (x− 1)2 5414 B (x− 4)2 10222

10121 4 + (x− 3)2 20141 − (x− 2)2 20141

10 2111 222 43 2 x2 + 2 83

43 3 x2 + 3 83

30 41 411 422112 2 A (x− 2)(x− 1) 4514 B (x− 4)(x− 3) 4522

422112 3 A (x− 3)(x− 1) 4514 B (x− 4)(x− 2) 4522

20 32 6 12 2 + x2 − x + 2 24 − x2 − 4x + 2 24
12 3 + x2 − 2x + 3 24 − x2 − 3x + 3 24

Now suppose that p is split. The invariant Λp can be refined into five partitions of five.
Making use of the notations set up in §3.3, one gets one partition λp,i for each of the ideals
Πp,i above p. For p > 7, one computes λp,i by first reducing f5(x) in (8) to a quintic in Fp[x]
by sending π to the residue class rp,i ∈ Fp; then one factors the reduced polynomial and λp,i

is the partition giving the degrees of the factors. This refinement is exactly what is meant
in the split case by “working over F .” In the inert case, working over F is just a change in
viewpoint: one divides all parts of the above partitions Λp by 5 to get λp. Thus Frobenius
elements FrΠ lie in S\

5 for both split and inert primes.
Table 7 presents Frobenius data for the field K and small primes p. It gives analogous

information for p =∞ for the sake of comparison. Thus r∞,1 is an approximation to the least
root of the polynomial in (1) and the other r∞,i are obtained by successively applying σ. As
always p = 7 needs some modification: one factors over Z7 rather than F7, and r7,i is the
image of π in R/Π2

7,i = Z/49.

7.2. Frobenius information at the intermediate level. To move past the projective
level, it is best to first restate the projective level using the sextic polynomial (10) rather
than the quintic polynomial (8). Just as each FrΠ is completely determined by a partition
in S\

5 which we now call λ5,Π, so too each FrΠ is completely determined by a partition of six
λ6,Π. The bijection between all partitions of five and the relevant partitions of six is given in
Table 8.

The intermediate level does not present new calculational challenges. The class of a Frobe-
nius element FrΠ is given by the pair (λ6,Π, [p]) with [p] ∈ F×p the class of p modulo 5. As
indicated by Table 8, one has [p] ∈ {1, 4} if λ6,Π is even and [p] ∈ {2, 3} if λ6,Π is odd. Table 8
also gives the possibilities for λ12,Π, obtained by factoring f12(x) modulo Π. Note that in the
even case p ≡ 1, 4 (5), the partition λ12,Π does not fully capture FrΠ, as one has the ambiguity
of 26 appearing in two places. In the odd case, λ12,Π alone is even weaker, as it gives just the
information contained in λ5,Π or λ6,Π.
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7.3. Frobenius information at the linear level. Frobenius information at the linear level
is much more subtle. Conjugacy classes in GL2(5) are indexed by minimal polynomials of

matrices. Thus a scalar class
(

a 0
0 a

)
is indexed by the linear polynomial x−a. Non-scalar

classes are indexed by polynomials x2− tx + d with t being the trace of the matrix and d the
determinant.

Table 8 indicates the map GL2(5)\ → (GL2(5)/{±1})\. Four classes in (GL2(5)/{±1})\

have only one preimage. Five classes have two preimages labeled by A and B. Five more
classes have two preimages labeled by + and −. The classes labeled by A and B are dis-
tinguished from each other by factoring f24(x) as indicated by the table; notation is chosen
so that λ24 has more parts in Class A then it does in Class B. The classes labeled by +
have trace in {1, 2} while the classes labeled by − have trace in {−2,−1}. They are not
distinguished by factoring f24(x). One could make use of the order four automorphism a of
K̃/F to distinguish + from − in all but the last two cases, by computing fixed points of aiφj

in positive characteristic, with φ the Frobenius operator; however we have not pursued our
computations to this level of refinement.

Note that the Frobenius elements considered in this section are all calculated with reference
to K̃. If we replaced K̃ = K̃0 by another one of the K̃i from §6.3, then Frobenius elements
would change accordingly. For example, suppose we replaced K̃ with its quadratic twist
K̃2; then characteristic polynomials x2 − tx + d would change to x2 + tx + d for all Π with
p ≡ 2, 3 (5). The only part of this switch visible to our calculations occurs for primes Π with
λ5,Π = 41. In this case, Π contributes 4514 to the factorization pattern of one of g60(x2) and
g60(5x2), and 4522 to the factorization of the other.

7.4. Matching Hecke eigenvalues. Table 2.9 of [7] presents Hecke eigenvalues in GL2(5)20.
Here GL2(5)20 is the twenty-element quotient of GL2(5)\ where one no longer distinguishes
between the scalar class with minimal polynomial (x−a) and the nonscalar class with minimal
polynomial (x−a)2. Our Frobenius computations see the nineteen-element quotient GL2(5)19

where the five ambiguities associated to + versus − have not been resolved.
Table 2.9 of [7] and our Table 7 agree where there is overlap, as they must if our fields are

to coincide with those of [7]. Assuming this agreement, the two computations together let one
in principle see Frobenius elements where they live, meaning GL2(5)\. In practice, however,
Hecke eigenvalue computations can only be done for Π of quite small residual cardinality.
Instead one can count points on the elliptic curve (23), (24), (26) and use f24(x) to resolve
the scalar/nonscalar ambiguity. This also lets one see Frobenius elements in GL2(5)\.

7.5. Use of Frobenius elements in finding polynomials. In principle, we could have
used the Frobenius information in Table 2.9 of [7] to target our search for a numerically
matching polynomial. Indeed, it would have been easy to simultaneously impose the behavior
at say 2 and 3, to cut down search times by a factor of about five. However there does not
seem to be a practical way to use Frobenius information at many primes simultaneously to
find the desired specialization point. The method [10] used by Bosman to find the polynomials
in [3] presents a sharp contrast: it does not involve specializing families at all and does make
use of Hecke eigenvalues through Fourier expansions of modular forms.

8. Totally Ramified Binomial-over-Abelian p-adic Fields of Degree p2

This section describes the class of p-adic fields given in the section title, as made precise in
(29) below. The main statement, Theorem 8.1, immediately applies to our main Galois field
L and a solvable analog Ls to give Corollary 9.1 of the next section.
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Our framework in this section is similar to the framework of [13], as follows. For each
prime p, fix an algebraic closure Qp of the field of p-adic numbers Qp. Given an irreducible
polynomial g(x) ∈ Qp[x], one has its root field K = Qp[x]/g(x) and its splitting field L ⊂ Qp.
So one views K as an abstract field and L as an embedded field, with in fact L being the
composita of all the embeddings of K into Qp. We are interested in classifying fields K up
to isomorphism and for each K describing the Galois group Gal(L/Qp) and its filtration by
ramification subgroups. One of the principles of [13] is that standard invariants of K often
need to be supplemented substantially before one gets the desired description of L. The class
of p-adic fields here is well-behaved in that the passage from a description of K to one of L
is unusually straightforward, as will be clear from Theorem 8.1.

With weaker hypotheses one could get statements similar to Theorem 8.1 with more com-
plicated conclusions. We isolate Theorem 8.1 because it is just enough to obtain Corollary 9.1
with no extra work. In particular, one of our several simplifying hypotheses is that p is odd.

8.1. Some Kummer theory. Given now an odd prime p, our class of p-adic fields consists
of those fields of the form

(29) K = F [x]/(xp − a)

with F a totally ramified degree p cyclic extension of Qp and a ∈ F× − F×p. It is simple to
establish that there are p possible isomorphism classes for F , and they all have discriminant
p2(p−1). In fact, for i in Zp write

(30) fi(π) = πp − pπp−1 + (p + ip2).

Then the isomorphism class of Fi = Qp[π]/fi(π) depends only on i ∈ Fp and these classes
represent all possibilities. As a generator for Gal(Fi/Qp), we take the automorphism satisfying
σ(π) ≡ π + π2 (mod π3). Then σj(π) ≡ π + jπ2 (mod π3).

Fix now an F as above and consider the set of all possible isomorphism classes for K. Here,
for the moment, we are requiring that isomorphisms from K1 to K2 fix F . The elementary
parts of Kummer theory say that, up to F -isomorphism, K in (29) depends exactly on the
subgroup generated by a in the quotient group F×/F×p.

8.2. Generators. To go further, it is convenient to have an explicit description of F×/F×p.
To begin, we use some structure which is present for arbitrary ground fields Q of characteristic
different from p, not just Q = Qp. Let σ be a generator of the p-element group Gal(F/Q).
Then the field automorphism f 7→ fσ of F descends to a group automorphism of F×/F×p.
In fact, consider the group ring Fp[Gal(F/Q)] = Fp[σ]/(σp − 1). Any element of this group
ring induces a group endomorphism of F×/F×p. As before, we will use exponential notation,
as in fσ−1 = fσ/f .

Now we will use facts particular to our ground field Q = Qp. In general, suppose F is any
degree m field extension of Qp. Then F×/F×p has rank m+2 or m+1 according to whether
F contains a primitive pth root of unity or not. We are in the latter case with m = p, so a
minimal generating set of F×/F×p has p + 1 elements.

To be maximally explicit, we choose a uniformizer π of F . For example, π in Fi from
(30) works, although we will be working with other choices in the next section. Rather than
emphasize the element σ ∈ Fp[Gal(F/Q)], we focus on q = σ − 1 so that Fp[Gal(F/Q)] =
Fp[q]/qp. Define p + 1 elements aj ∈ F×/F×p by

(31) aj =
{

πqj

if j ∈ {0, . . . , p− 1},
1 + p if j = p.
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The aj form a generating set, so that any class in F×/F×p can be represented by an element

a = πm(q)(1 + p)w

for a unique pair (m(q), w) with m(q) ∈ Fp[q]/qp and w ∈ Fp = Fp[q]/q. We write

(32) Km(q),w = F [x]/(x− πm(q)(1 + p)w).

The aj sit nicely with respect to the unit filtration of F×/F×p as follows. Let R be the
ring of integers of F and Π = (π) the maximal ideal, so that the residue field R/Π is identified
with Fp. Let U = U0 be the group of units and for j ≥ 1 let U j = 1 + Πj be the group
of j-units. Then the quotient group U0/U1 is F×p while the higher quotients U j/U j+1 are
naturally rank one modules over Fp, in fact canonically isomorphic to Πj/Πj+1. Let V j be
the image of U j in V −1 = F×/F×p. One can check that V 0 has index p in V −1 with a0 = π
generating V −1/V 0. One has V 0 = V 1 but for j ∈ {1, . . . , p} one has that V j/V j+1 has p
elements with generator aj .

8.3. Ramification. The unit filtration is exactly what is needed to identify discriminants.
Let δ0 = 0 and δ` = 1 for ` ≥ 1. Then one has

(33) disc(Km(q),w/Qp) = p2(p−1)p+(p−1)(`+δ`)

where m(q) vanishes to order p− ` at 0.
To go further, we bring in the formalism of slopes, using the conventions of [13]. Thus 0

corresponds to no ramification, 1 to tame ramification, and slopes > 1 to wild ramification, this
being a shift upwards by 1 from the upper numbering system of [21]. One part of the formalism
says that a degree p2 totally ramified extension K of Qp has two wild slopes sa ≤ sb. The case
of concern here is the case where K contains subfields of degree p. Let K1 be the subfield of
degree p with smallest discriminant. Then sa is calculated by disc(K1/Qp) = psa(p−1). The
larger slope sb is calculated by requiring disc(K/Qp) = pc with

(34)
c

p2
=

p− 1
p

sb +
p− 1
p2

sa.

Similarly, suppose L is a totally ramified field with degree p`+1t with t not divisible by p. Then
L has the tame slope 1 and wild slopes s0 ≤ · · · ≤ s`, likewise calculated via discriminants of
distinguished (minimally ramified) subfields [13]. One has disc(L/Qp) = pc with

(35)
c

p`+1t
=

1
p`+1

t− 1
t

+
∑̀
j=0

p− 1
p`+1−j

sj .

In general, the mean slope c/N of a degree N field is a weighted average of all the slopes
appearing, with larger slopes being weighted more. A feature of the formalism of slopes is
that it facilitates the transfer of information from one field to another. For example, suppose
K has splitting field L. Then the slopes of K are all also slopes of L.

8.4. Level and type. Say a non-zero index (m(q), w) has level ` ∈ {0, . . . , p} if m(q) vanishes
to order p − ` at 0. If (m(q), w) has level ` > 0 with m(q) = bp−`q

p−` + · · · say it has type
w/bp−` ∈ Fp.

The indices of level 0, namely (0, w) for w ∈ F×p , play a special role as follows. The
associated fields K0,w are all isomorphic, in fact to F ⊗ Qp[x]/(xp − (1 + p)). The wild
slopes of K0,w are sa = 1 + 1

p−1 , from the second factor Qp[x]/(xp − (1 + p)), and sb = 2,
coming from the first factor F . The splitting field L0,w has degree (p− 1)p2 and mean slope
2 + 1/(p− 1)− 2/p2.
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The indices of level 1 are also somewhat special. Analogously with (30), put

(36) hk(x) = xp + (p + kp2)

and put Mk = Qp[x]/hk(x). Then F ⊗Mk is a field in our class, of level 1. In fact, if F = Fi

and π and σ are defined as in §8.1, then F⊗Mk is the field Kqp−1,k−j . Our explicit descriptions
show that fields Km(q),w of level 0 or 1 have two degree p subfields. Fields Km(q),w of level
> 1 have only one degree p subfield, namely F .

8.5. Summarizing theorem. The following theorem describes ramification in our class of
fields K and their splitting fields L.

Theorem 8.1. Fix F/Qp a totally ramified degree p abelian extension. Fix also a generator
σ ∈ Gal(F/Qp) and a uniformizer π so that the fields Km(q),w and Lm(q),w as well as the
notions of level and type are well-defined. Then degree p binomial extensions K of F are
classified up to F -isomorphism by the p-dimensional projective space

(37) P = ((Fp[q]/qp ⊕ Fp[q]/q)− {0})) /F×p .

The same fields are classified up to Qp-isomorphism by the orbits of σ on P . The fixed points
of σ are exactly the p points of level 1 and the 1 point of level 0, implying that there are
pp−1 + · · ·+ p2 + 2p + 1 different Qp-isomorphism classes.

For indices (m(q), w) of level ` ∈ {1, . . . , p}, ramification is as follows:
A:: The slopes of Km(q),w are s0 = 2 and s` = 2 + 1

(p−1)p + `
p .

B:: Let (m1(q), w1) have the same level as (m(q), w). If their types t, t1 ∈ Fp coin-
cide then so do the corresponding splitting fields: L`,t := Lm(q),w = Lm1(q),w1 . If
their types are different than L`,t and L`,t1 are disjoint degree p extensions of their
intersection L`−1,0.

C:: The tower of distinguished subfields of L`,t is

Qp

1
⊂ Qp(µp)

2
⊂ L0,0

s1⊂ L1,0

s2⊂ · · ·
s`−1
⊂ L`−1,0

s`⊂ L`,t

The slope associated to each step is indicated. The mean slope (35) of L`,t is 2 + `
p −

1
(p−1)p` .

Thus for K in this class of fields containing F , the discriminant-exponent c of K determines
the degree and all the slopes of L. Up to a p-fold ambiguity, the single number c determines
L itself. Theorem 8.1 can be seen very explicitly in the next subsection for p = 3. For p = 5
it can be seen more briefly in Table 10 of the next section.

8.6. The case p = 3. It is clarifying to compare Theorem 8.1 for the case p = 3 with the
explicit classification of nonic 3-adic fields in [15]. Table 9 summarizes this comparison, which
is somewhat subtle. The block of four columns on the top of this table repeats five lines of
Table 5.1-2 in [15]. The lines correspond to the possible levels 3, 2, 1, and 0, except that there
is an extra line 2t. This extra line corresponds to a twinning phenomenon described in [15]:
the Galois closure Lm(q),w of the nonic field Km(q),w is also the Galois closure of a second
nonic field Kt

m(q),w.
On a given line in the top block of Table 9, the number in the Q3 column gives the number

of nonic 3-adic fields K with wild slopes the numbers printed in bold, such that Gal(L/Qp)
has the given Galois group with the given wild slopes. The last number in the Q3 column is
starred to indicated that only three of these six fields in [15] are binomial-over-abelian; the
other three are nonbinomial-over-abelian.
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Table 9. Nonic 3-adic fields illustrating Theorem 8.1

# of # of # of K/F ’s by type:
level c Gal(L/Qp) wild slopes K/Q3’s K/F ’s −1 0 1

3 23 9T22 2, 2.5, 2.83,3.16 27 81 27 27 27
↘ ↓ ↙

2 21 9T13 2, 2.5,2.83 9 27 9 9 9
2t 22 9T11 2,2.5,2.83 9 ↘ ↓ ↙
1 19 9T4 2,2.5 9 9 3 3 3

0 15 9T4 1.5,2 ∗6 3 (3)

level c Gal(L/Qp) Fields
3 23 9T22 Ki;1+cq2;w = Q3[x]/(x9 + (3 + 9w)x6 + 2cx3 + (3 + 9i))

2 21 9T13 Ki;q;w = Q3[x]/(x9 + (6− 9i− 9w)x6 + 9x4 + (3 + 9i))
2t 22 9T11 Kt

i;q;w = Q3[x]/(x9 − (9w + 9)x6 − 9x5 + (3 + 9i))
1 19 9T4 Ki;1;w = Q3[x]/(x9 + 3x6 − (9w + 9)x4 + 9x2 − (3 + 9i))

0 15 9T4 Ki;0;1 = Q3[x]/(x9 + 6x8 + 6x7 + 3x3 + (3 + 9i))

The columns “# of K/Q3’s” and “# of K/F ’s” count Q3- and F -isomorphism classes of
fields K respectively. In these counts, F is allowed to vary over all three possibilities. The
columns contain multiples of 3 only, corresponding to the fact that the three F ’s contribute
equally to all entries. The inflations 9→ 27 and 27→ 81 in the first two rows correspond to
the fact that σ acting freely at levels ≥ 2, while it acts with fixed points only in levels 0 and 1.
The information in “# of K/F ’s by type” refines the previous column, sorting F -isomorphism
classes by type. The downward arrows indicate the behavior of the nilpotent operator q; it is
visually clear that type 0 plays a special role, at least for levels < p. The parentheses in the
bottom row indicate that fields of level 0 should be regarded as having type ∞, not 0.

The lower block in Table 9 classifies field K over Q3. For cubic fields F it takes Fi as in
(30), and uses also the uniformizer π and generator σ given there. It incorporates the choice of
F explicitly into the notation, so that Ki;m(q);w means what was previously denoted Km(q);w.
In general, at the level of Qp-isomorphism classes, one has Ki;m(q);w

∼= Ki,(1+q)m(q);w because
σ = 1 + q. This identity, together with projective equivalence Ki;m(q);w

∼= Ki,sm(q),sw, means
that every Qp-isomorphism class appears exactly once if we restrict attention to m(q) ∈
Fp[q]/qp of the form qp−` + cqp−`+2 + · · · . Table 9 then presents an Eisenstein polynomial
for each field Ki;m(q);w in a uniform way. Here i, w and c on the left are in F3; arbitrary
representatives in Z3 can be taken on the right. The polynomials here sometimes agree with
those in the database associated to [13], but usually do not. Nonetheless the database assisted
essentially in obtaining the Eisenstein polynomials in Table 9.

9. Ramification in L and other Number Fields Ramified at One Prime

In this section, we apply Theorem 8.1 to obtain ramification information for L and a natural
sequence of solvable fields ramified at one prime only. Corollary 9.1 summarizes the results
obtained in the case p = 5.
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9.1. Application to L. Every degree p extension K/F of p-adic fields with the largest
possible relative discriminant is given by a binomial [1]. In our case, the polynomial f5(x)
in (8) is not a binomial and to apply the theory of the previous section, we need to replace
f5(x) by a binomial.

Let φ5(x) = x5−πω7307,3 be the polynomial obtained from f5(x) in (8) by simply dropping
the intermediate terms αx2−αx. Since α is divisible by π6, one might suspect that the 5-adic
completions of F [x]/f5(x) and F [x]/φ5(x) are isomorphic. However this is not at all the case;
one needs the intermediate terms to be considerably smaller before one can simply drop them.

To find a suitable binomial we proceed methodically as follows. Without changing notation,
we work 5-adically with K = F [v]/f5(v). The element v, previously called x, is a uniformizer
of K. The general uniformizer has the form u = πc0 + c1v + c2v

2 + c3v
3 + c4v

4 with all ci

in the ring of integers R and c1 invertible. Consider the characteristic polynomial fu(x) ∈
R[x]. We work step-by-step, imposing congruence conditions on the interior coefficients of the
undetermined quintic polynomial fu(x). For example, the coefficient a4 of x4 is determined
by

7a4 = 5
(
−9c3π

4 + 12c4π
4 + 57c3π

2 − 76c4π
2 − 7c0π + 186c3π − 248c4π

)
+52

(
−6c3π

3 + 8c4π
3 − 3c3 + 4c4

)
.

No matter what the ci are, the π-adic valuation of a4 is at least six. The three terms with
valuation six are collected on the right in reduced form:

7a4 ≡ 5π(3c0 + c3 + 2c4) (mod π7).

We change variables, replacing c3 by c′3 via

c3 = −3c0 − 2c4 + πc′3.

We continue in this way, always solving linear equations over F5, and correspondingly re-
placing one variable c

(k)
i with a new variable c

(k+1)
i . We never change c1, to ensure that the

constant coefficient a0 keeps its original π-valuation of 1. After thirteen steps we specialize
the five remaining variables to 1. The intermediate coefficients all have π-valuation nine.
Expecting this suffices, we drop them. We identify the constant term as π1+q−q2−q3

6−1 in
F×/F×5, in the notation of the previous section.

As a final step, we compute a defining polynomial for the degree 125 algebra K ⊗F

K1+q−q2−q3;−1. Its irreducible factors over Q5 have degrees 25 and 100. This factoriza-
tion confirms that indeed K and K1+q−q2−q3;−1 are 5-adically isomorphic. In contrast,
K ⊗F Km(q);w is a field for all (m(q), w) not of the form s(1 + q − q2 − q3,−1) for s ∈ F×5 .

9.2. Applications to solvable fields. Let p be an odd prime number. The unique degree
p subfield F of Q(e2πi/p2

) then represents the unique isomorphism class of degree p abelian
extensions of Q ramified at p only. Let Π be the unique prime ideal above p in the ring of
integers R. Let j be the smallest positive integer such that Πj is principal. For all p for which
calculations have been done [4], j is not divisible by p. Vandiver’s conjecture implies that j
is in fact never divisible by p [29, Corollary 10.6]. Assuming this is the case for our given p,
let π be a generator of Πj .

Under these conditions one can repeat many of the considerations of the previous section.
In particular (31) still makes sense, with the aj now lying in the number ring R. The element
a0 = π is a p-unit and a1, . . . , ap−1 are all units. On the other hand ap = 1 + p is not a
p-unit.

The polynomials xp−πm(q)(1+p)w are now in R[x] and their norms gm(q),w(x) are in Z[x].
One thus has number fields Km(q);w = F [x]/(xp−πm(p)(1+p)w) = Q[x]/gm(q),w(x) and their
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splitting fields Lm(q);w ⊂ C. We restrict attention to the case w = 0 so that the number fields
are ramified at p only, and suppress w = 0 from the notation. As extensions of F , the set of
fields Km(q) forms a projective space of dimension p− 1 over Fp. The automorphism σ acts
with a single fixed point, so as extensions of Q the Km(q) define pp−2 + · · · + p + 2 different
isomorphism classes of number fields.

Let Ls be the joint splitting field of all the Km(q) in C. The Galois group Gal(Ls/Q)
coincides with its p-decomposition group, which in turn coincides with the p-inertia group.
These groups all have the structure pp.p.(p− 1).

Table 6.2 of [15] includes all five nonic fields appearing in the case p = 3. Table 10 presents
five of the 157 fields appearing in the case p = 5. Here the discriminant of Kq5−` is 5c and the

Table 10. Five polynomial defining Galois subfields Ls
` of Ls for p = 5.

The degree of Ls
`/Q5 is 5`+14.

` Defining polynomial for Kq5−` c s` GMS GRD T2

5 x25 + 5x20 − 25x10 − 25x5 − 5 69 3.05 2.99992 124.98 30.25
4 x25 + 5x20 − 30x15 − 25x10 + 15x5 − 1 65 2.85 2.7996 90.54 30.63
3 x25 − 30x20 − 65x15 + 640x10 − 720x5 − 1 61 2.65 2.598 65.45 43.53
2 x25 − 45x20 + 235x15 − 390x10 + 205x5 + 1 57 2.45 2.39 46.83 41.30
1 x25 − 120x20 + 885x15 + 28385x10 − 3245x5 + 1 53 2.25 2.15 31.83 65.66

top 5-adic slope is given in the column s`. The Galois mean slope α ∈ Q, meaning the mean
slope of Lq5−` , is given exactly in the column GMS. Likewise the Galois root discriminant
5α ∈ R is given approximately in the column GRD. The entries in the defining polynomial
column for levels 5 and 4 are exactly the polynomials gq5−`(x). The column T2 then gives
approximately the sum of the absolute squares of their roots, as in §3.7. For ` = 3, 2, and
1 these numbers for gq5−`(x) are approximately 51.94, 184.45 and 2094.02. Table 10 gives
T2-reduced polynomials instead.

9.3. A compositum. Let L and L̃ be our usual nonsolvable fields and let Ls be the solvable
field for p = 5 from §9.2. The intersection of L̃ and Ls in C is exactly the degree twenty
cyclotomic field Q(e2πi/25). The compositum L̃Ls is a degree 55 elementary abelian extension
of L̃.

The type of Ls is 0 ∈ F5 while the type of L is 4, by the calculation of §9.1. Thus the
types disagree and L̃Ls/L̃ is ramified, by Theorem 8.1. From Theorem 8.1 one can deduce
two further things. First, L̃Ls has just one 5-adic slope beyond the slopes of L̃. It is 5/4, the
slope associated with K0,1. Second, for ` = 1, . . . , 5, let Ls

` be the level `-subfield of Ls, as in
the previous section. Then L̃Ls

`/L̃ is an extension of degree [Ls
` : Q(e2πi/25)] = 5`, and L̃Ls

`

is Galois over Q, While L̃Ls
5/L̃ is ramified, as above, L̃Ls

4/L̃ is not.

9.4. Concluding corollary. The Galois number fields attracting most of our attention form
a single chain, with relative Galois groups as indicated:

(38) Q
PSL2(5)

5.10
⊂ L

25.2
⊂ L̃

54

⊂ L̃Ls
4

5
⊂ L̃Ls.

Applying (35) again to compute the root discriminant of L̃Ls, we conclude by giving all the
root discriminants:
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Corollary 9.1. The root discriminants of L, L̃, and L̃Ls
4 are all 125 · 5−1/12500 ≈ 124.984.

The root discriminant of L̃Ls is 125 · 5−17/312500 ≈ 124.989. Since L̃Ls
4/L̃ is an unramified

elementary abelian extension of degree 54, the class number of L̃ is divisible by 54.
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