Hurwitz Number Fields
David P. Roberts
University of Minnesota, Morris

1. Some background
2. A conjecture on number fields of arbitrarily large degree ramified within a given finite set P of primes
3. A family of HNFs with $P=\{2,3,5\}$
4. General definition of HNFs $K_{h, u}$
5. A geometric theorem towards the conjecture
6. Arithmetic evidence supporting the conjecture
7. Some background. Call a degree m number field K full if its associated Galois group Gal(K) is all of A_{m} or S_{m}. For P a finite set of primes, let $F_{P}(m)$ be the number of full degree m number fields ramified within P.

Some known values for $F_{P}(m)$:

P	1	2	3	4	5	6	7	8	\cdots	15	$16 \cdots$
\emptyset	1	0	0	0	0	0	0	0	\cdots	0	$0 \cdots$
$\{2\}$	1	3	0	0	0	0	0	0	\cdots	0	
$\{2,3\}$	1	7	9	23	5	62	10				

Also $F_{\{2,3\}}(m)>0$ for m in
$\{8,9,10,11,12,17,18,25,28,30,32,33,36,64\}$.
(E.g. $K=\mathbb{Q}[x] /\left(x^{9}+9 x+8\right)$ has associated Galois group $\operatorname{Gal}(K)=S_{9}$ and field discriminant $\operatorname{disc}(K)=2^{25} 3^{12}$ and so contributes to $\left.F_{\{2,3\}}(9).\right)$.

Mass heuristics, very successful in other contexts, here suggest that for any fixed P, the series $F_{P}(m)$ is eventually zero.
2. The conjecture. Say that a finite set of primes P is anabelian if it contains the set of primes dividing the order of a nonabelian finite simple group. Thus, e.g. the only anabelian sets of size ≤ 3 are $\{2,3, p\}$ for $p \in$ $\{5,7,13,17\}$.

From Hurwitz number fields—defined shortly!with Venkatesh we expect

Unboundedness Conjecture. For anabelian P, the sequence $F_{P}(m)$ is unbounded.

Thus instead of $\lim F_{P}(m)=0$, we expect $\limsup F_{P}(m)=\infty!$

A speculative complement to the conjecture is that F_{P} has finite support for abelian P and density zero support for anabelian P. At any rate, Hurwitz number fields sit in a very extreme position among all known number fields.

3. A degree 25 family of HNFs

Sample problem from a Calc I midterm:

Sketch the graph of a quintic polynomial

$$
g(x)=x^{5}+b x^{3}+c x^{2}+d x+e
$$

having critical values $-2,0,1,2$.

Answer from an excellent student who misunderstood "sketch" as "compute."

I need to find solutions $(b, c, d, e, w) \in \mathbb{R}^{5}$ to
$\operatorname{Res}_{x}\left(g(x)-y, g^{\prime}(x)\right)=w(y+2) y(y-1)(y-2)$.
Equating coefficients of y^{i}, I get five equations in five unknowns. My computer found in under a second that there are five solutions. Graphed and superimposed (in the hope of extra credit) they are as follows:

The student's five solutions are built from the five real roots of

$$
\begin{aligned}
f(e)= & 2079263897024353275804967432617984 e^{25} \\
& -12995399356402207973781046453862400 e^{24} \\
& +9374285473238051064420181947187200 e^{23} \\
& +100171812470626687586960200119091200 e^{22} \\
& -207274514053690075406151629301350400 e^{21} \\
& -244406484856919441683050089498542080 e^{20} \\
& +1018619600135728807198151502358118400 e^{19} \\
& -122674532124649317215805251990323200 e^{18} \\
& -2367571404689391730495189106766643200 e^{17} \\
& +1831738283131124174860191153940070400 e^{16} \\
& +2683310021048401614467880844095651840 e^{15} \\
& -3981140634442078421173272691762790400 e^{14} \\
& -763656430829269872084534157954252800 e^{13} \\
& +3996188947051596472727329385427763200 e^{12} \\
& -1409518402855897344220921443362406400 e^{11} \\
& -1810485694386063356167980856203612160 e^{10} \\
& +1553867175541849527507008912881376900 e^{9} \\
& +56743922361314868816389478767887800 e^{8} \\
& -505592705680489994912636389194041700 e^{7} \\
& +165494400692971549220915707093686900 e^{6} \\
& +22273319577181658254915819239436920 e^{5} \\
& -13748301792342333982413241472039400 e^{4} \\
& -1365080000359694290741733941979175 e^{3} \\
& +464542350701898155360407600616950 e^{2} \\
& +90817899583985126224506334951600 e \\
& +4543326944239835953052526892234
\end{aligned}
$$

$K=\mathbb{Q}[e] / f(e)$ is a Hurwitz number field. We are working with quintic polynomials and our specialization polynomial

$$
s(y)=(y+2) y(y-1)(y-2)
$$

has discriminant $2^{8} 3^{2}$. Theory then says disc (K) has the form $\pm 2^{*} 3^{*} 5^{*}$.

Computation says

$$
\begin{aligned}
\operatorname{disc}(K) & =2^{56} 3^{34} 5^{30} \\
\operatorname{Gal}(K) & =A_{25}
\end{aligned}
$$

Hence $F_{\{2,3,5\}}(25) \geq 1$.
Changing the specialization polynomial to other quartic polynomials with bad reduction within $\{2,3,5\}$ gives $F_{\{2,3,5\}}(25) \geq 10983$.
4. General definitions. A Hurwitz parameter is a triple $h=(G, C, \nu)$ where

- G is a finite group with trivial center,
- $C=\left(C_{1}, \ldots, C_{r}\right)$ is a list of distinct nonidentity rational conjugacy classes,
- $\nu=\left(\nu_{1}, \ldots, \nu_{r}\right)$ is a list of positive integers,
- The quotient elements $\left[C_{i}\right.$] generate G^{ab} and satisfy $\Pi\left[C_{i}\right]^{\nu_{i}}=1$.

Notation: $P=($ Primes dividing $|G|)$
and $\quad n=\sum \nu_{i}$.
Example from previous section

$$
\begin{aligned}
h & =\left(S_{5},(2111,5),(4,1)\right) \\
P & =\{2,3,5\} \\
n & =5
\end{aligned}
$$

A Hurwitz parameter $h=$ (G, C, ν) together with a normalization convention determines an unramified covering of $(n-3)$-dimensional \mathbb{Q} varieties

$$
\pi_{h}: X_{h} \rightarrow U_{\nu} .
$$

(of degree m about $\frac{\prod_{i} \mid C_{i} \nu_{i}}{|G|\left|G^{\prime}\right|}$).

- The cover $X_{h}(\mathbb{C})$ parameterizes covers of the projective line P1 "of type h."
- The base $U_{\nu}(\mathbb{C})$ is the variety whose points are normalized tuples (D_{1}, \ldots, D_{r}) of disjoint divisors D_{i} of P^{1}, with D_{i} consisting of ν_{i} distinct points.
- The map π_{h} sends a cover to its branch locus.

In our example, $u=\left(D_{1}, D_{2}\right)=(\{-2,0,1,2\},\{\infty\})$ is a point in $U_{4,1}(\mathbb{Q})$. The fiber $\pi_{h}^{-1}(u) \subseteq$ $X_{h}(\overline{\mathbb{Q}})$ consists of $25 \mathrm{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$-conjugate points.

The cover $\pi_{h}: X_{h} \rightarrow U_{\nu}$ can be captured by a polynomial equation

$$
f_{h}\left(u_{1}, \ldots, u_{n-3} ; x\right)=0
$$

For $u=\left(u_{1}, \ldots, u_{n-3}\right) \in \mathbb{Q}^{n-3}$ the algebra

$$
K_{h, u}=\mathbb{Q}[x] / f_{h}\left(u_{1}, \ldots, u_{n-3} ; x\right)
$$

corresponds to the fiber over \mathbb{Q}. A Hurwitz number field is a field of the form $K_{h, u}$.

For generic u, the Galois groups $\operatorname{Gal}\left(K_{h, u}\right) \subseteq$ S_{m} all agree with a common group Gal_{h} computable purely geometrically via braid groups. We say h is full if Gal_{h} is A_{m} or S_{m}.

The cover extends smoothly over $\mathbb{Z}[1 / P]$. For $u \in U_{\nu}(\mathbb{Z}[1 / P]), K_{h, u}$ has bad reduction within P. For fixed nonempty P, the sets $U_{\nu}(\mathbb{Z}[1 / P])$ can be arbitrarily large.

A natural guess is that for $u \in U_{\nu}(\mathbb{Z}[1 / P])$ the fields $K_{h, u}$ are mostly pairwise non-isomorphic and usually $\operatorname{GaI}\left(K_{h, u}\right)=\mathrm{Gal}_{h}$.

5. A geometric theorem towards the conjecture

With Venkatesh we are studying the conditions on $h=(G, C, \nu)$ that make $X_{h} \rightarrow U_{\nu}$ full (i.e. $\left.\mathrm{GaI}_{h} \in\left\{A_{m}, S_{m}\right\}\right)$

A special case of our theorem:

Theorem. Suppose

- G is simple
- Out (G) is trivial.
- $H_{2}(G, \mathbb{Z})$ is trivial.

Then $X_{h} \rightarrow U_{\nu}$ is full for $\min _{i} \nu_{i}$ sufficiently large.

The full theorem weakens all assumptions and gets a more complicated conclusion of the same nature.

The full theorem gives enough covers to prove the unboundedness conjecture, unless specialization to fibers above $U_{\nu}(\mathbb{Z}[1 / P])$ behaves extremely non-generically.
6. Arithmetic evidence supporting the conjecture. Example with $P=\{2,3,5\}$:

$$
X_{\left(S_{6},(21111,321,3111,411),(2,1,1,1)\right)} \rightarrow U_{2,1,1,1}
$$

is full and $\left|U_{2,1,1,1}(\mathbb{Z}[1 / P])\right|=2947$. In explicit terms, we have a polynomial $f\left(u_{1}, u_{2}, x\right)$ of degree 202 in x and 2947 pairs

$$
u=\left(u_{1}, u_{2}\right) \in \mathbb{Q}^{2}
$$

which keep all ramification of

$$
K_{h, u}=\mathbb{Q}[x] / f\left(u_{1}, u_{2}, x\right)
$$

within $\{2,3,5\}$. Computation gives:
A: The $2947 K_{h, u}$ are all non-isomorphic.
B : They are all full.
Hence $F_{\{2,3,5\}}(202) \geq 2947$. (The mass heuristic gives $\left.\sum_{m \geq 202} F_{\{2,3,5\}}(m) \leq 10^{-15}\right)$.

Specialization at all other studied families is always at or very near generic expectations. To establish the conjecture, one would need only very weak versions of A and B for general h.

