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1. Wild partitions. A typical partition of 20:

µordinary = 9 + 3 + 3 + 2 + 2 + 1.

Fix a prime p and positive integers e0 and f0.
We define a new notion of (p, e0, f0)-wild parti-
tion, with definitions incorporating the Krasner
mass formula from local algebraic number the-
ory. A typical (3,2,1)-wild partition of 20:

µwild = 913;1,1,0,2,2 + 31;i + 31;−i + 2 + 2 + 1.

The first subscript on a part is a discrete in-
variant, its wild conductor cw. The second
subscript is a continuous invariant, a vector in
Fd(cw)
p , where d(cw) weakly increases with cw.

For e a positive integer, put w = ordp(e) and
accordingly factor e into its tame and wild parts
tpw. If w = 0, the only possible subscript
pair on e is 0; 0 and these are omitted. For
w > 0, the allowed first subscripts run over
a set Ore(p, e0, e) ⊂ {1, . . . , we0e}. The final
part of the definition of (p, e0, f0)-wild parti-
tion is stability under the Frobenius operator
v 7→ vp

f0, acting on second subscripts.



As an example, the set of Ore numbers for

(p, e0, e) = (3,2,9) is

8 7 . 5 4 . 2 1 .
17 16 . 14 13 . 11 10 .
26 25 24 23 22 21 20 19 .
35 34 33 32 31 30 29 28 .

36

In general, Ore(p, e0, e) consists of w full blocks,

each with e0 rows and e columns, followed by

the single entry we0e. The jth block omits ev-

ery pj th number.

The dimension d(cw) is the number of omitted

integers less than cw.

Second subscripts are required to have first co-

ordinate non-zero except in the maximal case

cw = we0e.



The tame conductor of any part e is by defini-
tion e− 1. So wild partitions have three addi-
tive discrete invariants, the degree n, the tame
conductor ct, and the wild conductor cw. For
our example above, (n, ct, cw) = (20,14,15).

Let λp,e0,f0;n,ct,cw be the number of (p, e0, e)-
wild partitions with invariants (n, ct, cw). Let

Λp,e0,f0
(x, y, z) =

∞∑
n=0

∞∑
ct=0

∞∑
cw=0

λp,e0,f0;n,ct,cwx
nyctzcw.

The definitions yield

Λp,e0,f0
(x, y, z) =

∞∏
e=1

∏
cw∈Ore(p,e0,e)

Λp,e0,f0;e,cw(x, y, z).

A remarkable specialization is (y, z) = (1, p−f0).
Then the e-factor becomes 1/(1− xe) so that

Λp,e0,f0
(x,1, p−f0) =

∞∏
e=1

1

1− xe
=: Λ(x).

This is the Serre mass formula translated to
our abstract context.



We are interested instead in the specialization
(y, z) = (1,1) which gives an unweighted count
of wild partitions.

Theorem. The e-factor of Λp,e0,f0
(x,1,1) de-

pends on e0 and f0 only through n0 = e0f0.
Putting Q = pn0, it is

ΛQ;e(x) =

∏w−1
j=0 (1−Q(pw−pw−j)t/(p−1)xe)(p−1)pj

(1−Q(pw−1)t/(p−1)xe)pw
.

Explicitly,

ΛQ;t(x) =
1

1− x
,

ΛQ;pt(x) =
(1− xe)p−1

(1−Qtxe)p
,

ΛQ;p2t(x) =
(1− xe)p−1(1−Qptxe)p2−p

(1−Q(p+1)txe)p2 .

The theorem allows us to regard Q as a variable
running over [1,∞), independent from p. In
the resulting product Λp,Q(x) =

∏
eΛp,Q;e(x),

the case Q = 1 reduces to Λ(x) independent
of p.



2. Analytic number theory. Hardy and Ra-
manujan used the generating function

Λ(x) =
∞∑
n=0

λnx
n =

∞∏
e=1

1

1− xe

= 1 + x+ 2x2 + 3x3 + 5x4 + 7x5 + · · ·
to prove the asymptotic formula

λn ∼
eπ
√

2n/3

4n
√

3
.

One can ask about the asymptotics of our
λp,Q,n, expecting use the corresponding gen-
erating functions, e.g.

Λ2,2(x) =
1

1− x
·

1− x2(
1− 2x2

)2 ·
1

1− x3
·

(
1− x4

) (
1− 4x4

)2

(
1− 8x4

)4 ·
1

1− x5
·

1− x6(
1− 8x6

)2 · · · ·

= 1 + x+ 4x2 + 5x3 + 36x4 + 40x5 + 145x6 + 180x7 + 1572x8 + 1712x9 + · · · ,

Λ3,3(x) =
1

1− x
·

1

1− x2
·

(
1− x3

)2

(
1− 3x3

)3 ·
1

1− x4
·

1

1− x5
·

(
1− x6

)2

(
1− 9x6

)3 · · · ·

= 1 + x+ 2x2 + 9x3 + 11x4 + 19x5 + 83x6 + 99x7 + 172x8 + 1100x9 + · · · .



Let Θp(x) = Λ(x)/Λ(xp). Then Θp(x) is the
theta-function whose coefficients count “p-cores.”
Its radius of convergence is 1. Examples:

Θ2(x) =
∞∑

j=−∞
x2j2−j

= 1 + x+ x3 + x6 + x10 + x15 + · · ·

Θ3(x) =
∞∑

j=−∞

∞∑
k=−∞

x3(j2+jk+k2)−j−2k

= 1 + x+ 2x2 + 2x4 + x5 + 2x6 + · · ·

From the theorem giving the e-factors of Λp,Q(x),
one gets

Corollary.

Λp,Q(x) =
∞∏
j=0

Θp(Q
(pj−1)/(p−1)xp

j
)p
j
.

From this corollary, one gets that the radius
of convergence of Λp,Q(x) is Q−1/(p−1). Thus

lim supλ
1/n
p,Q,n = Q1/(p−1).



In contrast with the number λn of ordinary
partitions, the number λp,Q,n of wild partitions
grows irregularly. Evidence overwhelmingly sug-
gests that λp,Q,n/λp,Q,n−1 does not tend to the
growth factor Q1/(n−1). Instead there are con-
tributions to the ratio λp,Q,n/λp,Q,n−1 of period
p, smaller ones of period p2, etc. The conjec-
tural Fourier analysis on the next slide gives all
these contributions in terms of the singularities
of Λp,Q(x) on its boundary circle.

Contour plots of |Λ2,2(x)| and |Λ3,3(x)| on their
disks of convergence:



Define

ĉp,Q(y) =
∞∏
j=0

Θp(Q−1/(p−1)yp
j
)

Θp(Q−1/(p−1))

pj

for y on the unit circle. It is supported on
p-power roots of unity.

Define

cp,Q(n) =
∑
y
y−nĉp,Q(y),

the sum being over p-power roots of unity.
This real-valued function on Z extends to a
continuous function on Zp and is designed to
capture the oscillatory aspects of the λp,Q,n.

Conjecture. There are functions Ap(Q), Bp(Q),
and Cp(Q) such that

λp,Q,n ∼ cp,Q(n)Cp(Q)nBp(Q)eAp(Q)
√
nQn/(p−1).

The conjecture fits well with calculations in the
range 0 ≤ n ≤ 4000.



Local Algebraic Number Theory. Let F be
a finite extension of one of the local fields R,
Q2, Q3, Q5, . . . . If K/F is an algebra extension,
then its mass is 1/|Aut(K/F )|. The total mass
of degree n field extensions is denoted φF,n.
The total mass of degree n algebra extensions
is λF,n. Let

ΦF (x) =
∞∑
n=1

φF,nx
n, ΛF (x) =

∞∑
n=0

λF,nx
n.

Because of the way algebras are built from
fields, always ΛF (x) = exp(ΦF (x)).

Archimedean cases. The only algebra exten-
sions of C are Cn, with mass 1/n!. The only
algebra extensions of R are RrCs with mass
1/(r!s!2s). One has

ΛC(x) = ex = 1 + x+
1

2
x2 +

1

6
x3 + · · ·

ΛR(x) = ex+x2/2 = 1 + x+ x2 +
4

6
x3 + · · ·

Note both the super-exponential decay and the
non-integrality of the coefficients.



Ultrametric cases. Now suppose F is a degree

n0 extension of Qp with ramification index e0

and inertial degree f0. An algebra extension

of F has not only a degree n, but also a tame

conductor ct, and a wild conductor cw. Let

ΛF (x, y, z) =
∞∑
n=0

∞∑
ct=0

∞∑
cw=0

λF ;n,ct,cwx
nyctzcw

where λF ;n,ct,cw is the total mass of algebras

with the indicated invariants.

Wild partitions are defined exactly so that

ΛF (x, y, z) = Λp,e0,f0
(x, y, z).

In particular, taking (y, z) = (1,1), one has

ΛF (x) = ΛQ(x). The previous asymptotics ap-

ply and so λF,n grows roughly geometrically as

Qn/(p−1). Working with geometric packets of

local fields, all of which have total mass one,

gives a bijective correspondance with wild par-

titions and explains integrality.



4. Global Algebraic Number Theory. Let
F be a number field and let S be a finite set of
places. If S is at all large, then various tech-
niques allow one to construct extension fields
K/F ramified only within S. For example, take
F = Q and S = {∞, p, `}. Then one can get

• infinitely many nilpotent fields by iterated
pth or `th roots.

• infinitely many solvable fields by mixing pth

and `th roots.

• infinitely many extensions involving PSL2(pf)
or PSL2(`f) via modular forms

• many extensions involving groups like Sp2k(`)
or Sp2k(p) from the ABC construction.

Ironically, there seems to be no systematic way
to get An or Sn extensions!



Conjecture. There is a largest nF,S such that
F has no An or Sn extensions ramified within
S for n > nF,S.

P.S. While the arguments below are reason-
able, the conjecture is now to be regarded as
highly implausible because of Hurwitz Number
Fields as described in later talks.

Strong support. A local-global heuristic of
Bhargava says that the “expected mass” of
such fields, taking all archimedean places in S,
is

1

2

∏
v∈S

λFv,n,

and this quantity decays super-exponentially to
zero. �

The analogous conjecture for F a function field
fails extremely badly, but for two understand-
able reasons. First if n is at least the charac-
teristic, each λFv,n is already infinite. Second,
there are no archimedean places contributing
super-exponentially decaying factors.



For F = Q and S = {∞,2,3}, complete col-
lections of fields (with Jones) and incomplete
collection of fields (with Malle) are compared
with Bhargava’s heuristic:

10 20 30 40 50 60

10

100

1000

10000

100000

1000000

Comparison with complete lists suggests that
Bhargava’s heuristic is too high when discrimi-
nants are very low, as in these cases. Compar-
ison with incomplete lists suggests that more-
over these lists are very incomplete indeed.

Similar comparisons with Driver’s complete lists
of fields for F quadratic show again that Bhar-
gava’s heuristic captures relative magnitudes
well but is too large for small discriminants.


