Division polynomials with Galois group
SU3(F3).2 = G2(F2)
David P. Roberts
University of Minnesota, Morris

General Inverse Galois Problem. Given a
finite group G, find number fields with Galois
group G, preferably of small discriminant.

Our case today. G = SU3(F3).2 = G»(F5) of
order 12096 = 25.33.7. We'll produce two
related two-parameter polynomials:

f1(p, q; x) 2% + .. € Q(p, @) =],
fola,b;2) = x4 € Q(a,b)[x].

Connections with:

1. Rigid four-tuples in G

Motives with Galois group Us, Spg, Go
. Three-point covers with Galois group G
Number fields with Galois group G
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1. RIigid four-point covers. Mass formulas
give five four-tuples of conjugacy classes in G’
giving rigid four-point covers of P1(C):

(4A, 4A, 4A, 2A), (34, 3A, 34, 4B),
(4A, 4A, 4A, 4B),
(44, 4A, 3A, 34), (2A, 2A, 3A, 4A).

All other quadruples are far from rigid.

Let Mgps be the moduli space of five labeled
points in the projective line. The left two four-
tuples give the same cover of Mps and this
cover has S3 x So symmetry. The right three
give a cover of Mg s having S3 symmetry:




Our covers descend to covers of bases

Uso = Mps/(S3x 52),
Us11 = Mps/Sa.

T hey are correlated by a cubic correspondence:

. X0 Q(z0,y0)

e / .
X1 X Q(z1,y1) Q(z2,y2)
" U " Q(u, v)

4 3 N
Us2 Us11 Q(a, b) Q(p,q)

It is remarkable that the three fields upstairs
are also rational.

We seek to algebraically describe w1 and wo by
polynomial relations

fl(a7b7x1) $%8+:O7
f2(p7Q7$2) — 3358_'_ .- = 0.



2A. Motives with Galois group Uj. Deligne
and Mostow studied families of covers
y? = f(uq, ..., un;z)
of the z-line. Two of their first examples are
2
y4 — (332—|—233—|-1—4u) (x2—2x—|—1—4v)
(genus 3),

y? (w—1)3w2(w2—|-ux—va:—x—|—v>
(genus 4).

They prove that the Jacobian J; of the first is
a factor of the Jacobian J, of the second.

The 3-torsion points of either cover correspond
toour mg : Xg — U. There are natural descents
to families of curves

|_|1 : Cl — U3’2, |_|2 . 02 — U3’171.
On 3-torsion, these become our

w1 X1 —=>Uzp, mp!Xo—U3z7171.

We get explicit polynomials for the m; via this
connection; hundreds of terms in each case.
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2B. Motives with Galois group Spg. Shioda
studied the family of degree four plane curves

3+ (y> +ey+e) e+ (ay* +by > +dy°+ fy+g) = 0

in the z-y plane.

He obtained an explicit 1784-term polynomial
with Galois group Spg(F>) corresponding to
their 2-torsion:

S(a,b,c,d,e, f,g,z) = 228 _8az2"’ + 72b22° + .-

This polynomial is universal for Spg(F>) and
so, via G = G»(F») C Spg(F>), our polynomials
must be specializations.

In fact, our mg is given via w=u—v+ 1 by

S(1,w, —3u, 0, —uw, —uw, —u?; z) = 0.

Our m1 and mo are given by much more com-
plicated formulas.



2C. Motives with Galois group G»o.

matrices a, b, ¢, and d:
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Then abed = 1 and the Zariski-closure of the
group {a,b, c,d) is the algebraic group Go. This
monodromy representation underlies a family
of Go motives appearing in a classification of
similar families by Dettweiler and Reiter.

In GL7(F5), the matrices generate G»(F5)’ and
(a,b,c,d) is in our rigid class (2A,2A,3A,4A).

Hence mo

: Xo — Uz 1,1 also functions as a

division polynomial for a family of Go motives.

In all three cases, our explicit division polyno-
mials aid in studying the source motives.
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3. Specialization to three-point covers. A
picture of Uz >(R) inside the a-b plane and its
complementary discriminant locus (thick):

10+

To review, the drawn space is the base of our
degree twenty-eight cover w1 : X1 — U3z 2.

Preimages of the thin curves are three-point
covers, all of positive genus. It would be hard
to construct these three-point covers directly.
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4. Specialization to number fields. A sim-
ilar picture of Uz 1 1(R) inside the p-q plane,
with some specialization points now added:
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The points (pg, g0) € Uz 1.1(Q) C Q2 are chosen
so that K = Q[z]/ f2(po, qo; ) has discriminant
of the form 293%. More than 300 such fields
with Galois group SU3(F3).2 = G»(IF») are ob-
tained. It would be hard to construct these
fields by purely number-theoretic methods.
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A particular specialization:

The point (pg,q0) = (1,1/2) gives a number
field with Galois group SU3(F3).2 = Go(F»)
and the very small field discriminant 200346,
A defining polynomial is

28 — 4227 -+ 1822° — 6022° -+ 16522 — 420423
4798222 — 1440221 4+ 2040220 — 229241
42478218 — 756217 — 657210 + 1464415
—4920x% 4 3072213 — 1068212 + 3768211
+1752210 — 46802° — 111628 + 67227 4+ 18002°
—240z° — 2162% — 19223 + 2422 + 32z + 4.

Close 2- and 3-adic analysis says that the root
discriminant of the Galois closure is

~43/163125/72 | 43 39

For comparison, extensive searches have been

done on the smaller group S7 and the larger

group Sg, with smallest known Galois root dis-

criminants being 40.49 and 43.99, respectively.
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A paper corresponding to the talk is in
preparation.
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