Division polynomials with Galois group

$\mathrm{SU}_{3}\left(\mathbb{F}_{3}\right) \cdot 2=\mathrm{G}_{2}\left(\mathbb{F}_{2}\right)$
David P. Roberts
University of Minnesota, Morris

General Inverse Galois Problem. Given a finite group G, find number fields with Galois group G, preferably of small discriminant.

Our case today. $G=S U_{3}\left(\mathbb{F}_{3}\right) \cdot 2=G_{2}\left(\mathbb{F}_{2}\right)$ of order $12096=2^{6} \cdot 3^{3} \cdot 7$. We'll produce two related two-parameter polynomials:

$$
\begin{aligned}
& f_{1}(p, q ; x)=x^{28}+\cdots \in \mathbb{Q}(p, q)[x], \\
& f_{2}(a, b ; x)=x^{28}+\cdots \in \mathbb{Q}(a, b)[x] .
\end{aligned}
$$

Connections with:

1. Rigid four-tuples in G
2. Motives with Galois group $U_{3}, S p_{6}, G_{2}$
3. Three-point covers with Galois group G
4. Number fields with Galois group G
5. Rigid four-point covers. Mass formulas give five four-tuples of conjugacy classes in G^{\prime} giving rigid four-point covers of $\mathbb{P}^{1}(\mathbb{C})$:
(4A, 4A, 4A, 2A),
(3A, 3A, 3A, 4B),
(4A, 4A, 4A, 4B),
(4A, 4A, 3A, 3A),
($2 A, 2 A, 3 A, 4 A$).

All other quadruples are far from rigid.
Let $M_{0,5}$ be the moduli space of five labeled points in the projective line. The left two fourtuples give the same cover of $M_{0,5}$ and this cover has $S_{3} \times S_{2}$ symmetry. The right three give a cover of $M_{0,5}$ having S_{3} symmetry:

Our covers descend to covers of bases

$$
\begin{aligned}
U_{3,2} & :=M_{0,5} /\left(S_{3} \times S_{2}\right), \\
U_{3,1,1} & :=M_{0,5} / S_{3}
\end{aligned}
$$

They are correlated by a cubic correspondence:

It is remarkable that the three fields upstairs are also rational.

We seek to algebraically describe π_{1} and π_{2} by polynomial relations

$$
\begin{aligned}
& f_{1}\left(a, b, x_{1}\right)=x_{1}^{28}+\cdots=0 \\
& f_{2}\left(p, q, x_{2}\right)=x_{2}^{28}+\cdots=0
\end{aligned}
$$

2A. Motives with Galois group U_{3}. Deligne and Mostow studied families of covers

$$
y^{d}=f\left(u_{1}, \ldots, u_{n} ; x\right)
$$

of the x-line. Two of their first examples are

$$
\begin{aligned}
y^{4}= & \left(x^{2}+2 x+1-4 u\right)^{2}\left(x^{2}-2 x+1-4 v\right) \\
& \text { (genus 3), }
\end{aligned}
$$

$$
\begin{aligned}
y^{4}= & (x-1)^{3} x^{2}\left(x^{2}+u x-v x-x+v\right) \\
& (\text { genus 4). }
\end{aligned}
$$

They prove that the Jacobian J_{1} of the first is a factor of the Jacobian J_{2} of the second.

The 3-torsion points of either cover correspond to our $\pi_{0}: X_{0} \rightarrow U$. There are natural descents to families of curves

$$
\Pi_{1}: C_{1} \rightarrow U_{3,2}, \quad \Pi_{2}: C_{2} \rightarrow U_{3,1,1}
$$

On 3-torsion, these become our

$$
\pi_{1}: X_{1} \rightarrow U_{3,2}, \quad \pi_{2}: X_{2} \rightarrow U_{3,1,1}
$$

We get explicit polynomials for the π_{i} via this connection; hundreds of terms in each case.

2B. Motives with Galois group $S p_{6}$. Shioda studied the family of degree four plane curves $x^{3}+\left(y^{3}+c y+e\right) x+\left(a y^{4}+b y^{3}+d y^{2}+f y+g\right)=0$ in the $x-y$ plane.

He obtained an explicit 1784-term polynomial with Galois group $\operatorname{Sp} p_{6}\left(\mathbb{F}_{2}\right)$ corresponding to their 2-torsion:
$S(a, b, c, d, e, f, g ; z)=z^{28}-8 a z^{27}+72 b z^{25}+\cdots$
This polynomial is universal for $S p_{6}\left(\mathbb{F}_{2}\right)$ and so, via $G=G_{2}\left(\mathbb{F}_{2}\right) \subset S p_{6}\left(\mathbb{F}_{2}\right)$, our polynomials must be specializations.

In fact, our π_{0} is given via $w=u-v+1$ by

$$
S\left(1, w,-3 u, 0,-u w,-u w,-u^{2} ; z\right)=0
$$

Our π_{1} and π_{2} are given by much more complicated formulas.

2C. Motives with Galois group G_{2}. Define matrices a, b, c, and d :

Then $a b c d=1$ and the Zariski-closure of the group $\langle a, b, c, d\rangle$ is the algebraic group G_{2}. This monodromy representation underlies a family of G_{2} motives appearing in a classification of similar families by Dettweiler and Reiter.

In $G L_{7}\left(\mathbb{F}_{2}\right)$, the matrices generate $G_{2}\left(\mathbb{F}_{2}\right)^{\prime}$ and (a, b, c, d) is in our rigid class ($2 A, 2 A, 3 A, 4 A$). Hence $\pi_{2}: X_{2} \rightarrow U_{3,1,1}$ also functions as a division polynomial for a family of G_{2} motives.

In all three cases, our explicit division polynomials aid in studying the source motives.
3. Specialization to three-point covers. A picture of $U_{3,2}(\mathbb{R})$ inside the $a-b$ plane and its complementary discriminant locus (thick):

To review, the drawn space is the base of our degree twenty-eight cover $\pi_{1}: X_{1} \rightarrow U_{3,2}$.

Preimages of the thin curves are three-point covers, all of positive genus. It would be hard to construct these three-point covers directly.
4. Specialization to number fields. A similar picture of $U_{3,1,1}(\mathbb{R})$ inside the $p-q$ plane, with some specialization points now added:

The points $\left(p_{0}, q_{0}\right) \in U_{3,1,1}(\mathbb{Q}) \subset \mathbb{Q}^{2}$ are chosen so that $K=\mathbb{Q}[x] / f_{2}\left(p_{0}, q_{0} ; x\right)$ has discriminant of the form $2^{a} 3^{b}$. More than 300 such fields with Galois group $S U_{3}\left(\mathbb{F}_{3}\right) .2=G_{2}\left(\mathbb{F}_{2}\right)$ are obtained. It would be hard to construct these fields by purely number-theoretic methods.

A particular specialization:

The point $\left(p_{0}, q_{0}\right)=(1,1 / 2)$ gives a number field with Galois group $S U_{3}\left(\mathbb{F}_{3}\right) \cdot 2=G_{2}\left(\mathbb{F}_{2}\right)$ and the very small field discriminant $2^{66} 3^{46}$. A defining polynomial is

$$
\begin{aligned}
& x^{28}-4 x^{27}+18 x^{26}-60 x^{25}+165 x^{24}-420 x^{23} \\
& +798 x^{22}-1440 x^{21}+2040 x^{20}-2292 x^{19} \\
& +2478 x^{18}-756 x^{17}-657 x^{16}+1464 x^{15} \\
& -4920 x^{14}+3072 x^{13}-1068 x^{12}+3768 x^{11} \\
& +1752 x^{10}-4680 x^{9}-1116 x^{8}+672 x^{7}+1800 x^{6} \\
& -240 x^{5}-216 x^{4}-192 x^{3}+24 x^{2}+32 x+4 .
\end{aligned}
$$

Close 2- and 3-adic analysis says that the root discriminant of the Galois closure is

$$
2^{43 / 16} 3^{125 / 72} \approx 43.39
$$

For comparison, extensive searches have been done on the smaller group S_{7} and the larger group S_{8}, with smallest known Galois root discriminants being 40.49 and 43.99, respectively.

A paper corresponding to the talk is in preparation.

References for the three parts of $\S 2$:
A. Pierre Deligne and George Daniel Mostow. Commensurabilities among lattices in $\operatorname{PU}(1, n)$. Annals of Mathematics Studies, 132. Princeton University Press, 1993. viii+183 pp.
B. Tetsuji Shioda. Plane quartics and MordellWeil lattices of type E7. Comment. Math. Univ. St. Paul. 42 (1993), no. 1, 61-79.
C. Michael Dettweiler and Stefan Reiter. The classification of orthogonally rigid G2-local systems. Arxiv: 1103.5878v2. To appear in Trans. of the AMS. (Relevant family is P5.1 in §6.4. Matrices from e-mail from Reiter)

