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1. Some background. Call a degree m num-
ber field K full if its associated Galois group
Gal(K) is all of Am or Sm. For P a finite set of
primes, let FP (m) be the number of full degree
m number fields ramified within P .

Some known values for FP (m):

P 1 2 3 4 5 6 7 8 · · · 15 16 · · ·
∅ 1 0 0 0 0 0 0 0 · · · 0 0 · · ·

{2} 1 3 0 0 0 0 0 0 · · · 0
{2,3} 1 7 9 23 5 62 10

Also F{2,3}(m) > 0 for m in

{8,9,10,11,12,17,18,25,28,30,32,33,36,64}.

(E.g. K = Q[x]/(x9 + 9x + 8) has associated
Galois group Gal(K) = S9 and field discrimi-
nant disc(K) = 225312 and so contributes to
F{2,3}(9).).

Mass heuristics, very successful in other con-
texts, here suggest that for any fixed P , the
series FP (m) is eventually zero.



2. The conjecture. Say that a finite set

of primes P is anabelian if it contains the set

of primes dividing the order of a nonabelian

finite simple group. Thus, e.g. the only an-

abelian sets of size ≤ 3 are {2,3, p} for p ∈
{5,7,13,17}.

From Hurwitz number fields—defined shortly!—

with Venkatesh we expect

Unboundedness Conjecture. For anabelian

P , the sequence FP (m) is unbounded.

Thus instead of limFP (m) = 0, we expect

lim supFP (m) =∞!

A speculative complement to the conjecture is

that FP has finite support for abelian P and

density zero support for anabelian P . At any

rate, Hurwitz number fields sit in a very ex-

treme position among all known number fields.



3. A degree 25 family of HNFs

Sample problem from a Calc I midterm:

Sketch the graph of a quintic polynomial

g(x) = x5 + bx3 + cx2 + dx+ e

having critical values −2, 0, 1, 2.



Answer from an excellent student who misun-

derstood “sketch” as “compute.”

I need to find solutions (b, c, d, e, w) ∈ R5 to

Resx(g(x)− y, g′(x)) = w(y+ 2)y(y− 1)(y− 2).

Equating coefficients of yi, I get five equations

in five unknowns. My computer found in under

a second that there are five solutions. Graphed

and superimposed (in the hope of extra credit)

they are as follows:
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The student’s five solutions are built from the
five real roots of

f(e) = 2079263897024353275804967432617984e25

−12995399356402207973781046453862400e24

+9374285473238051064420181947187200e23

+100171812470626687586960200119091200e22

−207274514053690075406151629301350400e21

−244406484856919441683050089498542080e20

+1018619600135728807198151502358118400e19

−122674532124649317215805251990323200e18

−2367571404689391730495189106766643200e17

+1831738283131124174860191153940070400e16

+2683310021048401614467880844095651840e15

−3981140634442078421173272691762790400e14

−763656430829269872084534157954252800e13

+3996188947051596472727329385427763200e12

−1409518402855897344220921443362406400e11

−1810485694386063356167980856203612160e10

+1553867175541849527507008912881376900e9

+56743922361314868816389478767887800e8

−505592705680489994912636389194041700e7

+165494400692971549220915707093686900e6

+22273319577181658254915819239436920e5

−13748301792342333982413241472039400e4

−1365080000359694290741733941979175e3

+464542350701898155360407600616950e2

+90817899583985126224506334951600e
+4543326944239835953052526892234



K = Q[e]/f(e) is a Hurwitz number field. We

are working with quintic polynomials and our

specialization polynomial

s(y) = (y + 2)y(y − 1)(y − 2)

has discriminant 2832. Theory then says disc(K)

has the form ±2∗3∗5∗.

Computation says

disc(K) = 256334530,

Gal(K) = A25.

Hence F{2,3,5}(25) ≥ 1.

Changing the specialization polynomial to other

quartic polynomials with bad reduction within

{2,3,5} gives F{2,3,5}(25) ≥ 10983.



4. General definitions. A Hurwitz parameter
is a triple h = (G,C, ν) where

• G is a finite group with trivial center,

• C = (C1, . . . , Cr) is a list of distinct non-
identity rational conjugacy classes,

• ν = (ν1, . . . , νr) is a list of positive integers,

• The quotient elements [Ci] generate Gab

and satisfy
∏

[Ci]
νi = 1.

Notation: P = (Primes dividing |G|)
and n =

∑
νi.

Example from previous section

h = (S5, (2111,5), (4,1))

P = {2,3,5}
n = 5



A Hurwitz parameter h = (G,C, ν) together
with a normalization convention determines an
unramified covering of (n − 3)-dimensional Q-
varieties

πh : Xh → Uν.

(of degree m about
∏
i |Ci|

νi

|G||G′| ).

• The cover Xh(C) parameterizes covers of
the projective line P1 “of type h.”

• The base Uν(C) is the variety whose points
are normalized tuples (D1, . . . , Dr) of dis-
joint divisors Di of P1, with Di consisting
of νi distinct points.

• The map πh sends a cover to its branch
locus.

In our example, u = (D1, D2) = ({−2,0,1,2}, {∞})
is a point in U4,1(Q). The fiber π−1

h (u) ⊆
Xh(Q) consists of 25 Gal(Q/Q)-conjugate points.



The cover πh : Xh → Uν can be captured by a
polynomial equation

fh(u1, . . . , un−3;x) = 0.

For u = (u1, . . . , un−3) ∈ Qn−3 the algebra

Kh,u = Q[x]/fh(u1, . . . , un−3;x)

corresponds to the fiber over Q. A Hurwitz
number field is a field of the form Kh,u.

For generic u, the Galois groups Gal(Kh,u) ⊆
Sm all agree with a common group Galh com-
putable purely geometrically via braid groups.
We say h is full if Galh is Am or Sm.

The cover extends smoothly over Z[1/P ]. For
u ∈ Uν(Z[1/P ]), Kh,u has bad reduction within
P . For fixed nonempty P , the sets Uν(Z[1/P ])
can be arbitrarily large.

A natural guess is that for u ∈ Uν(Z[1/P ]) the
fields Kh,u are mostly pairwise non-isomorphic
and usually Gal(Kh,u) = Galh.



5. A geometric theorem towards the con-
jecture

With Venkatesh we are studying the conditions
on h = (G,C, ν) that make Xh → Uν full (i.e.
Galh ∈ {Am, Sm})

A special case of our theorem:

Theorem. Suppose
• G is simple
• Out(G) is trivial.
• H2(G,Z) is trivial.
Then Xh → Uν is full for mini νi sufficiently
large.

The full theorem weakens all assumptions and
gets a more complicated conclusion of the same
nature.

The full theorem gives enough covers to prove
the unboundedness conjecture, unless special-
ization to fibers above Uν(Z[1/P ]) behaves ex-
tremely non-generically.



6. Arithmetic evidence supporting the con-
jecture. Example with P = {2,3,5}:

X(S6,(21111,321,3111,411),(2,1,1,1)) → U2,1,1,1

is full and |U2,1,1,1(Z[1/P ])| = 2947. In explicit
terms, we have a polynomial f(u1, u2, x) of de-
gree 202 in x and 2947 pairs

u = (u1, u2) ∈ Q2

which keep all ramification of

Kh,u = Q[x]/f(u1, u2, x)

within {2,3,5}. Computation gives:

A: The 2947 Kh,u are all non-isomorphic.
B: They are all full.

Hence F{2,3,5}(202) ≥ 2947. (The mass heuris-
tic gives

∑
m≥202 F{2,3,5}(m) ≤ 10−15).

Specialization at all other studied families is
always at or very near generic expectations.
To establish the conjecture, one would need
only very weak versions of A and B for general
h.


