Hurwitz Number Fields David P. Roberts University of Minnesota, Morris

1. Some background

2. A conjecture on number fields of arbitrarily large degree ramified within a given finite set *P* of primes

- **3.** A family of HNFs with $P = \{2, 3, 5\}$
- 4. General definition of HNFs $K_{h,u}$

5. A geometric theorem towards the conjecture

6. Arithmetic evidence supporting the conjecture

1. Some background. Call a degree m number field K full if its associated Galois group Gal(K) is all of A_m or S_m . For P a finite set of primes, let $F_P(m)$ be the number of full degree m number fields ramified within P.

Some known values for $F_P(m)$:

P	1	2	3	4	5	6	7	8	15	$16\cdots$
Ø	1	0	0	0	0	0	0	0 · · ·	0	0 · · ·
{2}	1	3	0	0	0	0	0	0 · · ·	0	
$\{2,3\}$	1	7	9 23		5 62 10					

Also $F_{\{2,3\}}(m) > 0$ for m in

{8,9,10,11,12,17,18,25,28,30,32,33,36,64}. (E.g. $K = \mathbb{Q}[x]/(x^9 + 9x + 8)$ has associated Galois group Gal $(K) = S_9$ and field discriminant disc $(K) = 2^{25}3^{12}$ and so contributes to $F_{\{2,3\}}(9)$.).

Mass heuristics, very successful in other contexts, here suggest that for any fixed P, the series $F_P(m)$ is eventually zero. 2. The conjecture. Say that a finite set of primes P is *anabelian* if it contains the set of primes dividing the order of a nonabelian finite simple group. Thus, e.g. the only anabelian sets of size ≤ 3 are $\{2,3,p\}$ for $p \in$ $\{5,7,13,17\}$.

From Hurwitz number fields—defined shortly! with Venkatesh we expect

Unboundedness Conjecture. For anabelian P, the sequence $F_P(m)$ is unbounded.

Thus instead of $\lim F_P(m) = 0$, we expect $\limsup F_P(m) = \infty!$

A speculative complement to the conjecture is that F_P has finite support for abelian P and density zero support for anabelian P. At any rate, Hurwitz number fields sit in a very extreme position among all known number fields.

3. A degree 25 family of HNFs

Sample problem from a Calc I midterm:

Sketch the graph of a quintic polynomial

$$g(x) = x^5 + bx^3 + cx^2 + dx + e$$

having critical values -2, 0, 1, 2.

Answer from an excellent student who misunderstood "sketch" as "compute."

I need to find solutions $(b, c, d, e, w) \in \mathbb{R}^5$ to

 $\operatorname{Res}_x(g(x) - y, g'(x)) = w(y+2)y(y-1)(y-2).$ Equating coefficients of y^i , I get five equations in five unknowns. My computer found in under a second that there are five solutions. Graphed and superimposed (in the hope of extra credit) they are as follows:

The student's five solutions are built from the five real roots of

= 2079263897024353275804967432617984 e^{25} f(e) $-12995399356402207973781046453862400e^{24}$ $+9374285473238051064420181947187200e^{23}$ $+100171812470626687586960200119091200e^{22}$ $-207274514053690075406151629301350400e^{21}$ $-244406484856919441683050089498542080e^{20}$ $+1018619600135728807198151502358118400e^{19}$ $-122674532124649317215805251990323200e^{18}$ $-2367571404689391730495189106766643200e^{17}$ $+1831738283131124174860191153940070400e^{16}$ $+2683310021048401614467880844095651840e^{15}$ $-3981140634442078421173272691762790400e^{14}$ $-763656430829269872084534157954252800e^{13}$ $+3996188947051596472727329385427763200e^{12}$ $-1409518402855897344220921443362406400e^{11}$ $-1810485694386063356167980856203612160e^{10}$ $+1553867175541849527507008912881376900e^{9}$ $+56743922361314868816389478767887800e^{8}$ $-505592705680489994912636389194041700e^7$ $+165494400692971549220915707093686900e^{6}$ $+22273319577181658254915819239436920e^{5}$ $-13748301792342333982413241472039400e^4$ $-1365080000359694290741733941979175e^{3}$ $+464542350701898155360407600616950e^{2}$ +90817899583985126224506334951600e+4543326944239835953052526892234

 $K = \mathbb{Q}[e]/f(e)$ is a Hurwitz number field. We are working with quintic polynomials and our specialization polynomial

$$s(y) = (y+2)y(y-1)(y-2)$$

has discriminant $2^8 3^2$. Theory then says disc(K) has the form $\pm 2^* 3^* 5^*$.

Computation says

disc(
$$K$$
) = 2⁵⁶3³⁴5³⁰,
Gal(K) = A_{25} .

Hence $F_{\{2,3,5\}}(25) \ge 1$.

Changing the specialization polynomial to other quartic polynomials with bad reduction within $\{2,3,5\}$ gives $F_{\{2,3,5\}}(25) \ge 10983$.

4. General definitions. A *Hurwitz parameter* is a triple $h = (G, C, \nu)$ where

- G is a finite group with trivial center,
- $C = (C_1, \ldots, C_r)$ is a list of distinct nonidentity rational conjugacy classes,
- $\nu = (\nu_1, \dots, \nu_r)$ is a list of positive integers,
- The quotient elements $[C_i]$ generate G^{ab} and satisfy $\prod [C_i]^{\nu_i} = 1$.

Notation: P = (Primes dividing |G|)and $n = \sum \nu_i$.

Example from previous section

$$h = (S_5, (2111, 5), (4, 1))$$
$$P = \{2, 3, 5\}$$
$$n = 5$$

A Hurwitz parameter $h = (G, C, \nu)$ together with a normalization convention determines an unramified covering of (n - 3)-dimensional \mathbb{Q} varieties

 $\pi_h: X_h \to U_\nu.$

(of degree m about $\frac{\prod_i |C_i|^{\nu_i}}{|G||G'|}$).

- The cover $X_h(\mathbb{C})$ parameterizes covers of the projective line \mathbb{P}^1 "of type h."
- The base $U_{\nu}(\mathbb{C})$ is the variety whose points are normalized tuples (D_1, \ldots, D_r) of disjoint divisors D_i of \mathbb{P}^1 , with D_i consisting of ν_i distinct points.
- The map π_h sends a cover to its branch locus.

In our example, $u = (D_1, D_2) = (\{-2, 0, 1, 2\}, \{\infty\})$ is a point in $U_{4,1}(\mathbb{Q})$. The fiber $\pi_h^{-1}(u) \subseteq X_h(\overline{\mathbb{Q}})$ consists of 25 Gal $(\overline{\mathbb{Q}}/\mathbb{Q})$ -conjugate points. The cover $\pi_h: X_h \to U_\nu$ can be captured by a polynomial equation

 $f_h(u_1, \dots, u_{n-3}; x) = 0.$ For $u = (u_1, \dots, u_{n-3}) \in \mathbb{Q}^{n-3}$ the algebra $K_{h,u} = \mathbb{Q}[x]/f_h(u_1, \dots, u_{n-3}; x)$

corresponds to the fiber over \mathbb{Q} . A Hurwitz number field is a field of the form $K_{h,u}$.

For generic u, the Galois groups $Gal(K_{h,u}) \subseteq S_m$ all agree with a common group Gal_h computable purely geometrically via braid groups. We say h is full if Gal_h is A_m or S_m .

The cover extends smoothly over $\mathbb{Z}[1/P]$. For $u \in U_{\nu}(\mathbb{Z}[1/P])$, $K_{h,u}$ has bad reduction within P. For fixed nonempty P, the sets $U_{\nu}(\mathbb{Z}[1/P])$ can be arbitrarily large.

A natural guess is that for $u \in U_{\nu}(\mathbb{Z}[1/P])$ the fields $K_{h,u}$ are mostly pairwise non-isomorphic and usually $Gal(K_{h,u}) = Gal_h$.

5. A geometric theorem towards the conjecture

With Venkatesh we are studying the conditions on $h = (G, C, \nu)$ that make $X_h \to U_{\nu}$ full (i.e. $Gal_h \in \{A_m, S_m\}$)

A special case of our theorem:

Theorem. Suppose

- \bullet G is simple
- Out(G) is trivial.
- $H_2(G,\mathbb{Z})$ is trivial.

Then $X_h \rightarrow U_{\nu}$ is full for $\min_i \nu_i$ sufficiently large.

The full theorem weakens all assumptions and gets a more complicated conclusion of the same nature.

The full theorem gives enough covers to prove the unboundedness conjecture, unless specialization to fibers above $U_{\nu}(\mathbb{Z}[1/P])$ behaves extremely non-generically. 6. Arithmetic evidence supporting the conjecture. Example with $P = \{2, 3, 5\}$:

 $X_{(S_6,(21111,321,3111,411),(2,1,1,1))} \rightarrow U_{2,1,1,1}$ is full and $|U_{2,1,1,1}(\mathbb{Z}[1/P])| = 2947$. In explicit terms, we have a polynomial $f(u_1, u_2, x)$ of degree 202 in x and 2947 pairs

$$u = (u_1, u_2) \in \mathbb{Q}^2$$

which keep all ramification of

$$K_{h,u} = \mathbb{Q}[x]/f(u_1, u_2, x)$$

within $\{2, 3, 5\}$. Computation gives:

A: The 2947 $K_{h,u}$ are all non-isomorphic. B: They are all full.

Hence $F_{\{2,3,5\}}(202) \ge 2947$. (The mass heuristic gives $\sum_{m \ge 202} F_{\{2,3,5\}}(m) \le 10^{-15}$).

Specialization at all other studied families is always at or very near generic expectations. To establish the conjecture, one would need only very weak versions of A and B for general h.