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ABSTRACT. We present the first explicitly known polynomials in Z[z] with nonsolvable
Galois group and field discriminant of the form £p4 for p < 7 a prime. Our main polyno-
mial has degree 25, Galois group of the form PSL3(5)%.10, and field discriminant 5%°. A
closely related polynomial has degree 120, Galois group of the form SL2(5).20, and field
discriminant 5311, We completely describe 5-adic behavior, finding in particular that the
root discriminant of both splitting fields is 125 -5~ 1/12500 ~ 124,984 and the class number
of the latter field is divisible by 5%.

1. INTRODUCTION

1.1. Background. Two of the most important invariants of a Galois number field L C C
are its Galois group G = Gal(L/Q) and the set S of primes dividing its field discriminant
disc(L/Q). In the mid-1990s, Gross circulated the observation that no Galois number fields
were known with G nonsolvable and S consisting of a single prime < 7. In this connection,
Gross [11] developed a remarkable conjectural theory of algebraic modular forms which pre-
dicts with great specificity that indeed such fields exist. An example pursued by Lansky and
Pollack [16] is that there should exist a field with (G, S) = (G2(5),{5}).

In 2008, Dembélé [6] proved the existence of the first field meeting Gross’s specifications
by means of computations with Hilbert modular forms. Dembélé’s field has G = SLo(2%)2.8
and S = {2}. In 2009, Dembélé, Greenberg, and Voight [7] similarly proved the existence of
fields for (G, S) = (PG L2(3%).9,{3}) for k = 18, 27, and 36. They also proved the existence
of fields for (G, {5}) with G involving one or more copies of the simple group PSLo(5%) for
k=1,2 5,10, 15, 25, 40.

Whenever one knows abstractly of the existence of an interesting Galois number field L,
a natural problem is to produce a polynomial g(z) € Z[z] with splitting field L. For all of
the above cases but the pair (PSLy(5)5.10, {5}), the minimal degree of such a g(z) is very
large. Finding a defining polynomial in these cases seems well beyond current techniques.
On the other hand, for the group PSL2(5)°.10 the minimal degree is twenty-five. Dembélé,
Greenberg, and Voight specifically raised the problem of finding a defining polynomial for L
in this relatively modest case. The field L embeds in a field L with Galois group SLo(5)°.20,
also ramifying at five only. One could also ask for a defining polynomial at this level, where
the minimal degree is 120.

1.2. The main results. The first main result of this paper consists of explicit polynomials
defining nonsolvable fields ramified at 5 only:



2 DAVID P. ROBERTS

Theorem 1.1. A. Let

ga5(7) =
2 — 25222 + 25221 4+ 110220 — 62521 + 1250218 — 3625217 + 217502:1C
—572002 + 1125002 — 2406252 + 448125212 — 11262502 + 1744825210
—1006875x — 7050002% + 426912527 — 35510002° + 9496252° — 7925002
+1303750x — 89975022 + 291625 — 36535.

Then its splitting field L C C has Galois group Gal(L/Q) = PSLy(5)%.10 and its root field
K = Q[z]/g25(x) has discriminant disc(K/Q) = 557.

B. Let g120(x) be the degree 120 polynomial given in Table 5. Then its splitting ﬁeld~f1 cC
is an unramified extension of L of relative degree [L : L] = 26 and Galois group Gal(L/Q) =
SLy(5)%.20. The root field K = Q[z]/g120(x) has discriminant disc(K/Q) = 531,

The polynomials go5(z) and g120(z) as well as some related polynomials are available in a
form suitable for computer algebra systems on the author’s homepage.

Because of matching invariants, including Frobenius invariants as discussed below, the
evidence is overwhelming that our fields L and L are exactly the same as the fields with the
same Galois groups appearing in [7]. Results towards Serre’s conjecture over totally real fields
are currently rapidly expanding. Our expectation is that the identity between our fields and
those of [7] is likely to shortly to be a consequence of general results.

An immediate consequence of Theorem 1.1 is that the degree N = 7,776,000,000 field L
and the degree N = 497, 664,000, 000 field L have discriminants 5%V and 5 respectively, for
some common rational number . Our second main result, Theorem 8.1, is a general statement
about a class of p-adic fields including the 5-adic completion of K. As a consequence, one finds
that & = 3—1/12500. The common root discriminant of L, L,and a similarly behaved solvable
field L® is then 5% &~ 124.984. Furthermore, the compositum LL® is a very slightly ramified
elementary abelian extension of L of degree 5°. It contains an unramified subextension of
degree 5%, proving that the class number of L is divisible by 5%.

1.3. Organization of this paper. Section 2 provides some optional context. An obvious
principle is that while nonsolvable fields ramified at two small primes only may be hard to
find, fields ramified at just one small prime are much harder to find. We present a quantitative
version of this principle in our setting of relative quintics. Section 3 discusses the polynomial
g25() and its factorization into five conjugate quintics over the cyclic field

(1) F = Q[r]/(7® + 5% — 257% — 2571 — 5).

Section 3 proves Part A of Theorem 1.1 but does not address at all the more interesting issue
of how we found go5(x).

Sections 4 and 5 describe how go5(x) was found. In brief, we worked with a one-parameter
family of polynomials

(2) fo(j, ) = ® + 5a* + 4027 — 1728

related to five-torsion points on elliptic curves. We looked at many specializations of this
family, eventually finding a suitable jo € F. The product of f5(j2,2) and its four conjugates
is a polynomial in Q[z] defining K. The polynomial go5(x) is then obtained by adjusting this
product polynomial to get a monic polynomial with relatively small integral coefficients defin-
ing the same field. Section 4 focuses on why we worked with f5(j, ) and Section 5 explains
how we found js. Our main goal in these two sections is to communicate a practical sense of
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the search process. We aim to provide enough information to support similar computations
aimed at finding different fields in the future.

Section 6 uses division polynomials to get a degree 24 polynomial fos(jo, ). The product of
f24(j2, x) and its four conjugates is a polynomial in Q[z] and g129(z) of Part B of Theorem 1.1
is then obtained by reducing the size of coefficients as before. It is a simple fact that i/ Lis
unramified, and so Section 6 proves Part B of the theorem.

Section 7 computes Frobenius elements for our field L. We explain how complete Frobenius
information for L/F can be deduced from go5(x) alone. Similarly, complete Frobenius infor-
mation about an intermediate extension L(e*™/%)/F easily follows by considering also the
class of primes modulo 4. Finally g120(2) resolves some but not all of the remaining two-fold
ambiguities to give further information about Frobenius elements for E/ F. The Frobenius
elements we compute match the characteristic 5 Hecke eigenvalues tabulated in [7, Table 2.9].

Section 8 analyzes a general class of p-adic fields which includes the 5-adic completion
of K and summarizes the regularity found as Theorem 8.1. Section 9 applies this theorem
to get Corollary 9.1, applying to L and related fields, as explained above. Our analysis
in Sections 8 and 9 can be compared to Serre’s calculation [24] that Dembélé’s field for
(G, S) = (SLy(28)%.8,{2}) has root discriminant < 55.395.

1.4. Previously known nonsolvable fields ramified at one prime. For some further
context, we should mention that from the theory of classical modular forms of level one
it has long been known that for each prime p > 11 there exists a nonsolvable field with
G = PGLs(p) and S = {p}; see e.g. [28]. For some recently computed defining equations, see
[3]. For defining equations for some other nonsolvable fields ramified at one prime only, see
[12]. It is interesting to note that the field with G = PGLy(11) and S = {11} given by this
theory also arises from a specialization of the j-line. The polynomial f5(j, ) is replaced by a
degree 12 polynomial defining the modular curve X,(11) and the complicated jo € F above
is replaced by —64/297 € Q. A degree 24 polynomial analogous to gj20(x) with Galois group
SLF(11) is given in [12, §7].

2. MASS HEURISTICS

2.1. Local mass formulas. In [19] we combined the Krasner-Serre mass formula [22] with
generating function arguments to obtain the total mass Ar ,, of isomorphism classes of degree
n separable algebras over a given v-adic base field F. The contribution of an isomorphism
class [K/F] is its mass 1/a, where a is the number of automorphisms of K which fix F.

One has Ac,, = 1/n!, the mass all coming from the unique algebra C™ with its n! au-
tomorphisms. Similarly Ar,, = i,/n! where 4, is the number of elements of order at most
two in the symmetric group S,,. The other easy case is when n is greater than the residual
characteristic p of F. In this case, A, = A,, the number of partitions of n.

The remaining cases are all more complicated, but one of the results of [19] is that Ap,
depends on F' only through p and the degree ng = [F' : Qp]. Accordingly, we write write
AFn = Ap@.n Where @ = p™°. The relevant quantities for quintics are

1

Acs = 120° X205 = 2Q + Q% +4Q°,
26
AR5 = 120 A3,05 = 1+ 6Q,

Xs =7, X505 = 14 5Q.
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2.2. Global mass heuristics. Now let F' be a number field. Let X be a finite set of places
of F. Let U be the set of real places of F' not in X. Let Fieldslfwii)E be the set of isomorphism
classes of degree n field extensions K of F' such that the corresponding Galois closure M
over I satisfies Gal(M/F) = A, or Gal(M/F) = S,, and all ramification is over ¥. Then,
adapting [2] to a somewhat different context, we argued in [19, §11] for the heuristic

: 1 1
. bi,
(3) |Fieldsy?® | ~ 5 11 ~ I 2e
velU vEX

Here the absolute values on the left are to be interpreted as total mass, but this agrees with
cardinality when n # 2,3. The heuristic is to be understood with some caveats [19, §11]. In
particular, for very small ¥ it seems that there are generally substantially fewer fields than
predicted.

2.3. Quintics. For quintics over Q and quintics over our quintic F' the numbers work out as
follows.

F=Q F = Q[r]/(7° + 57% — 257% — 257 — 5)

S {5} {3,5} {2.5} {2.3,5} | {5} {3.5} {2,5} {2,3,5}
Predicted: | 2.9 56 120 2,200 | 3.7 5,400 490,000 720,000, 000
Actual: 0 28 43 1,415 | >1 >33 > 154 >905

Here ¥ = {oo} U S in the case of ground field Q and ¥ = v~1({cc} U S) in the case of the
quintic ground field F', with v being the natural map from places of F' to places of Q. Thus
in the last column of the table, ¥ has the form {oo;, 002, 003, 004, 005, 2, 3, 7}.

The numbers in the predicted row are rounded to two significant digits. The numbers in
the actual row for Q are drawn from [14]. The numbers in the actual row for the quintic F are
the numbers of fields found in the modest search of Section 5. From searches in the context
of §4.1, §4.2, and §4.4, we know for sure that there are indeed many more fields, as indicated.
The main point of the numbers in the actual row for the quintic F' is they faithfully capture
the ratios encountered by searches: it is very easy to find {2,3,5} relative quintics, much
harder to find {2,5} relative quintics, perceptibly harder still to find {3,5} relative quintics,
and very much harder still to find a {5} relative quintic.

2.4. Behavior over R. Note that in the language of this section, where C/R is considered
ramified, Gross’s original question asks for nonsolvable number fields ramified within ¥ =
{00, p} for some p < 7. The currently known constructional techniques are quite restrictive
on the placement of complex conjugation in Galois groups. For example, the use of Hilbert
modular forms as in [7] requires the field F' to be totally real, but, in the case p > 2, yields only
fields which are ramified above each real place of F'. Reflecting these restrictions, real places
of F' are preferred over complex places in the specialization technique of Section 5, because
two real places contribute two independent units while one complex place contributes only
one such unit. Furthermore, specializing nonsolvable three-point covers can only give fields
which have complex places over every infinite place of the specialization field F' [23, §6].

One could of course ask about the existence of nonsolvable number fields ramified at exactly
> = {p}. The smallest prime p for which it is known that there exists a nonsolvable number
field for ¥ = {p} is p = 1039 [12, §4]. The field has Galois group As and discriminant 1039%.
There are no other fields with p < 1039 and Galois group As, S5, Ag, or Se [12, 14]. The
heuristics of this section suggest that nonsolvable fields for ¥ = {p} should be much rarer
still than fields for ¥ = {oo, p}. It is very plausible that for infinitely many primes p, they do
not exist.
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3. DISCUSSION OF go5()

In this section we discuss various aspects of gos(x). The discussion both proves Theo-
rem 1.1A and introduces the reader to some of the objects considered in subsequent sections.
Here and throughout this paper, many of our assertions can only be confirmed with the as-
sistance of a computer. However our presentation aims to emphasize various aspects of the
situation that can be easily seen without a computer.

3.1. Ramification at 5. The fact that K is highly ramified at 5 can be seen directly from
the coefficients of gos(2). Visibly, 5 divides the coefficient of each term except z?® and also 5
exactly divides the constant term —36535. Thus go5(x) is Eisenstein at 5. As 5 also divides
the degree 25, one gets that K is wildly ramified at 5 and so 52° divides disc(K/Q).

However one can easily go much further than simply 5%°|disc(K/Q). Note that 5 divides
many of the coefficients to quite high powers:

gos () = 2%

+5 (222 — 7307)

+25 (—2?? + 2! — 228820 + 6979327)

+125 (—292'" + 1742'° 4 341532" — 284082° + 7597z° — 7198z + 2333x)
+625 (—2'? + 22" + 7172" — 1802z — 16112” — 11282% — 1268z + 20862°)
+3125 (362" — 772"%) .

In general, if a polynomial g(z) € Z[x] is Eisenstein at a prime p, then the contribution of
p to the field and polynomial discriminants agree and this common number can be read off
from congruential conditions on the coefficients of g(z). In our case, writing the general term
as a;x°, one has 5||ag, azo and 52|as, aio, a1s, az1, a2z, a3, azs while 52 divides the remaining
a;. The 5-Eisenstein polynomials satisfying these conditions are exactly the ones contributing
5%, A standard reference on this topic is [21, I11.6]; our [19, §8] also treats this issue.

3.2. Lack of ramification away from 5. Applying say Pari’s nfdisc, one gets that gos(x)
has field discriminant exactly 5% in under a second. To see this more directly, one can work
with polynomial discriminants and factorization modulo primes. The polynomial discriminant
of ga5(x) factors into primes as

D = 5% 7494572 607? 101932 337492 14336992
98659932 472273939997 1442562196204492 3468589981005857932.

For each of the nine factors p?, one can apply a simple test: in general, suppose p? exactly
divides the polynomial discriminant of a degree n monic polynomial g(z) € Z[x]; then p does
not divide the field discriminant if and only if g(z) has the form g,,—a(z)(z — a)? in Fp[z]
with g,—2(2)(z — a) having distinct roots. Applying the test in our cases shows that indeed
these p do not divide disc(K/Q). One can show directly that 7 does not divide disc(K/Q)
by a similar but more involved argument involving Newton polygons. We omit this argument
because it will be immediate conceptually from our construction in Sections 4 and 5 that in
fact all primes besides 5 do not divide disc(K/Q).

3.3. Notation for the ground field F. To go further in the analysis of K, it is best to
use a presentation of K more refined than K = Q[z]/g2s(x). Consider the field F' defined in
(1). Viam+— —c* — ¢ +4¢® + 3¢ — 3 with ¢ = 2cos(27/25), the field F is identified with
the unique quintic subfield of the degree twenty cyclotomic field Q(e*>7*/2%). The construction
of Dembélé, Greenberg, and Voight [7] shows that the field K can be viewed as a quintic
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extension of F', although these authors highlight the field element b = 7 + 1, rather than .
Let

(4) o(m) = 771 (—4n* — 187% 4+ 97 4 92 + 40)

Then o extends to an automorphism of F and Gal(F/Q) = {1,0,02,03,0%}.

Let R be the ring of integers of F'. The polynomial discriminant of the polynomial defining
Fin (1) is 5872 while the field discriminant is 5%. Thus our standard basis 1, 7, 72, 73, 7 for
F spans only an index seven lattice in R. This accounts for the ubiquity of inconsequential
7’s in denominators throughout this paper.

To carry out our computations over F, it is essential to have good control over the ideal
theory of R. Because F/Q is cyclic of prime order this ideal theory is particularly simple.
First, in R one has (5) = (7)°. Second, if p is congruent to 1, 7, 43, 49, 51, 57, 93 or 99
modulo 100, then (p) is the product of five conjugate ideals, all with residual field F,,. Third
and lastly, if p is otherwise then (p) is a prime ideal in R.

It is also essential for our purposes to have good control over the multiplicative group F*.
Because F' has class number one, the multiplicative group F'* is relatively easy to work with.
Some important elements besides 7 are

(5) u; = o' H(mw) + 1, wri = ot (m) + 2.

The elements w1, uz, uz, w4, us are conjugate units. Any four of them together with —1
generate the unit group of F'. We take wy; for i =1, ..., 5 as our standard generators for the
corresponding five prime ideals II7 ; above 7. For split primes p larger than 7, the five primes
IT above p are in natural bijection with the five roots r € F, of the polynomial defining F' in
(1), according to the image of 7 in R/II = F,,. Viewing these roots as in {0,...,p—1}, we let
r1 be the smallest and let 11, ; be the corresponding ideal. Then we label the other ideals so
that H7 ;=114 always holds, and let r; correspond to I, ;. This level of detail is necessary
to fully match Frobenius elements to Hecke eigenvalues, and how things look explicitly can
be seen in the left part of Table 7. When we need a generator w1 of II, 1, we choose one
arbitrarily. Then we get generators for the other ideals above p via wj ; = wpi+1. Note that
here and in the sequel we often use exponential notation for Galois actions, as in o(7) = 77.

3.4. Factorization over F. The needed notation having been set up, we can now give the
promised refined presentation of K. Let

(6) a = —g (37" +107® — 197 — 627 +5) = uy *ujus 'uy’w®,
(7) Wwr3073 = %(—79774 — 33173 + 2887 + 18037 + 566),

and

(8) fs(@) = 2°+ar® — ax + mwrsor,s.

Then

5 .
©) a2s(o) =[] 5 @)

Thus K = F[z]/f5(x) together with (1) is a two-step presentation of K.
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3.5. Polynomial discriminant. The polynomial discriminant of f5(x) is

5

5
= (99432077r" + 4073024657° — 3622084607% — 2145278225 — 552808790)

_ 296 4 2 -8 15 —
= T W7 W7 4Wi0193,1%1 Uz Ug

D

1 11

Uy
with wig193,1 = 74 + 473 — 712 — 197 — 23. One thus has D ~ d = musuguy, with ~ indicating
equality in F*/F*2. One can check that 7% = mujuszus. Accordingly,

d?  (Tujusug)ususus  UTUSULUS

= = ~ UU2U3U4LU5 = 1.
d TUU3 UL U

Thus D is not itself a square, but it agrees with all its conjugates modulo squares.

3.6. Galois group. Because ga5(z) has the factorization (9) and Gal(F/Q) = Cs5, the Galois
group G of go5(z) is a subgroup of the wreath product S2.Cs. Because the polynomial
discriminant of fs(x) is a nonsquare in F, but agrees with each of its conjugates up to a
square, one has that G is a subgroup of A3.C.C5 = A2.10. The Frobenius elements tabulated
in Table 7 are then more than sufficient to force G to be all of A2.10.

3.7. Tr-reduction. For a monic polynomial h(z) = [[,(z — a;) in Z[z], define Tp(h) =
> lai|?. If all roots of h(z) = 2™ +a;2™ ' + asa™ 2+ - -+ are real, then the absolute values
are superfluous, and T(h) is the integer a? — 2a. In general, Th(h) is an algebraic integer in
the splitting field of h. It is conventional to present number fields as Q[z]/h(z) with h chosen
to minimize Ty (h), as typically coefficients are then fairly small as well. If h(x) minimizes T
then (—1)"h(—z) also minimizes T5 and typically there are no other minimizing polynomials.
The command polredabs in Pari carries out this reduction. Our gos(z) and gso(z) just
below are Th-reduced with T5(ga5) =~ 110.92 and T5(g30) =~ 102.84. On the other hand we
prefer to define F in (1) via ©° + 57% — 2572 — 257 — 5 with its Ty of 25 rather than via
b®> — 10b® — 5b% + 10b — 1 with its 75 of 20 as in [7]. This is because using the uniformizer
rather than the unit b = u; = 7 + 1 makes 5-adic behavior more evident.

3.8. Sextic analog. One can work with the sextic polynomal (18) rather than the quintic
polynomial (2). Proceeding as before, including Ts-reduction, one gets that

g30(x) = 2% — 522 + 1022 4 15227 — 170226 + 42922° 4 550224 — 8175223
+3335022% — 831502 4 12295522° — 275002 — 3750502 + 105037527
—139002521¢ + 30937521° + 24991502 — 4752625213 + 2829175212
42859125z — 6266355210 + 32727752° + 17872752% — 324307527
4+10994502° 4 5657462° — 468930z + 451602 + 5391522 — 128452 — 2351

has the same splitting field as go5(x). The polynomial gso(z) factors into five sextics over F,
namely

fo(x) = a®+ 77" (—4r* —117° + 237° 4+ 507 — 2) 2°
(10) +52* — ba® + (=37 — Tr® + 207 + 24)
and its four conjugates. The sextic analog fs will prove convenient in Sections 6 and 7, as
the field K39 = Q[z]/gs0(x) = F[z]/fe(z) is a subfield of the degree 120 field K considered
there, while K = Q[z]/g25(x) = F[z]/fs(x) is not. On the other hand, fs does not fit so

conveniently into the p-adic considerations of Sections 8 and 9. In fact, gso(x) factors modulo
5 as (z —4)?5(x — 1)°. This factorization corresponds to a 5-adic factorization (K3g ® Qs) =

(K ®Qs) x (F®Qs).
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4. CHOOSING A FAMILY TO SPECIALIZE

In this section, we explain why we chose the family (2) of quintic polynomials to exhaus-
tively specialize. In the process, we discuss two larger families that we rejected in favor of
(2), and also three other families which have just one parameter like (2). Any one of these
other families could be the best choice in similar searches for different relative quintics.

The main point in this section, appearing at the end of §4.3, is that the family (2) is
guaranteed to contain a specialization point corresponding to the field K sought, by a theorem
of Shepherd-Barron and Taylor [26]. This theorem is very particular to our exact situation
here, and the rest of our discussion gives some feel for how one might go about choosing the
most promising family in other situations.

4.1. All quintics. A natural place to start our considerations is the family
(11) fla,b,c,dye,x) = 2° + az* + ba® + ca® + dx + e

of all quintics. Driver and Jones [8] have successfully specialized this family to get complete
lists of quintics with certain prescribed ramification behavior over quadratic fields F'.

Our search is for a single field only, and so the complications of ensuring that a list is
complete are not present. On the other hand, our base is quintic and this adds enormous
computational complexity in comparison with the quadratic case.

The discriminant D(a, b, ¢,d, ) has 59 terms each of which has weighted degree 20 when
a, b, ¢, d, e are respectively given weights 1, 2, 3, 4, 5. Standard searches take a, b, ¢, d, and
e in the ring of integers R of F, with a very small. The case a = 0 is representative of the
others, and for it we have

D(0,b,¢,d,e) =
108b%e? — 72b*cde + 166*d* + 16b3c®e — 4b>c2d* — 900b>de? + 825b%c?e?
+5606%cd?e — 128b%d* — 630bc®de + 144bcd® — 3750bce® + 2000bd>e?
(12) +108c¢%e — 27c¢*d? + 2250¢%de® — 1600cd®e + 256d° 4 3125¢7.
The search process involves plugging in (b, ¢,d, e) € R* and, in our case, immediately rejecting
those (b, ¢,d, ) for which the integer Normp,q(D(0,b,¢,d,e)) is not of the form 5f2. Even

for (b,c,d,e) very small, the integer [Normp,q(D(0,b,c,d,e))| tends to be larger than 1015
and so it is very difficult for (b, ¢, d,e) to pass even this very first test.

4.2. Dodecahedral quintics. The degrees of the irreducible complex characters of As are
1, 3, 3, 4, and 5. The two three-dimensional characters have character field Q(v/5) and are
conjugate; each corresponds to rotating a dodecahedron in real three space. Extended to the
group As x {£1}, these representations are reflection representations, in fact number twenty-
three on the Shephard-Todd list [25]. Since the quotient space R3/(As x {£1}) is just another
copy of R?, one can construct a corresponding family of polynomials for the original group
A5Z

fa,b,c,x) = a° + (—10ab)x® + (5ac + 400*)2” 4 (—15a>c — 55a%b* + 5be)x
(13) +(8a’c + 40a*b? + 5abe + ¢?).
The polynomial discriminant of f(a,b,c,x) is
(14) D(a,b,c) =5° (a® — 5a°b — 0)2 A(a, b, c)?

where

(15) Ala,b, ) = 64a°c* 4 640a*b?c + 1600a>b* — 80a%bc? — 720ab’c — 1728b° — 3.
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Here, when one gives a, b, and ¢ weights 1, 3, and 5 respectively, A(a, b, ¢) has weighted degree
15. Very promisingly for finding our K, the discriminant can only be of the form 5f2. Not
relevant for us, but perhaps worth mentioning, is that A(a,b,c) is also involved in another
discriminant formula: disc(z® + 5az* — 20bx? — 4c) = 285%cA(a, b, ¢).

In principle, the situation here should be similar to the case of general quintics, although
it has not been worked out in the literature. Namely any quintic field K over any number
field F with disc(K/F) = 5 € F*/F*? should have infinitely many defining polynomials
fla,b,c,z) € R[x]. Moreover at least one defining polynomial should have a, b, ¢ satisfying
certain bounds depending only on the signature of F' and the size of the field discriminant
disc(K/F).

Even though the full theory is not set up, one can carry out exploratory searches over small
parts of R3. The factor (a5 — 5a%b — 6)2 in (14) does not contribute to field discriminants and
is irrelevant for us. The factor A(a,b,c) is crucial for immediately eliminating polynomials,
for if a prime p exactly divides the integer Normp,q(A(a,b, c)) then p is necessarily ramified
in Fla]/f(a,b,c, ).

In terms of finding a defining polynomial for our particular K/F, searching via (13)—
(15) seems much more promising than searching via (11)—(12). However again one has the
fundamental problem that [Normp,q(A(a,b,¢))| tends to be larger than 10'°. Note however
that our choice of coordinates (a, b, ¢) in (13)—(15) has been made so that the numeric factor
in (14) is a power of 5. One could change coordinates in a number of natural ways to get
much smaller coefficients in (15) at the expense of getting factors of 2 and/or 3 in (14).

4.3. Modular quintics. When carrying our modest searches using (13)—(15) as just sketched,
it happened that almost all of the least ramified fields found had a equal to zero. To pur-
sue this, note first that A(0,b,¢) = —1728b° — ¢3. Carrying out the substitution (b, ¢, z) —
(4, —1252, —12j/x), the polynomial f(0,b,c,z) becomes the polynomial of (2),

(16) f5(j,z) = 2® 4 bat + 4023 — 17285 = 2° 4 5a* 4 4023 — J,
with discriminant
(17) D(j) = 2243'25°52(j — 1)? = 5°J%(J — 1728)%.

Here j is the coordinate we will use in the sequel, to keep within the standard conventions of
three point covers, where j = 0, 1, and co are the special values. The alternative coordinate
J = 17285 is more natural in the setting of elliptic curves.

In fact, f5(j,«) is a familiar polynomial from the theory of elliptic curves as follows. The
projective line with coordinate j is naturally identified with the j-line Xo(1) parametrizing
elliptic curves. One can view f5(j, ) as defining a degree 5 map from a curve X with function
field Q(z) to Xo(1) with Galois group Ss. This cover is the quintic version of the standard
cover Xo(5) with defining polynomial

(18) fo(j,x) = (2% — 10z +5)° + 17285

and Galois group PG Lo (5).

The simplicity of the discriminant formula (17) is very promising, and accounts for the
experimental phenomenon of a commonly being 0 for the least ramified fields. However a new
fundamental concern arises. Certainly, not all quintic field extensions of a given number field
F with d = 5 € F*/F*? arise as specializations of (16). For (16) to be useful for us, we need
our K/F to so arise. If it does arise, then it arises infinitely often; see [9] for some related
explicit formulas in the case F = Q.
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Theorem 1.2 of [26] answers our fundamental concern. It says that for any ground field F
of characteristic zero, a PGLy(5) extension arises as a specialization of (16) if and only if it
lifts to a GL2(5) extension having cyclotomic determinant. This is the case for the PG Ly(5)
extension of [7].

4.4. Other quintic three-point covers. Family (2) is a quintic cover of the j-line with
Galois group S5, ramified at the three points 0, 1, and oo only. There are other such covers,
all of them being base changes of four possibilities:

1/30 = 0.03 [311 221 5 |23 (2 + 5z +40) — 17285 | 2%13125%2(j — 1)?
—1/20 = —0.05 |41 21115 |z*(x —5) +256 2325533 (5 — 1)
—1/12 = —0.083|32 221 41 |23(x —10)> —108(5x + 4)j|—2'¥3155% 53 (5 — 1)?
—2/15 = —0.13 (32 21115 |23(z—5)2 —108j 2831255 j3(5 — 1)

Here (2) is reproduced on the first line, for easy comparison. In general, the partitions g,
A1, and Ao, measure ramification of the cover above 7 = 0, 1, and oo, respectively. Table 1
describes ramification in specializations of (2) and one can construct analogs of this table
for the remaining three covers. Just as for (2), for the last three covers also there are 2-adic
regions where 2 does not ramify and 3-adic regions where 3 does not ramify. Thus the last
three covers are a priori possibilities for finding the field K sought.

Even if one did not have Theorem 1.2 of [26], Cover (2) would seem the most promising
of these four covers. One reason is that only for (2) is the discriminant restricted to be
5 € F*/F*2. Another reason concerns the Euler characteristic y = % + é + i — 1, with
e, the least common multiple of the parts of ;. As this quantity becomes more negative,
the harder it becomes to find specialization points keeping ramification within a fixed set of
primes, as the exponents on z, y, and z in the analogs of (20), (21) become larger. Only in
the first case can there be infinitely many specialization points keeping ramification within
a given set of primes. See e.g. [5] for this finiteness statement and general background on
considerations involving Euler characteristics. An opposing argument in favor of the second-
listed cover is that only for it is 3 generically unramified.

4.5. Discussion. One should note that it is not the degree, five in our case, which di-
rectly governs computational complexity. For example, we are emphasizing f5(j,z) from
(2) throughout this paper, but this section and the next would change only trivially if we
had used fs(j, ) from (18). It is instead the nature of the discriminant formula which is the
central concern. Some three-point covers of large degree are possibilities to get fields ramified
at one prime only for other nonsolvable groups. The specialization considerations of the next
section would then serve as a model.

On the other hand, for three-point covers with larger groups it seems that most commonly
there are at least two primes at which all specializations ramify. Also, one expects no analogs
of Theorem 1.2 of [26] for larger groups, since this theorem is connected to the Euler char-
acteristic x being positive. Thus it seems very possible that fields ramified at one prime will
arise naturally only in families with more than one parameter, such as those of §4.1 and §4.2.
Finding a correct specialization point would then remain a very difficult problem.

5. SPECIALIZATION

Specializing three-point covers has both local and global aspects. We explain these aspects
in turn with reference to the modular family (2). We follow the notation of [20], where
specialization over the field Q was considered systematically. In particular we denote the
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affine curve P! — {0, 1,00} by T In terms of finding ga5(x) and gia0(), Eq. (23) identifying
j2 is the main point.

5.1. Local aspects. For this paragraph, let F' be a p-adic field with ring of integers R, prime
ideal II, and residue field R/II having g elements. Consider the F-algebras K; = F[z]/ f5(j, x)
as j varies over T(F') = F'—{0,1}. By Krasner’s Lemma the isomorphism type of K; is locally
constant in j.

It is convenient to start the local analysis by focusing on a decomposition into open sets:

a9) 1) =1 ] (_H T<F>°ﬂ'> 11 (H T(F)“) 11 (_H T(F)°°1i> .

Here T(F)&™ = R —1II and
T(F)O,i _ Hi o ]:[’i‘l*l7 T(F)l,z _ (1 + H’L) o (1 + Hi+1), T(F)oo,z — Hfi o Hfifl.

The natural measure p on T(F) gives T(F)&™ mass ¢ — 2 and each T(F)™% mass (¢ — 1)/¢’
so that all of T'(F') has mass ¢ + 1.

Table 1 has been normalized to facilitate applications to our global quintic F. Let j €
F —{0,1} so that the discriminant disc(K;/Q) is a positive integer. Let p be a prime and
consider the local discriminant-exponent ¢ = ord,(disc(X;/Q)). Suppose that p > 7 is inert
in F. Then the last of the five blocks is relevant. If j € T8"(F), then ¢ = 0, as indicated in
the first column. If j € T7*(F) then c is given in the (7,4) slot of the block to the right, with
blank slots being determined by repeating the parenthesized segment. Thus, for example,
¢ = 0 if and only if (7,4) has the form (0, 3k), (1,2k), or (co,5k). If p > 7 is a split prime
then the situation is similar, except one has five independent contributions to ¢, all computed
from the fourth of the five blocks on Table 1.

TABLE 1. The possibilities for the contribution of a p-adic prime ideal IT
to the discriminant-exponent of the local field K;/Q,. Here and in the next
three tables, boldface indicates no ramification at 2 and italics indicate no
ramification at 3.

gen |71 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
TT=(2)[0]4020,1030 20 20 (0 10 10)
1130 (30 40)
30,20 |oo0| 40 20,1030 20 20 (0 20 20 20 20)
TT=(3)[0[(30 20 20)
1120 20 (0 10)
20,10 |oo|20 20 (0 20 20 20 20)
IMI=x|0|67 65 63 61 554757 55 53 51454347 45 (43 41 43)
1167 65 63 61 55,4757 55 53 51454347 45 47 45 (43 43)
65* |oo|(69 69 69 69 65%)
IIsplit {0 (2 2 0)
1(2 0
0 loo|(4 4 4 4 0
IT inert | 0 [(10 10 0)
1[(10 0)
0 col(20 20 20 20 0)
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The blocks for the three wild primes 2, 3, and 5 have been computed non-rigorously by
interpolation. The most important point here is the presence of zeros in the 2-adic and 3-adic
blocks, some of these zeros following immediately from the polynomial discriminant formula
(17). The other numbers are included for a more complete picture. They shed light on the
distribution of global discriminants in Table 4 below, and also the local analysis of the final
two sections. Occasionally, there are two possibilities for ¢ for j in a given region. In all cases,
the larger possibility is the more common, often by far. In one repeated situation, there are
actually six possibilities for ¢. Namely, a printed 65* indicates that the possibilities are 65,
61, 57, 53, 45, and 43. With respect to the measure pu, in each region these possibilities occur
with relative frequency 4/5, 4/5%, 4/5%, 4/5%, 4/5% and 1/55 respectively.

Table 1 gives one a first feel for the difficulty of choosing j so that only 5 ramifies in
K. In terms of the measure p, the fractions of F), — {0, 1} yielding no ramification at p are
respectively

p=2: 2(64 —1)/(64 +1)(64° — 1) ~ 2.8 x 107,
p=3: 2027 —1)/(27+1)(27° — 1) =~ 9.4 x 107°.

As we have to avoid ramification at both 2 and 3, this measure calculation suggests finding
the appropriate j may be difficult.

5.2. Specialization points. Let F be our quintic field (1) with ring of integers R and
consider the F-algebras K; = Flz]/f5(j,z) indexed by j € F' — {0,1}. The discriminant
disc(K;/Q) is divisible only by the primes 2, 3, and 5 if and only if the following conditions
are satisfied. First, one must be able to express j in the form

3
20 .
(20) J PR

ax
with a, ¢ invertible in R[1/30] and z,z in R. Second, there must likewise be b € R[1/30]*
and y € R such that

(21) ax® 4+ by? + ¢z = 0.

Here the equations (20),(21) together are exactly what is needed to ensure that for each prime
IT different from 2, 3, and 7, one has ¢ = 0 from Table 1.

If j lies in Q — {0, 1}, then K; = Q[z]/f5(j,z) ® F and so the associated Galois group is
within the subgroup S5 x Cs of the the desired group A2.10. We exclude these j from consider-
ation. Conjugate j yield K; which are isomorphic as extensions of Q, and so in our discussion
below we always take only one j from each conjugacy class {j,c(5),0%(j),o2(j),0*(4)}.

We find solutions j € F — Q by a modest computer search. Note first, however, that
the j-line also parametrizes elliptic curves, and one may ask if the field we seek comes from
the mod 5 representation associated to an elliptic curve over F' with good reduction outside
of 5. We expect the answer is no, because the field of coefficients in [7] is larger than Q.
Accordingly, the solution we seek should only come from ABC triples with z € R not a unit.

Our computer search is designed to not only find the field sought, but also to get some
general perspective on the situation. We look at a great many j of the form (20) and select
those for which the sum az3 + c¢2° has the right form —by?. Our search is modest because
for z and z we take either 1 or one of the five w7 ;. These are very low cutoffs and increasing
the number possibilities for x and z would likely be the easiest way to get more fields. For
a/c we take numbers of the form 2%3°77u with a € [~6,6], 3 € [-3,3], v € [-6,6] and u
running over more than a thousand units. When x = z = 1 then a solution j yields another
one fo(j5) = 45(1—7) [20, §4]. Using this base change operator together with the direct search
gives a total of 647 different j.
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TABLE 2. Ordered pairs (ords(j),ords(j —1)) for 647 j-invariants found by
the computer search of §5.2. Each of these j corresponds to a different K
and the splitting fields all have Galois group A2.10.

ordz ()
-5 -4 -3 -2 -1 o 1 2 3 4 5 6
1 5 5 4
0 1 2 4 67 63 248 74 66 12 4 1
ords(j —1) —1 1 16 35 12 1
-2 5 9 8 3
-3 1

The distribution of the pair (ords(j),ords(j — 1)) is presented in Table 2. Note that these
pairs cluster about the mode at (0,0). Some of the horizontal spread comes from the use of
the base change operator fs.

According to Table 1, the field K is not ramified at 2 if and only if ords(j) is a non-zero
multiple of 6. Similarly, K; is not ramified at 3 if and only if ords(j —1) is a non-zero multiple
of 3. Table 2 says that the search finds one field of each type. The field corresponding to the
bold 1 comes from the ABC triple

6 2 1.2 5
2° — (wr,1w2300,4)" — wruy T Wy, = 0.
Explicitly,

o wmrmiwi, =26 4 3 2
j1= = = (681557" + 2883687 — 1259357~ — 1495535 — 1089160).
QGU4 5. 76

The field K, has discriminant 320559, The field coming from the italicized 1 has discriminant
240587 A Frobenius computation reveals that the 647 fields are pairwise non-isomorphic,
despite the repetition in field discriminants evident in Table 4 below. The lack of any repetition
in fields whatsoever strongly suggests that longer searches would find many more fields. The
same Frobenius computation also shows that all 647 fields have associated Galois group all of
A2.10.

5.3. Base change. Besides fs, there are two more simple base change operators which allow
one to pass from ABC triples of low height to ABC triples of larger height under certain
conditions [20, §4]:

(45 — 1)° f107) = (95 —1)°(1—j)

27j = 64j ‘
If K; has discriminant of the form 223°5¢ then so does Ky, (j) as long as one can take z = 1
in an ABC triple determining j. Similarly, if K, has discriminant of the form 223°5¢ then so
does Ky, (1—j) as long as one can take y = 1 in an ABC triple determining j. Applying f3
and f, to the appropriate j’s discussed in the previous subsection gives 409 and 99 new j’s
respectively. However now there is some repetition of fields, mostly because f3(j) # f3(1/4)
and f4(1 —j) # fa(1 — 1/4) but in each case both sides define the same fields. One gets 205
distinct fields from f3 and 53 distinct fields from f;. The original list of 647 fields and the
two new lists are pairwise disjoint giving a total of 905 fields. The associated Galois group in
all cases is all of A2.10.

f30) =
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TABLE 3. Ordered pairs (ords(j), ords(j—1)) for 409 j-invariants of the form
f3(t) and 99 j-invariants of the form f4(1 — ¢) with ¢ one of the j-invariants
contributing to Table 2. Underlining, italics, and boldface respectively in-
dicate j’s which come as f4(1 — t), which yield a field unramified at 3, and
which yield a field unramified at 2.

~12-11-10-9-8-7-6-5-4-3-2—-1 0 1 2 3 45
1 3 4 1
0] 4 8 3 750 7 4 2 3 4
-1 3 4 1
-2
ords(j —1) -3 1 8 5 55 81146 30 45 2
—4 1 2 919 5
-5 52210 6
—6
—7 1 6 2 3

In particular, our desired specialization point is jo = f3(j1). An ABC triple corresponding
to jo is

(22) 23+ ugy? + 2033 utugnt 2 =0,
with
T = wr W3 ow3gsarazeor = —blwt — 2557% + 1767 + 15497 + 379,
Y = W7,3W7,5W257W349
Wo3goWaeo3wWiazas = T (—5142n% — 2621273 + 1170672 + 1384827 + 33507),
z=w?, =771 (137* + 5573 — 4572 — 2927 — 67).
Explicitly,
. —z3
J2 = W

(23) 168635243727774767* + 885403699379835887

-1
263351711 (
—112479146605532157% — 4643993605154835727 — 353505866738383680) .

Note that each one of the five w7 ; appears in the expression for either z, y, or z. On the
other hand, for p > 7 it is not necessary here to distinguish between the different wy, ; and so
we have just written w,, instead.

It is fortunate that j, arises via base change, as its large height makes it unlikely one could
find it via a direct computer search that did not use the base change operators. Note also the
factors of 72 and 7* in the denominator of j; and jo respectively. Via Table 1, these factors
explain why K; and K, both have the maximum possible 5-adic discriminant, namely 569,

Table 4 gives a summary of the fields found by our search. All fields are wildly ramified at
5 since even F' is wildly ramified at 5. Of the 153 fields ramified exactly at 2 and 5, all are
wildly ramified at 2. Of the 32 fields ramified exactly at 3 and 5, all are wildly ramified at 3.
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Thus among the fields found by our modest search, the unique field ramified at 5 only is an
extreme outlier.

TABLE 4. The 905 fields K found by the search of §5.2 together with the
base change operators of §5.3, sorted by discriminant 2?3°5¢. Fields with
b = 0 are emphasized by italics and fields with a = 0 are emphasized by

boldface.
30 310 320 330

551 561 563 565 567 569 565 567 569 551 555 557 561 563 565 567 569 555 557 561 563 565 567 569
20 1 1 3 4 419 1
210 1 2 4 1
220 2 1 8 529 2 3 5 15 30 43 56 1 410 6
230 1 1 8 661 2 1 21517 62 60 95 1 2 41511 12
20 1 1 4 8 423 2 3 2 4 7195444 75 1 2 2 6 313

6. LIFTING TO SLo(5)%.20

In this section, we work with five-torsion points on an elliptic curve to produce the poly-
nomial g199(z) appearing in Theorem 1.1B, so that K = Qlz]/g120() has discriminant 531
We explain in the last subsection how suitably twisting K gives three other degree 120 fields
with the same splitting field L.

6.1. Torsion points on elliptic curves. Let F' be a field of characteristic zero, let j €
F —{0,1}, and let d € F*. The elliptic curve with affine equation

J 2 3 J J
GG —12?Y ~ % T mG -1 s -1

has j-invariant j; see e.g. [27, IIL.1]. Our coefficients are chosen to keep coefficients in (25)
relatively small. As one varies the twist factor d, the curve (24) represents all isomorphism
classes of elliptic curves with j-invariant j. The isomorphism class of (24) depends exactly
onde F*/F*2.

The theory of division polynomials as very explicitly presented in [17] lets one pass from a
given elliptic curve (24) and any prime ¢ > 2 to a polynomial f; ¢(z) € F[z] of degree (¢2—1)/2
whose roots in an algebraic closure F are exactly the z-coordinates of the primitive ¢-torsion
points of the elliptic curve. Taking the resultant of this polynomial with the difference of the
two sides of (24) gives a degree £ — 1 polynomial f; 4(y) € F[y] whose roots are exactly the
y-coordinates of the same torsion points. The dependence on d is simple as f; 4,(y) has the
form ¢; q.¢(dy?).

In the case ¢ = 5, this procedure gives

bjas(u) = 125u'? —9000ku'! + 5184k%u'® + 199566ku'® — 1188000k>u’
+622080k%u® — 6763905k%u® — 8132400k3u” + 1166400k*1°
—4193100k3u® + 3359232k5u° — 2387232k 15 4+ 1399680%°u*
(25) —790965k*u* — 29160k°u> — 36450k5u? + 729kS.

(24)

On the right, we have used the abbreviation k = 1—j to keep the expression relatively concise.
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TABLE 5. Polynomials defining K and its splitting field L. The polynomial
g120(z) € QJz] is the product of fas(x) and its four other conjugates in F[z]

+344532738964655074 16
+162825322249131107 316
—446179074974368572 216
—849105148530245157wx 6
—628657465545855402 16
—64915331912241573n 4214
—30678841153656273973 214
+840669036982353887 2z 14
+1599847153512857137wx 14
+1184489339956417922x 14
+163956843349628920807 412
+774856359882434137657° 212
—2123280426695925334072 212
—404073843197898469565mx 2

7f2a(z) = g120(z) =
7124 x120
—5204574 222 +75875z118
—24367073 222 +4433249820z 116
+6835572 222 —4920137289962521 14
+12591607x22 +138875299401232325z 12
+928935222 —101630730811285492875z 10
—30983956967* 220 —248124441086303782196575z 08
—1464535379773 220 +35634806801377992492993875x 106
4400995642172 20 +3184089744155137288691320307002 104
+76372306067 722 +252126474820211413936829970728725x 102
+56546420285z2° +50615897530385648713130213945551020x 100
+2773874326655m 4218 —15476713023123655972890153577571590502:°%
+131080109751907 3218 —1547594397259918649082443176514981682502°6
—35937069015257 2218 +486782103579866292329278987843538073127527%
—683555327609457218 —1825744840675958747234460076428409907877000z°2
—50607490833355218 +1833556350454921262734558471442093275701756302°0

—12545410937193923658182740896430423687246834050x58
+45926131015827257722744765973250785654298221870056
—13500080692155205751662730917831194051213443590350254
+223998447190093432826958380639753256210548704633525z52
+857973274836802215638381160549270948026012030231796025°
+123616196086224078121820189449830896908477085047500525x 75
+30225565543625399117417963925007201168409887191628635502 76
+52992606247527446566227152921199876395356101211594768800z 74
+70967405149762712834086387811367032744919012002687239075z " 2
—610999645695700782702824336730471455464955570581534324199x 70
+6884138417860041391100099478847832963036373563732897532875258
+2778249567565101440595304205067979712590556194315077556577025°
—39216695177883202937321313559681637310032558885380980037750264
—175731890720731476616133692180329180110217875776398820214725252

+249716142646808981571496456344719378734670705246099171225800260
—295950483191199170372284296920913318734736256644201131805850x°8
+2086565180547593025573935122359346565181100006086556269503755°6

—299166801483805686500x 12
—8062084011940335973737% 210
—3810122799898973212093 73210

+1044059206995530702318 72z 10
+19869114361884763910602ma 0
+14710626515374478523745x10
+49914114653987435346555m 4 28
+2358929849869533118272407 % 28
—6463997508242898261060072 23
—12301400616264305604891507z
—91076686552678190337880025
+2591684450398992832104757% 20
+12248242513904985126361757° 2.6
—33562934944678672950635072 x0
—6387241147380399997523075wx"
—4728963620184859488361800x°
—3747031856740756609310807 % 2%
—177083884118774228309114073 x4
+485249608315811415853325 72 %
+9234610352442859495344350m
+68370890335329196766566002*
—401559009720255360301757% 22
—18977588625575234117362575 22
+520028544278054483650007 2 2
+989647574415039942948125 w2
+732711865455764618902375x>
—25316729772828532653407%
—119646296395714477534007°
+327857719811007350447572
+623934206562940977441007
+46194626070054783641000

—1700303780865805688700576069413513333733202751246024466836002°%
—84308112549210547727068881597915286499333546901816086635875z°2
+992664261892272074608311964798748004423132401174234725271302°°
—147872201924051495440662964793481361196523976593172134394375248
+69880688111009054590334056007469337836768548034708051204375240
—98339456136885177993379102820399656591439277429524060725002 44
+22849412397389938397751122653893931146440486517465506093752%2
—266143876548813269149483837514072445736398735971995520625x40
—1309200438172791546382244498663483683291550449885873150000z38
+3487789668535358976042160201279382631592746320670134843752°36
+17869799433615015214092277597074090333010388547543906250z3*
+397912262891004530550286292216615912643635828217387968752°2
+2832734472839931933240266147328146992179352403486228125230
—3000021530697883715015667845051363549415692595292656250228
—26448216744822628830212259564466653788548717218156250026
+403107521794143185231412082141360752106905202651562502:2%
+58298198673090540320049719743931164910596102066406251:22
+279934805745919811329900232016717272004275054765625z20
—46012299110302889159623882404933797935691996093752 18
—212640071168954997896970839385414233417365234375x16
+3452840068185293658743184347789640485082031250z 14
+9185656210180316707958328085359926464843750x 12
—11491030818793623950911398798540009765625x 10
—43737960212065352027885670181738281250x3
+24617389018612702263267892187500002°
+54493544150449503776767001953125x4
+13389369229306566332128906250x2

+155844270112523439453125

6.2. Specialization. Applying this theory with j the specialization point js from (23) and

(26)

_ Yyuiug
=)
24wy ym
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gives an even degree 24 polynomial f; 45(y) in Fy] with Galois group GL2(5). Here in (26),
y is the complicated quantity appearing in (22). The fact that z is a square in (22) plays an
important role in d being the right choice. Also only —uju4 is the only element out of the
32-element group of units modulo squares that works in (26). All the other choices would
introduce ramification at 2.

The polynomial f; 45(y) is non-monic with large coefficients. We adjusted this polynomial
in an ad hoc fashion to obtain a polynomial fos(x) = fi2(2?) with considerably smaller
coefficients defining the same field. The left column of Table 5 gives this better polynomial
foa(z) € Flx]. The right column of Table 5 gives the product gia0(z) = geo(z?) of the five
conjugates of fayu(x).

The degrees of the polynomials are large enough that not all standard operations with
Pari are feasible. For example, a several-day computation trying to find the T-reduction of
geo(z) did not reach a result. However Pari does succeed in computing the discriminant of
K = Qlz]/g120(z) to be 53" in well under a second.

The Galois group of fi2(z) is the fiber product PG L2 (5) x2 4, with the subscript 2 corre-
sponding to the extension F (\/5) /F and the second factor 4 corresponding to the extension
F(e2™/5)/F. The Galois groups of geo(x) and gi20(x) respectively have the form PSLy(5).20
and SL(5)°.20, there being group-theoretically no other possibilities.

6.3. Twisting and 5-adic behavior. The field K = Q[z]/g120() has an order four auto-
morphism a : K — K. Also the ground field Q has a unique extension with Galois group Cy
ramified at 5 only, namely the standard cyclotomic field Q(e27*/?). This is a standard set-up
for twisting. One gets that the field K = Q[x]/gi20(x) is one of four similar fields as follows.

For i = 0,1,2,3, the map t; : GLa(5) — GLo(5) given by t;(g) = det(g)’g is an automor-
phism. As a special case of the definition one has

a b att  a'b
@7 ti(o 1)2( 0 a>
Let D; be the group of matrices of the form on the right of (27), with a € F and b € F5. The

orbit sizes of D; on the four column vectors of the form are given in the column Ay of

*
0
Table 6. Similarly the orbit sizes of D; on the remaining twenty column vectors are given in

TABLE 6. 5-adic behavior in the four fields f(i.

Ao A120
i | Ago A4 A100 A20 c
015555 4 9, 2569, 2509, 2509 2035 311
1120 2,2 100979 1017,1047 313
2 | 10,10 4 50139, 50139 2035 313
3| 20 1L,1,1,1 | 10057 5s. 5, 5s, 55 | 311

the column Agg on the left. The partitions in the two columns under Ai29 are obtained from
the partitions in the two columns under Ay by multiplying all parts by 5.

The i row corresponds to a field K;, with D; identified with the m-decomposition group.
Our field K is the field Ky, because K factors 5-adically into four fields of degree 25 and
one field of degree 20. As indicated by the subscripts, the four fields of degree 25 all have
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discriminant 5%, while the one field of degree 20 has discriminant 53°. All together the sum
of the subscripts is 311, so that the the discriminant of Ky itself is 53'1. Table 6 describes
the 5-adic behavior of each of the four fields in this way.

The field K is a quadratic twist of K, and has geo(5x?) as defining polynomial. The fields
K 1 and f(g are likewise quadratic twists of each other. However to obtain say K 1 from f(o
one has to use an explicit expression for the order four automorphism a. We do not enter into
this complication here, as our main focus is on the common splitting field L of the four K;.

7. FROBENIUS COMPUTATIONS

In this section, we work mainly over the quintic field F', rather than over Q. The focus is
on fs5(x), fe(x), fia(x), and fou(z) € F|x] from (8), (10), Table 5, and Table 5 respectively.
The corresponding Galois groups are respectively

(28) S5 = PGLo(5) « GLo(5)/{£1} «— GLao(5).

Here the two covering maps indicated by arrows each have degree two. We consider the three
groups G in turn, and discuss computing Frobenius elements in the correspond set G of
conjugacy classes. These sets have 7, 14, and 24 elements respectively. The calculations of
this section are designed to be compared with Table 2.9 of [7] and we make the comparison
in the last subsection.

7.1. Frobenius elements at the projective level. To begin as naively as possible, we first
work over Q. For each prime p # 5, the degrees of the irreducible factors of gos(x) over the
p-adic integers Z, give a partition A, of 25. To describe the possibilities for A, note first that
there are seven partitions of 5, namely the elements of SE = {5, 311, 221, 11111, 41, 32, 2111}.
The four partitions listed first are even, meaning that they are realized as cycle partitions of
elements of As. The three partitions listed last are odd, hence realized as cycle partitions of
elements of S5 — As.

Suppose first that p is inert. Then all parts of A, are multiples of 5. If p = 1,4 modulo 5
then the possibilities for A, are 5(5), 5(311), 5(221), and 5(11111). If p = 2,3 modulo 5 then
the possibilities are 5(41), 5(32), and 5(2111).

TABLE 7. Frobenius data for the extensions K/F and R'/F and small primes p.

Split Other
Primes Primes
Pl Tp1 Tp2 Tp3 Tpa Tps [Pl Ap1 Ap2 Ap3 Apa Aps p [Pl Ay
oo|—3.5 —0.3 2.3 —2.6 —0.9| 1(221 221 221 221 221 2| 2/41B
77 26 32 3 31 1| 2(221 32 32 221 41B 3| 3(2111
43 2 6 23 18 32| 3|41B 41B 41B 32 32 5 —|—
101 23 96 35 82 62| 1|221 311B 5B 221 311B| |11| 1221
107 17 20 79 39 54| 2|41A 32 41B 41A 41B 13| 3(32
149 15 90 103 99 135| 4|5 311 5 5 221 17| 2(2111
151 14 37 85 102 59| 1|54 3114 221 5B 221 19| 415
157 5 87 113 51 53| 2|2111 32 41A 32 41A 23| 2|32
193| 15 167 95 163 134| 3414 32 32 41B 2111 | |29| 4|5
199| 26 137 154 117 158| 4|5 221 5 5 5 31| 1/5B
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TaBLE 8. Different viewpoints on the 24-element set of conjugacy classes in GLy(5).

# | A5 A6 A2 det | L min poly Aoy L min poly Aoy
1]1° 16 112 1 A (z-1) 124 B (z—4) 212
20 4 |+ (z—3) 46 - (z—2) 46
15221 2211 26 1 (r—3)(x —2) 4°
2414 4 (x—4)(x—1) 2'91%
20311 33 31 1 [A 22—-4dx+1 38 B z2-z+1 64
62 4 |+ 22—-2z+4 122 — 22-3z+14 122
2415 51 5212 1 [A (z-1)72 5117 | B (x—4)? 10222
10128 4 |+ (z—3)? 2014 | — (2 —-2)2 20141
10 [ 2111 222 43 2 % +2 83
43 3 22 +3 83
30 | 41 411 422117 2 [A (—2)(z—1) 4°17 | B (z—4)(z—3) 4°22
422112 3 | A (2-3)(z—1) 4°1* | B (z—4)(z—2) 4522
2032 6 12 2 |+ 22—z+2 24 — 22— 4z +2 24
12 3 |+ 22—-22+3 24 - 22-3z+3 24

Now suppose that p is split. The invariant A, can be refined into five partitions of five.
Making use of the notations set up in §3.3, one gets one partition A, ; for each of the ideals
I1,, ; above p. For p > 7, one computes )\, ; by first reducing f5(z) in (8) to a quintic in F,[x]
by sending 7 to the residue class r, ; € F,; then one factors the reduced polynomial and Ay, ;
is the partition giving the degrees of the factors. This refinement is exactly what is meant
in the split case by “working over F.” In the inert case, working over F' is just a change in
viewpoint: one divides all parts of the above partitions A, by 5 to get A,. Thus Frobenius
elements Fry lie in SE for both split and inert primes.

Table 7 presents Frobenius data for the field K and small primes p. It gives analogous
information for p = oo for the sake of comparison. Thus r, 1 is an approximation to the least
root of the polynomial in (1) and the other ro, ; are obtained by successively applying o. As
always p = 7 needs some modification: one factors over Z; rather than F7, and r7; is the
image of w in R/TI3 ; = Z/49.

7.2. Frobenius information at the intermediate level. To move past the projective
level, it is best to first restate the projective level using the sextic polynomial (10) rather
than the quintic polynomial (8). Just as each Fry is completely determined by a partition
in SE which we now call A5 11, so too each Fryy is completely determined by a partition of six
Xe,11- The bijection between all partitions of five and the relevant partitions of six is given in
Table 8.

The intermediate level does not present new calculational challenges. The class of a Frobe-
nius element Fryy is given by the pair (X m, [p]) with [p] € F)S the class of p modulo 5. As
indicated by Table 8, one has [p] € {1,4} if A 11 is even and [p] € {2, 3} if Ag,;1 is odd. Table 8
also gives the possibilities for A1 11, obtained by factoring fi2(z) modulo II. Note that in the
even case p = 1,4 (5), the partition A1z 11 does not fully capture Fryy, as one has the ambiguity
of 28 appearing in two places. In the odd case, A2 11 alone is even weaker, as it gives just the
information contained in As 11 or Ag 1.
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7.3. Frobenius information at the linear level. Frobenius information at the linear level
is much more subtle. Conjugacy classes in GLy(5) are indexed by minimal polynomials of
0 is indexed by the linear polynomial z —a. Non-scalar
classes are indexed by polynomials 22 — tx 4+ d with ¢ being the trace of the matrix and d the
determinant.

Table 8 indicates the map GLo(5)% — (GLy(5)/{£1})%. Four classes in (GLo(5)/{%1})"
have only one preimage. Five classes have two preimages labeled by A and B. Five more
classes have two preimages labeled by + and —. The classes labeled by A and B are dis-
tinguished from each other by factoring fo4(x) as indicated by the table; notation is chosen
so that Aoy has more parts in Class A then it does in Class B. The classes labeled by +
have trace in {1,2} while the classes labeled by — have trace in {—2,—1}. They are not
distinguished by factoring fos(x). One could make use of the order four automorphism a of
K /F to distinguish + from — in all but the last two cases, by computing fixed points of a’¢’
in positive characteristic, with ¢ the Frobenius operator; however we have not pursued our
computations to this level of refinement.

Note that the Frobenius elements considered in this section are all calculated with reference
to K. If we replaced K = K, by another one of the K; from §6.3, then Frobenius elements
would change accordingly. For example, suppose we replaced K with its quadratic twist
K>; then characteristic polynomials x? — tz + d would change to 2% + tx + d for all IT with
p =2,3(5). The only part of this switch visible to our calculations occurs for primes II with
A5 = 41. In this case, II contributes 451% to the factorization pattern of one of ggo(x?) and
geo(5x?), and 4522 to the factorization of the other.

. a
matrices. Thus a scalar class <

7.4. Matching Hecke eigenvalues. Table 2.9 of [7] presents Hecke eigenvalues in G Lz (5)%.

Here GLy(5)%° is the twenty-element quotient of G Ly(5)% where one no longer distinguishes
between the scalar class with minimal polynomial (x —a) and the nonscalar class with minimal
polynomial (z—a)2. Our Frobenius computations see the nineteen-element quotient G Ly (5)!°
where the five ambiguities associated to + versus — have not been resolved.

Table 2.9 of [7] and our Table 7 agree where there is overlap, as they must if our fields are
to coincide with those of [7]. Assuming this agreement, the two computations together let one
in principle see Frobenius elements where they live, meaning GL2(5)“. In practice, however,
Hecke eigenvalue computations can only be done for II of quite small residual cardinality.
Instead one can count points on the elliptic curve (23), (24), (26) and use fo4(x) to resolve
the scalar/nonscalar ambiguity. This also lets one see Frobenius elements in G Lo (5).

7.5. Use of Frobenius elements in finding polynomials. In principle, we could have
used the Frobenius information in Table 2.9 of [7] to target our search for a numerically
matching polynomial. Indeed, it would have been easy to simultaneously impose the behavior
at say 2 and 3, to cut down search times by a factor of about five. However there does not
seem to be a practical way to use Frobenius information at many primes simultaneously to
find the desired specialization point. The method [10] used by Bosman to find the polynomials
in [3] presents a sharp contrast: it does not involve specializing families at all and does make
use of Hecke eigenvalues through Fourier expansions of modular forms.

8. TOTALLY RAMIFIED BINOMIAL-OVER-ABELIAN p-ADIC FIELDS OF DEGREE p?

This section describes the class of p-adic fields given in the section title, as made precise in
(29) below. The main statement, Theorem 8.1, immediately applies to our main Galois field
L and a solvable analog L*® to give Corollary 9.1 of the next section.
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Our framework in this section is similar to the framework of [13], as follows. For each
prime p, fix an algebraic closure Qp of the field of p-adic numbers Q,. Given an irreducible
polynomial g(z) € Qy[z], one has its root field K = Q,[z]/g(x) and its splitting field L C Qp.
So one views K as an abstract field and L as an embedded field, with in fact L being the
composita of all the embeddings of K into Qp. We are interested in classifying fields K up
to isomorphism and for each K describing the Galois group Gal(L/Q,) and its filtration by
ramification subgroups. One of the principles of [13] is that standard invariants of K often
need to be supplemented substantially before one gets the desired description of L. The class
of p-adic fields here is well-behaved in that the passage from a description of K to one of L
is unusually straightforward, as will be clear from Theorem 8.1.

With weaker hypotheses one could get statements similar to Theorem 8.1 with more com-
plicated conclusions. We isolate Theorem 8.1 because it is just enough to obtain Corollary 9.1
with no extra work. In particular, one of our several simplifying hypotheses is that p is odd.

8.1. Some Kummer theory. Given now an odd prime p, our class of p-adic fields consists
of those fields of the form

(29) K = Flx]/(z? — a)

with F a totally ramified degree p cyclic extension of Q, and a € F* — F*P_ It is simple to
establish that there are p possible isomorphism classes for F', and they all have discriminant
p>P=Y_ In fact, for i in Z, write

(30) film) =P —prP~" + (p + ip?).

Then the isomorphism class of F; = Qp[n]/fi(7) depends only on i € F, and these classes
represent all possibilities. As a generator for Gal(F;/Q,), we take the automorphism satisfying
o(r) =n + 7% (mod 73). Then o’ (7) = 7 + j7? (mod 73).

Fix now an F' as above and consider the set of all possible isomorphism classes for K. Here,
for the moment, we are requiring that isomorphisms from K; to K5 fix F. The elementary
parts of Kummer theory say that, up to F-isomorphism, K in (29) depends exactly on the
subgroup generated by a in the quotient group F*/F*?.

8.2. Generators. To go further, it is convenient to have an explicit description of F* /F*P.
To begin, we use some structure which is present for arbitrary ground fields @ of characteristic
different from p, not just @ = Q,. Let o be a generator of the p-element group Gal(F/Q).
Then the field automorphism f +— f7 of F' descends to a group automorphism of F* /F*P,
In fact, consider the group ring F,,[Gal(F/Q)] = F,[0]/(c? — 1). Any element of this group
ring induces a group endomorphism of F* /F*P. As before, we will use exponential notation,
asin fo°l = fo/f.

Now we will use facts particular to our ground field @) = Q,,. In general, suppose F' is any
degree m field extension of Q. Then F'* /F*P has rank m+2 or m+ 1 according to whether
F contains a primitive pt* root of unity or not. We are in the latter case with m = p, so a
minimal generating set of F*/F*P has p + 1 elements.

To be maximally explicit, we choose a uniformizer = of F. For example, 7w in F; from
(30) works, although we will be working with other choices in the next section. Rather than
emphasize the element o € F,[Gal(F/Q)], we focus on ¢ = 0 — 1 so that F,[Gal(F/Q)] =
F,lq]/¢?. Define p+ 1 elements a; € F*/F*? by

o a if j €{0,...,p—1},
(31) aj_{l-l—p if j = p.
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The a; form a generating set, so that any class in F'* /F'*? can be represented by an element
a=nm"9D(1 4 p)®

for a unique pair (m(q), w) with m(q) € Fp[¢]/¢” and w € F), = Fy[q]/q. We write

(32) Kn(g)w = Flz]/(z = 7™ (14 p)*).

The a; sit nicely with respect to the unit filtration of F*/F*? as follows. Let R be the
ring of integers of F' and II = () the maximal ideal, so that the residue field R/II is identified
with Fp. Let U = U° be the group of units and for j > 1 let U/ = 1 + I/ be the group
of j-units. Then the quotient group U°/U* is F while the higher quotients UJ UL are
naturally rank one modules over F,, in fact canonically isomorphic to II7 /TP 1. Let V7 be
the image of U7 in V=1 = F*/F*P. One can check that V" has index p in V=1 with ag =7
generating V~1/VY One has V% = V! but for j € {1,...,p} one has that V7/VI*! has p
elements with generator a;.

8.3. Ramification. The unit filtration is exactly what is needed to identify discriminants.
Let 6o = 0 and 0, = 1 for £ > 1. Then one has

(33) disc(K g/ Qp) = p2P~DrH =1 (E+80)

where m(q) vanishes to order p — ¢ at 0.

To go further, we bring in the formalism of slopes, using the conventions of [13]. Thus 0
corresponds to no ramification, 1 to tame ramification, and slopes > 1 to wild ramification, this
being a shift upwards by 1 from the upper numbering system of [21]. One part of the formalism
says that a degree p? totally ramified extension K of Q, has two wild slopes s, < s,. The case
of concern here is the case where K contains subfields of degree p. Let K; be the subfield of
degree p with smallest discriminant. Then s, is calculated by disc(K;/Q,) = p**®~Y. The
larger slope s; is calculated by requiring disc(K/Qp) = p® with

c —1 -1

(34) F = pp Sb+pp72$a.
Similarly, suppose L is a totally ramified field with degree p*1t with ¢ not divisible by p. Then
L has the tame slope 1 and wild slopes sg < - -+ < sy, likewise calculated via discriminants of
distinguished (minimally ramified) subfields [13]. One has disc(L/Q,) = p°® with

c 1 t-1 = p-1
Pt T ptHL ¢ D=

(35)

l+1—35 77
=P
In general, the mean slope ¢/N of a degree N field is a weighted average of all the slopes
appearing, with larger slopes being weighted more. A feature of the formalism of slopes is
that it facilitates the transfer of information from one field to another. For example, suppose

K has splitting field L. Then the slopes of K are all also slopes of L.

8.4. Level and type. Say a non-zero index (m(q), w) has level £ € {0,...,p} if m(q) vanishes
to order p — £ at 0. If (m(q),w) has level £ > 0 with m(q) = b,_eq?~* + -+ say it has type
w/bp_g € Fp.

The indices of level 0, namely (0,w) for w € F), play a special role as follows. The
associated fields Ky, are all isomorphic, in fact to F' ® Q,lx]/(a? — (1 + p)). The wild
slopes of Ky, are s, = 1+ 1%’ from the second factor Q,[z]/(z¥ — (1 + p)), and s = 2,
coming from the first factor F. The splitting field Lg ., has degree (p — 1)p? and mean slope
24+1/(p—1) — 2/p2.
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The indices of level 1 are also somewhat special. Analogously with (30), put
(36) hi(z) = 2P + (p + kp?)

and put My = Qp[z]/hi(z). Then F ® My, is a field in our class, of level 1. In fact, if F' = F;
and 7 and o are defined as in §8.1, then F'® M}, is the field K gp-1 ;. Our explicit descriptions
show that fields K,,(4),. of level 0 or 1 have two degree p subfields. Fields K, (g). of level
> 1 have only one degree p subfield, namely F'.

8.5. Summarizing theorem. The following theorem describes ramification in our class of
fields K and their splitting fields L.

Theorem 8.1. Fiz F'/Q, a totally ramified degree p abelian extension. Fix also a generator
o € Gal(F/Qp) and a uniformizer © so that the fields Ky, (q)w and Ly q)w as well as the
notions of level and type are well-defined. Then degree p binomial extensions K of F are
classified up to F-isomorphism by the p-dimensional projective space

(37) P = ((Fpldl/q" ® Fplg]/q) — {0})) /F.

The same fields are classified up to Qp-isomorphism by the orbits of o on P. The fized points
of o are exactly the p points of level 1 and the 1 point of level 0, implying that there are
pP~t+ -+ p* + 2p+ 1 different Qp-isomorphism classes.

For indices (m(q),w) of level £ € {1,...,p}, ramification is as follows:

A:: The slopes of Km(q),u, are so =2 and s; = 2+ ﬁ + ﬁ.

B:: Let (mi(q), w1) have the same level as (m(q),w). If their types t,t1 € F, coin-
cide then so do the corresponding splitting fields: Lyy = Lyyg)w = Lmi(q)wi- If
their types are different than Lo, and L, are disjoint degree p extensions of their
intersection Lo_q .

C:: The tower of distinguished subfields of L¢+ is

Se—1

1 2 S81 So Sp
Qp CQp(pp) CLoo CLiogC -+ C Ly10C Loy

The slope associated to each step is indicated. The mean slope (35) of Ly is 2+ % -
1
(p—D)p*"
Thus for K in this class of fields containing F', the discriminant-exponent ¢ of K determines
the degree and all the slopes of L. Up to a p-fold ambiguity, the single number ¢ determines
L itself. Theorem 8.1 can be seen very explicitly in the next subsection for p =3. For p =5
it can be seen more briefly in Table 10 of the next section.

8.6. The case p = 3. It is clarifying to compare Theorem 8.1 for the case p = 3 with the
explicit classification of nonic 3-adic fields in [15]. Table 9 summarizes this comparison, which
is somewhat subtle. The block of four columns on the top of this table repeats five lines of
Table 5.1-2 in [15]. The lines correspond to the possible levels 3, 2, 1, and 0, except that there
is an extra line 2¢. This extra line corresponds to a twinning phenomenon described in [15]:
the Galois closure Ly, (4, of the nonic field K,,(g),., is also the Galois closure of a second
nonic field Kﬁn(q),w.

On a given line in the top block of Table 9, the number in the Q3 column gives the number
of nonic 3-adic fields K with wild slopes the numbers printed in bold, such that Gal(L/Q,)
has the given Galois group with the given wild slopes. The last number in the Qg column is
starred to indicated that only three of these six fields in [15] are binomial-over-abelian; the
other three are nonbinomial-over-abelian.
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TABLE 9. Nonic 3-adic fields illustrating Theorem 8.1

# of # of | # of K/F’s by type:
level | ¢ Gal(L/Q,) wild slopes K/Qs's | K/F’s | —1 0 1
3 [23 9722 2,25,2.83,3.16 27 81 |27 27 27
_ NS
2 |21 9T13 2,2.5,2.83 9 27 9 9 9
2t | 22 9711 2,2.5,2.83 9 Nl
1|19 9T4 2,2.5 9 9 3 3 3
0 |15 974 1.5,2 *6 3 (3)
level | ¢ Gal(L/Qp) Fields
3 23 9722 Kittreqw = Qslz]/(2% + (3 + 9w)a® + 2cz® + (3 + 9i))
2 |21 9713 Kigw = Qsl2]/(2° + (6 — 9 — 9w)zb + 92* + (3 + 9i))
2t | 22 9711 K} = Qsl2]/ (2 — (9w + 9)2% — 92° + (3 + 9i))
1 {19 9T'4 Kitw = Qslx]/(2° + 325 — (9w + 9)z* + 922 — (3 + 99))
0 ].5 9T4 Ki;(];l = Qg[x]/(.’bg + 6%8 + 6557 + 31’3 + (3 + 92))

The columns “# of K/Q3’s” and “# of K/F’s” count Q3- and F-isomorphism classes of
fields K respectively. In these counts, F' is allowed to vary over all three possibilities. The
columns contain multiples of 3 only, corresponding to the fact that the three F’s contribute
equally to all entries. The inflations 9 — 27 and 27 — 81 in the first two rows correspond to
the fact that o acting freely at levels > 2, while it acts with fixed points only in levels 0 and 1.
The information in “# of K/F’s by type” refines the previous column, sorting F-isomorphism
classes by type. The downward arrows indicate the behavior of the nilpotent operator g¢; it is
visually clear that type 0 plays a special role, at least for levels < p. The parentheses in the
bottom row indicate that fields of level 0 should be regarded as having type co, not 0.

The lower block in Table 9 classifies field K over Qs. For cubic fields F' it takes F; as in
(30), and uses also the uniformizer m and generator o given there. It incorporates the choice of
F explicitly into the notation, so that Kj.,(¢);, means what was previously denoted K, (g);uw-
In general, at the level of Qp-isomorphism classes, one has Kj.p,(g);w = Ki (14q)m(q);w Decause
o =1+ ¢. This identity, together with projective equivalence Ki.p,(g);w = Ki sm(q),sw, Mmeans
that every Qp-isomorphism class appears exactly once if we restrict attention to m(q) €
F,lq]/q" of the form ¢?=* + cg?~**2 4 .... Table 9 then presents an Eisenstein polynomial
for each field K, (q);w in a uniform way. Here ¢, w and c on the left are in F3; arbitrary
representatives in Zs can be taken on the right. The polynomials here sometimes agree with
those in the database associated to [13], but usually do not. Nonetheless the database assisted
essentially in obtaining the Eisenstein polynomials in Table 9.

9. RAMIFICATION IN L AND OTHER NUMBER FIELDS RAMIFIED AT ONE PRIME

In this section, we apply Theorem 8.1 to obtain ramification information for L and a natural
sequence of solvable fields ramified at one prime only. Corollary 9.1 summarizes the results
obtained in the case p = 5.
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9.1. Application to L. Every degree p extension K/F of p-adic fields with the largest
possible relative discriminant is given by a binomial [1]. In our case, the polynomial f5(z)
in (8) is not a binomial and to apply the theory of the previous section, we need to replace
f5(x) by a binomial.

Let ¢5(x) = 2® — mwr307,3 be the polynomial obtained from f5(x) in (8) by simply dropping
the intermediate terms ax? — ax. Since « is divisible by %, one might suspect that the 5-adic
completions of F[z]/ f5(x) and F[z]/¢5(x) are isomorphic. However this is not at all the case;
one needs the intermediate terms to be considerably smaller before one can simply drop them.

To find a suitable binomial we proceed methodically as follows. Without changing notation,
we work 5-adically with K = F[v]/f5(v). The element v, previously called z, is a uniformizer
of K. The general uniformizer has the form u = mcg + c1v + cv? + c3v3 + c4v* with all ¢;
in the ring of integers R and ¢; invertible. Consider the characteristic polynomial f,(x) €
R[z]. We work step-by-step, imposing congruence conditions on the interior coefficients of the
undetermined quintic polynomial f,(z). For example, the coefficient ay of z* is determined
by

Tas = 5(=9csm’ + 1247 + 5Tegm® — T6cym® — Teom + 186¢3m — 248¢47)
+52 (—6037T3 + 8047‘(3 — 3c3 + 464) .

No matter what the ¢; are, the w-adic valuation of a4 is at least six. The three terms with
valuation six are collected on the right in reduced form:

Tay = 57(3co + c3 +2¢4)  (mod 77).
We change variables, replacing cs by ¢ via
c3 = —3co — 2¢4 + TCh.

We continue in this way, always solving linear equations over F5, and correspondingly re-
placing one variable cgk) with a new variable cEkH). We never change c1, to ensure that the
constant coefficient ag keeps its original m-valuation of 1. After thirteen steps we specialize
the five remaining variables to 1. The intermediate coefficients all have w-valuation nine.
Expecting this suffices, we drop them. We identify the constant term as w't9-7~4°6-1 in
F*/F*5_in the notation of the previous section.

As a final step, we compute a defining polynomial for the degree 125 algebra K ®p
Kitq—q2—g3;—1. Its irreducible factors over Qs have degrees 25 and 100. This factoriza-
tion confirms that indeed K and Kji, 42_43,_1 are 5-adically isomorphic. In contrast,

K @p Kpp(g)q s a field for all (m(q), w) not of the form s(1+ ¢ — ¢* — ¢, —1) for s € F.

9.2. Applications to solvable fields. Let p be an odd prime number. The unique degree
p subfield F' of Q(eZ’”/ p2) then represents the unique isomorphism class of degree p abelian
extensions of Q ramified at p only. Let II be the unique prime ideal above p in the ring of
integers R. Let j be the smallest positive integer such that II7 is principal. For all p for which
calculations have been done [4], j is not divisible by p. Vandiver’s conjecture implies that j
is in fact never divisible by p [29, Corollary 10.6]. Assuming this is the case for our given p,
let m be a generator of II7.

Under these conditions one can repeat many of the considerations of the previous section.
In particular (31) still makes sense, with the a; now lying in the number ring R. The element
ap = 7 is a p-unit and a;, ..., ap—1 are all units. On the other hand a, = 1 + p is not a
p-unit.

The polynomials P —7(9)(1+p)® are now in R[z] and their norms g,,(q),. () are in Z[z].
One thus has number fields K, (). = Flz]/(2? — 7™ (14 p)®) = Q[z]/gm(g),w(2) and their



26 DAVID P. ROBERTS

splitting fields L, (q);.c C C. We restrict attention to the case w = 0 so that the number fields
are ramified at p only, and suppress w = 0 from the notation. As extensions of F'| the set of
fields K, (4) forms a projective space of dimension p — 1 over F;,. The automorphism o acts
with a single fixed point, so as extensions of Q the K, define pP=2 4 ... 4+ p + 2 different
isomorphism classes of number fields.

Let L® be the joint splitting field of all the K, in C. The Galois group Gal(L*/Q)
coincides with its p-decomposition group, which in turn coincides with the p-inertia group.
These groups all have the structure p?.p.(p — 1).

Table 6.2 of [15] includes all five nonic fields appearing in the case p = 3. Table 10 presents
five of the 157 fields appearing in the case p = 5. Here the discriminant of K s-. is 5 and the

TABLE 10. Five polynomial defining Galois subfields Lj of L® for p = 5.
The degree of L§/Qs is 5F14.

¢ Defining polynomial for K- c s GMS GRD Ty

5 x2° + 52?0 — 25210 — 2525 — 5 69 3.05 2.99992 124.98 30.25
4 2%+ 5x20 30215 — 25210 4 1525 — 1 65 2.85 2.7996  90.54 30.63
3 x25 30220 — 652° 4 640210 — 7202° — 1 61 2.65 2.598  65.45 43.53
2 1: 45x20 +23521% — 390210 + 20525 + 1 57 2.45 2.39 46.83 41.30
1 2%° — 120220 + 8852 + 28385210 — 324525 + 1 53 2.25 2.15 31.83 65.66

top 5-adic slope is given in the column sy,. The Galois mean slope a € Q, meaning the mean
slope of Lgs—¢, is given exactly in the column GMS. Likewise the Galois root discriminant
5% € R is given approximately in the column GRD. The entries in the defining polynomial
column for levels 5 and 4 are exactly the polynomials g,s—¢(z). The column 75 then gives
approximately the sum of the absolute squares of their roots, as in §3.7. For ¢ = 3, 2, and
1 these numbers for g s-¢(z) are approximately 51.94, 184.45 and 2094.02. Table 10 gives
Ts-reduced polynomials instead.

9.3. A compositum. Let L and L be our usual nonsolvable fields and let L* be the solvable
field for p = 5 from §9.2. The intersection of L and L* in C is exactly the degree twenty
cyclotomic field Q(e2™%/2%). The compositum LL* is a degree 5° elementary abelian extension
of L.

The type of L® is 0 € F5 while the type of L is 4, by the calculation of §9.1. Thus the
types disagree and LL* / L is ramified, by Theorem 8.1. From Theorem 8.1 one can deduce
two further things. First, LL* has just one 5-adic slope beyond the slopes of L. It is 5 /4, the
slope associated with Ko 1. Second, for £ =1,...,5, let L} be the level f-subfield of L*, as in
the previous section. Then LL§/L is an extension of degree [L7 : Q(e 2m1/25)] = 5¢ and LLj
is Galois over Q, While LL: g/ L is ramified, as above, LL$ s/ L is not.

9.4. Concluding corollary. The Galois number fields attracting most of our attention form
a single chain, with relative Galois groups as indicated:

PSL>(5)°.10 222 . 5t - 5 -
(38) Q C L ¢ L C LL; C LL°

Applying (35) again to compute the root discriminant of LL*, we conclude by giving all the
root discriminants:
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Corollary 9.1. The root ~discriminants of L, L, and iLj are all 125 - 51”12500 ~ 124.984.
The root discriminant of LL® is 125 - 5717/312500 ~ 124.989. Since LL;/L is an unramified
elementary abelian extension of degree 5%, the class number of L is divisible by 5.
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