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General Inverse Galois Problem. Given a

finite group G, find number fields with Galois

group G, preferably of small discriminant.

Our case today. G = SU3(F3).2 = G2(F2) of

order 12096 = 26 · 33 · 7. We’ll produce two

related two-parameter polynomials:

f1(p, q;x) = x28 + · · · ∈ Q(p, q)[x],

f2(a, b;x) = x28 + · · · ∈ Q(a, b)[x].

Connections with:

1. Rigid four-tuples in G

2. Motives with Galois group U3, Sp6, G2

3. Three-point covers with Galois group G

4. Number fields with Galois group G
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1. Rigid four-point covers. Mass formulas
give five four-tuples of conjugacy classes in G′

giving rigid four-point covers of P1(C):

(4A, 4A, 4A, 2A),

(4A, 4A, 3A, 3A),

(3A, 3A, 3A, 4B),
(4A, 4A, 4A, 4B),
(2A, 2A, 3A, 4A).

All other quadruples are far from rigid.

Let M0,5 be the moduli space of five labeled
points in the projective line. The left two four-
tuples give the same cover of M0,5 and this
cover has S3 × S2 symmetry. The right three
give a cover of M0,5 having S3 symmetry:
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Our covers descend to covers of bases

U3,2 := M0,5/(S3 × S2),

U3,1,1 := M0,5/S3.

They are correlated by a cubic correspondence:
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It is remarkable that the three fields upstairs

are also rational.

We seek to algebraically describe π1 and π2 by

polynomial relations

f1(a, b, x1) = x28
1 + · · · = 0,

f2(p, q, x2) = x28
2 + · · · = 0.
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2A. Motives with Galois group U3. Deligne
and Mostow studied families of covers

yd = f(u1, . . . , un;x)

of the x-line. Two of their first examples are

y4 =
(
x2 + 2x+ 1− 4u

)2 (
x2 − 2x+ 1− 4v

)
(genus 3),

y4 = (x− 1)3x2
(
x2 + ux− vx− x+ v

)
(genus 4).

They prove that the Jacobian J1 of the first is
a factor of the Jacobian J2 of the second.

The 3-torsion points of either cover correspond
to our π0 : X0 → U . There are natural descents
to families of curves

Π1 : C1 → U3,2, Π2 : C2 → U3,1,1.

On 3-torsion, these become our

π1 : X1 → U3,2, π2 : X2 → U3,1,1.

We get explicit polynomials for the πi via this
connection; hundreds of terms in each case.
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2B. Motives with Galois group Sp6. Shioda

studied the family of degree four plane curves

x3+(y3+cy+e)x+(ay4+by3+dy2+fy+g) = 0

in the x-y plane.

He obtained an explicit 1784-term polynomial

with Galois group Sp6(F2) corresponding to

their 2-torsion:

S(a, b, c, d, e, f, g; z) = z28−8az27 + 72bz25 + · · ·

This polynomial is universal for Sp6(F2) and

so, via G = G2(F2) ⊂ Sp6(F2), our polynomials

must be specializations.

In fact, our π0 is given via w = u− v + 1 by

S(1, w,−3u,0,−uw,−uw,−u2; z) = 0.

Our π1 and π2 are given by much more com-

plicated formulas.
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2C. Motives with Galois group G2. Define
matrices a, b, c, and d:

1
1

1
−3 1 1

3 −1 1
9 −3 1
−1 3 −1 2 −1 1




1 3 −1
1 9 −3
−2 1
−9 4

1
1

−3 1 1




1 −1 −3
3 −2

1 −1 3
3 −2 6

1 −1 −3
3 −2

1




10 −5 9 −5 −6
15 −8 18 −9 −9

1
−3 2 −3 1 −6 3 3

9 −5 10 −5 −6
18 −9 15 −8 −9
−2 1 −2 1 1


Then abcd = 1 and the Zariski-closure of the
group 〈a, b, c, d〉 is the algebraic group G2. This
monodromy representation underlies a family
of G2 motives appearing in a classification of
similar families by Dettweiler and Reiter.

In GL7(F2), the matrices generate G2(F2)′ and
(a, b, c, d) is in our rigid class (2A,2A,3A,4A).
Hence π2 : X2 → U3,1,1 also functions as a
division polynomial for a family of G2 motives.

In all three cases, our explicit division polyno-
mials aid in studying the source motives.
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3. Specialization to three-point covers. A
picture of U3,2(R) inside the a-b plane and its
complementary discriminant locus (thick):

-30 -20 -10 0 10

-5

0

5

10

To review, the drawn space is the base of our
degree twenty-eight cover π1 : X1 → U3,2.

Preimages of the thin curves are three-point
covers, all of positive genus. It would be hard
to construct these three-point covers directly.
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4. Specialization to number fields. A sim-
ilar picture of U3,1,1(R) inside the p-q plane,
with some specialization points now added:
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The points (p0, q0) ∈ U3,1,1(Q) ⊂ Q2 are chosen
so that K = Q[x]/f2(p0, q0;x) has discriminant
of the form 2a3b. More than 300 such fields
with Galois group SU3(F3).2 = G2(F2) are ob-
tained. It would be hard to construct these
fields by purely number-theoretic methods.
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A particular specialization:

The point (p0, q0) = (1,1/2) gives a number

field with Galois group SU3(F3).2 = G2(F2)

and the very small field discriminant 266346.

A defining polynomial is

x28 − 4x27 + 18x26 − 60x25 + 165x24 − 420x23

+798x22 − 1440x21 + 2040x20 − 2292x19

+2478x18 − 756x17 − 657x16 + 1464x15

−4920x14 + 3072x13 − 1068x12 + 3768x11

+1752x10 − 4680x9 − 1116x8 + 672x7 + 1800x6

−240x5 − 216x4 − 192x3 + 24x2 + 32x+ 4.

Close 2- and 3-adic analysis says that the root

discriminant of the Galois closure is

243/163125/72 ≈ 43.39

For comparison, extensive searches have been

done on the smaller group S7 and the larger

group S8, with smallest known Galois root dis-

criminants being 40.49 and 43.99, respectively.
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A paper corresponding to the talk is in

preparation.
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