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1. Context. A heuristic says that AN or SN
number fields with discriminant ±2a5b and de-
gree N ≥ 49 “need a reason to exist.”

2. Chebyshev covers. Define

Tm,n(x) =
Tm/2(x)

n

Tn/2(x)
m

,

Um,n(x) =
Um/2(x)

2n

Un/2(x)
2m

in Q(x). These covers have bad reduction at m
and n only, and symmetric or alternating mon-
odromy group, a very unusual combination.

3. Exceptional Number fields, constructed
by specializing Chebyshev covers. The fiber
of U125,128(x) above 5 has discriminant of the
form ±2a5b and Galois group S15875.



1. Context. Two very important invariants

of a degree N number field K are

• its associated Galois group G ⊆ SN and,

• its discriminant D ∈ Z− {0}.

Example. Let K = Q[x]/(x13 − x− 1). Then

G = S13

D = 293959006143997=28201·10423708597

Random polynomials typically give G equal to

all of SN and D divisible by a large prime. How-

ever more sophisticated constructions can sys-

tematically give smaller G and/or tightly con-

trolled D.

The “refined” inverse Galois problem is to iden-

tify the set NF (G, D) of isomorphism classes

of number fields with given invariants (G, D).



The refined inverse Galois problem is

• solved for abelian groups by cyclotomy

• solved in principle for solvable groups by

class field theory

• solved in principle for groups like GL2(q)

via modular forms

• approachable for groups like GLn(q), Sp2n(q),

On(q), Un(q) via motives and/or automor-

phic forms.

Ironically, the groups AN and SN are problem-

atic cases, because it is hard to control D.

The best general approach seems to be mod-

uli fields of covers of the projective line.



For N ≥ 1 and v ∈ {∞,2,3,5,7, . . .} let λN,v be
the total mass of all degreeN algebras over Qv.

If v = ∞ the algebras are RrCs with mass 1
r!2ss!.

Summing over r + 2s = N gives λN,∞. The
λN,∞ decay superexponentially with N .

If N < p then all ramification of K/Qp is tame,
and λN,p is the number of partitions of N . In
general, λN,p grows roughly as pN/(p−1).

A heuristic says that given S = {∞, p, . . . , r},

NF (±p∗ · · · r∗, AN or SN) ≈
1

2
λN,∞λN,p · · ·λN,r.

For S = {∞,2,5}, the product on the right is
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2A. Chebyshev covers. We work with in-
dices w ∈ {1/2,1,3/2,2, . . .}. Define Tw(x) and
Uw(x) in Z[

√
x− 2,

√
x + 2, x] by

Tw(z + z−1) = zw + z−w,

Uw(z + z−1) = zw − z−w.

The right sides have 2w complex roots eiθ,
equally spaced on the unit circle. Accordingly
Tw(x) and Uw(x) each have w roots 2 cos θ,
all in [−2,2] with roots at −2 and 2, if any,
counted with multiplicity 1/2.

As on the title slide, define

Tm,n(x) =
Tm/2(x)

n

Tn/2(x)
m

,

Um,n(x) =
Um/2(x)

2n

Un/2(x)
2m

.

Square roots cancel so that Tm,n(x) and Um,n(x)
are always in Q(x). WLOG, restrict to the case
with m < n relatively prime and, in the U case,
not both odd.



As an example,

T8,9(x) =
(x4 − 4x2 + 2)9

(x + 2)4(x− 1)8(x3 − 3x− 1)8
,

drawn in the window |x| ≤ 3.7, |s| ≤ 2.5:
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The four zeros of multiplicity nine and the five
poles of high even multiplicity are clearly visi-
ble.

Both numerator and denominator have the form
x36−36x34+594x32−5952x30+· · ·, accounting
for the rapidly-approached horizontal asymp-
tote at s = 1.



Clearing denominators, we work with polyno-
mials Tm,n(s, x) and Um,n(s, x), e.g.

Tm,n(s, x) = Tm/2(x)
n − sTn/2(x)

m

in the case of m, n of opposite parity.

In our example, as s increases from −∞ to 0,
the roots of T8,9(s, x) sweep out the follow-
ing dessin, drawn in the region [−2.1,2.1] ×
[−0.45,0.45] of the complex x-plane:

The five poles T8,9(x) of are interspersed with
the four zeros of T8,9(x). Edges connect poles
to zeros in accordance with the diagram

4
4
− 9

5
− 8

3
− 9

6
− 8

2
− 9

7
− 8

1
− 9

8
− 8.

The roots of T8,9(−1, x) mark the centers of
the 36 edges while the roots of T8,9(1, x) mark
the centers of the 28 bounded faces.



2B. Discriminants of Chebyshev covers.

Theorem. One has discriminant formulas,

discx(Tm,n(s, x)) = ±2∗m∗n∗s∗(s− 1)∗dT
k (s),

discx(Um,n(s, x)) = ±2∗m∗n∗s∗(s− 1)∗dU
k (s),

with the factor 2∗ missing if m and n are both

odd. Here k = n − m and the last factor has

degree b(k − 1)/2c.

We think of Tm,n(x) and Um,n(x) as covering

maps from the projective x-line to the projec-

tive s-line. The discriminant formula says their

critical values are s = 0, 1, and ∞, and the

roots of the relevant dk(s).

The first non-unital dk(s) are

dT
3(s) = s + 1, dU

3 (s) = s + 27,

dT
4(s) = s + 4, dU

4 (s) = s− 16.



2C. QuasiChebyshev covers. For k ≤ 2, the

covers Tm,n and Um,n are three-point covers,

i.e. Belyi maps. However they are not deter-

mined by their triples of ramification partitions.

For example, the partitions for T8,9 are

λ0 = (9,9,9,9),

λ1 = (8,1, · · · ,1),

λ∞ = (8,8,8,8,4).

In general, quasiChebyshev covers are indexed

by planar trees marked by polar multiplicities

only. For the above partitions, two trees have

extra automorphisms:

8−8−4−8−8
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Eight have only the identity automorphism:

4−8−8−8−8
(Chebyshev)
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To get the quasiChebyshev covers indexed by

the last eight trees, require that F−1(1) con-

tain ∞ with multiplicity eight, where

F (x) =
(x4 + a1x2 + a2x + a3)

9

(x + 2)4(x4 + c1x3 + c2x2 + c3x + c4)8
.

The resulting system of seven equations in seven

unknowns reduces to

(a1 + 4)(35a7
1 + 2380a6

1 + 38192a5
1+

236480a4
1 + 928000a3

1 + 3015680a2
1

−3993600a1 − 16564224) = 0.

The first factor corresponds to T8,9(x). The

second factor has field discriminant

−24355672115193.

All computed cases are exactly like this: the

general theory of dessins d’enfants gives no

reason for the the Chebyshev covers to split

off; it gives no reason for the them to be ram-

ified only at the primes dividing mn.



2D. Monodromy.

Theorem. If F : P1
x → P1

s is a degree N quasi-
Chebyshev cover without non-identity automor-
phisms, then its monodromy group is AN or
SN .

Sketch of proof. Since the top curve is con-
nected, the monodromy group G is irreducible.
The ramification partitions λ0, λ∞ allow there

to be a factorization P1
x

N1→ P1 N2→ P1
s only if

the first map has just two ramification points.
Thus if there are no non-trivial automorphisms,
the monodromy group has to be primitive. By
the classification of primitive Galois groups,
the only ones containing an element of cycle
type λ1 = (m,1,1, . . . ,1,1) are AN or SN . �

As a consequence, Tm,n(s, x) and Um,n(s, x) have
Galois group AN or SN for almost all s ∈ Q.
However, in the most interesting cases, e.g.
s = ±1, the Galois group is still in doubt.



3. Exceptional Fields. For each S, the
heuristic gives a cutoff past which AN and SN

“need a reason to exist.” We call fields in this
range exceptional.

For S = {∞,2,3}, the exceptional range is
[62,∞).

Specializing T8,9(s, x) gives an S28 field (at
s = 1), an S35 field (at s = 2), four A36 fields
and fifteen S36 fields. Specializing U8,9(s, x)
gives four A64 fields, and seventeen S64 fields.
Only the fields belonging to the second col-
lection are exceptional according to our formal
definition.

However, in general, field discriminants of spe-
cializations are both low and regularly behaved.
For example, the S28 field has discriminant
283354, while the largest discriminant allowed
by local bounds is 21183107. Thus even the
fields we classify as non-exceptional are quite
remarkable.



For S = {∞,3,5}, the exceptional range is
[38,∞). The polynomial T25,27(1, x) has de-
gree 300 and roots as follows.
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However, the Galois group is not A300 or S300
because there is a triangular structure to the
roots. Modding out by rotating the triangle
gives a polynomial T red

25,27(1, x) = x100−625x99+
· · ·. Using that this polynomial is irreducible,
has square discriminant and factors modulo 2
as λ2 = (71,14,12,3), we get that it has Ga-
lois group A100.



For S = {∞,2,5}, the exceptional range is
[49,∞). The polynomial U125,128(5, x) has de-
gree 15875. Both ABC triples involved in its
construction involve 3:

53 + 3 = 27,

33 + 5 = 25.

Despite this, even the polynomial discriminant
doesn’t involve 3 as it is −2130729563437. The
first four factor partitions are

λ3 = 10194,3365,2123,155,20,10,5,3
λ7 = 7332,2492,1642,1388,1077,1011,818,72,24,10,9

λ11 = 9784,3238,1272,648,480,143,139,133,17,12,9
λ13 = 6808,4493,3803,626,74,39,13,8,6,3,2

A 1918 criterion of Manning says that a de-
gree N primitive group containing an element
of cycle type P q1k for P prime with P ≥ 2q−1
and k ≥ 4q − 1 is AN or SN . The data suffices
to prove that the Galois group of U125,128(5, x)
is S15875.
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