
NEWFORMS WITH RATIONAL COEFFICIENTS

DAVID P. ROBERTS

Abstract. We consider the set of classical newforms with rational coefficients

and no complex multiplication. We study the distribution of quadratic-twist

classes of these forms with respect to weight k and minimal level N . We
conjecture that for each weight k ≥ 6, there are only finitely many classes. In

large weights, we make this conjecture effective: in weights 18 ≤ k ≤ 24, all

classes have N ≤ 30, in weights 26 ≤ k ≤ 50, all classes have N ∈ {2, 6}, and
in weights k ≥ 52, there are no classes at all. We study some of the newforms

appearing on our conjecturally complete list in more detail, especially in the

cases N = 2, 3, 4, 6, and 8, where formulas can be kept nearly as simple as
those for the classical case N = 1.

1. Introduction

1.1. A finiteness conjecture, effective in large weights. Classical newforms,
as reviewed in next section, are certain power series g =

∑∞
n=1 anq

n ∈ C[[q]] which
play an important role in arithmetic geometry. This paper is a contribution to
cataloging newforms for which all the coefficients an are rational. We exclude
newforms with complex multiplication, as CM newforms with rational coefficients
have been comprehensively treated by Schütt [Sch09]. We quotient out by the
operation of quadratic twisting, thereby replacing infinitely many newforms gχ by
a single twist-class of newforms [g]. Our focus is then on the finite sets Qk(N)
of twist-classes of newforms with rational coefficients, no complex multiplication,
and minimal level N . Here the weight k runs over positive even integers, while the
minimal level N runs over positive integers.

The computer algebra system Magma [BCP97] lets one easily identify Qk(N) for
kN sufficiently small. Table 1.1 presents the sizes |Qk(N)| for k ≤ 50 and N ≤ 30,
as well as related information. We expect in particular that for k ≥ 18, the table
accounts for everything:

Conjecture 1.1. For 6 ≤ k ≤ 50 there is a largest Nk with |Qk(Nk)| ≥ 1. For
18 ≤ k ≤ 50, this Nk is either 30, 10, 6, or 2, as reported on Table 1.1. For k ≥ 52,
there are no non-CM newforms with rational coefficients at all.

Restricted to N = 1, our conjecture is a weak version of the well-known Maeda
conjecture [HM97]. For N > 1, our conjecture is similarly related to a natural
generalization of the Maeda conjecture [Tsa14, DT16]. The boldface entries on
Table 1.1 reflect factorizations of Hecke polynomials that this generalization says
never happens for k sufficiently large. Thus a novelty of Conjecture 1.1 is its
effectivity: it says that for k ≥ 18, there are only the indicated exceptions for
N = 3, 15, and 22.

1.2. Further discussion of the conjecture. Let #k =
∑∞
N=1 |Qk(N)|, which

a priori may be infinite or finite. The situation changes as k increases as follows.
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2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
1 1 1 1 1 1 1
2 1 1 2 1 1 2 2 1 1 2 2 1 1 2 1 1 1
3 1 1 2 1 1 2 1 1 2 1
4 1 1 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1 3 1 3 3 3 3 3 3 3 3 3 3 1 3 1 1 1 1 1
7 1 1 1
8 1 1 2 2 1 1 2
9

10 1 3 1 3 3 3 3 1 3 1 1
11 1 1
12 1 2 1 2 2 1 2 1
13 1 1
14 1 2 2 2 2 2 2 1 1
15 1 2 2 2 2 1 1 1
16
17 1 1 2 1
18 1 1 1 1 1 1
19 1 1 2
20 1 1 1 1 1 1
21 1 2 4 1 1 2
22 3 3 3 3 1
23 1
24 1 1 3 3 3 3 1 1
25 1
26 2 3 1 3 3
27 1
28 2 2
29
30 1 2 2 6 6 6 6 6 6 2 2 2
#′

k 312 142 67 44 29 28 16 15 13 7 6 5 5 4 4 3 3 2 2 1 1 1 1
N ′

k 980 690 330 114 60 150 30 30 30 30 10 6 6 6 6 6 6 6 6 6 6 2 6
Ck 1000 700 450 300 200 200 150 150 150 150 100 100 100 50 50 50 50 30 30 30 30 30 30

Table 1.1. The number |Qk(N)| of twist-classes of non-CM mod-
ular forms with rational coefficients, weight k, and minimal level
N . The number |Quk(N)| of such classes where rationality is un-
forced is 0 (regular type), 1 (boldface), or 2 (underlined boldface).

By the modularity result of Wiles et al. [Wil95, TW95, BCDT01], the set Q2(N)
is naturally identified with the set of twist-and-isogeny classes of non-CM elliptic
curves of minimal conductor N . Via this connection, Cremona has identified the
sets Q2(N) for N ≤ 400, 000 [LMF16] and it easy to see that #2 is infinite. The
case k = 4 is similarly related to rigid Calabi-Yau three-folds [GY11] and examples
have been systematically pursued [Mey05]; it seems to us premature to speculate
whether #4 is infinite or finite. The cases k ≥ 6 have been studied [Yui13, PR15],
but there do not seem to be any systematic non-modular sources: this lack of
sources contributes to our expectation of finiteness for these #k.

The last block of Table 1.1 includes quantities N ′k, and Ck. Direct calculation is
supportive of Conjecture 1.1 as follows. For 6 ≤ k ≤ 50, we have computed Qk(N)
for all N ≤ Ck, finding it last non-empty at N = N ′k. In weights k = 6 and 8,
non-empty Qk(N) become increasingly rare as N approaches Ck, as illustrated by
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Figure 4.2. The thinning is rapid enough that we expect overall finiteness, although
we also expect that the observed maximum N ′k may be considerably less than the
conjectured actual maximum Nk. In each of the weights k = 10, 12, 14, and 16,
we think it more likely than not that N ′k = Nk. In weights 18 ≤ k ≤ 50, the
ratio Ck/N

′
k is always at least five, giving us considerable confidence in N ′k = Nk,

as asserted by the conjecture. Similarly, we have carried our computations with
cutoffs Ck ≥ 6 for 52 ≤ k ≤ 100, always finding Qk(N) to be empty.

The last block of the table also contains the lower bound #′k =
∑Ck
N=1Qk(N)

to #k. Reformulating some of the previous discussion, our expectation is that
(#2,#4,#6, . . . ) takes the form (∞,#4, 312′′, 142′′, 67′, 44′, 29′, 28′, 16, 15, . . . ).
Here #4, whether it is infinite or finite, should be substantially large than #6.
Also A′′ indicates a number slightly larger than A, and B′ indicates a number ei-
ther equal to or very slightly larger than B. It seems likely that the sequence #k is
weakly decreasing, which would conform to general expectations in an unexpectedly
sharp way.

1.3. Content of the sections. Section 2 gives the promised review of modular
forms, using the case of N = 1 and the familiar ring M(1) = C[E4, E6] as an
example. Included in this section is a brief summary of the classification of CM
newforms, which compares interestingly with our Conjecture 1.1. Section 3 dis-
cusses a decomposition of Qk(N) into its “forced” and “unforced” parts:

(1.1) Qk(N) = Qfk(N)
∐

Quk(N).

It explains how Conjecture 1.1 with Qk(N) replaced by Qfk(N) would become prov-
able, with finiteness also for k = 2 and k = 4, and all Nk identifiable. As to Quk(N),
it gives a quantitative model, supporting our expectation of emptiness for large k.
Section 4 explains the simple calculations underlying Table 1.1.

There is a large literature devoted to the explicit study of rational newforms in
weight two, mostly through their connection with elliptic curves. Our viewpoint is
that rational newforms in weight greater than two are worthy of at least a modest
fraction of this detailed attention. Sections 5 and 6 are in this spirit, and study
the cases N = 2, 3, 4, 6, and 8. Section 5 focuses on rings M(N) of modular

forms, describing them via interesting overrings M̂(N), all of which are free on

two generators like M̂(1) = M(1). Section 6 presents many congruences between
newforms for a given N and interprets these congruences in terms of explicit number
fields. Finally, Section 7 returns the focus to Conjecture 1.1, and briefly discusses
possible future directions.

1.4. Acknowledgements. The author thanks the conference organizers for the
opportunity to speak at Automorphic forms: theory and computation at King’s
College London, in September 2016. This paper grew out of the first half of the
author’s talk. The list of newforms drawn up here is applied in [Rob16], which is an
expanded version of the second half. The author’s research was supported by grant
#209472 from the Simons Foundation and grant DMS-1601350 from the National
Science Foundation.

2. Review of modular forms

This section presents a brief synopsis of the theory of modular forms, as presented
in more detail in e.g. [Kob93] and [Ste07]. Our purpose is to make this paper
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immediately accessible to a broad range of readers. We restrict to the case of
trivial character until the very last subsection. Throughout, the classical case of
level N = 1 is used as an example.

2.1. Rings of modular forms. For any pair (k,N) consisting of a non-negative
even integer weight k and a positive integer level N , one has a corresponding finite-
dimensional complex vector space Mk(N) of modular forms. These modular forms
are functions on the upper half plane {z ∈ C : Im(z) > 0} satisfying certain
transformation laws which become less demanding as N becomes more divisible.
In particular, the functions can be expressed as power series in q = e2πiz and for
us it suffices to simply regard all the spaces Mk(N) as subspaces of the ring C[[q]]
of formal power series in q.

The sum of all these Mk(N) together forms a graded ring M(N). Each space
Mk(N) contains a subspace Sk(N) of cusp forms, and these cusp forms together
form an ideal S(N) in the ring M(N). The ring M(1) was studied in 1916 by
Ramanujan [Ram00]. To make room for later subscripting conventions, we use
Ramanujan’s notations for certain Eisenstein series, writing Q = E4, R = E6. The
ring then takes the form M(1) = C[Q,R] with

Q = 1 + 240

∞∑
n=1

σ3(n)qn = 1 + 240q + 2160q2 + 6720q3 + · · · ∈M4(1),

R = 1− 504

∞∑
n=1

σ5(n)qn = 1− 504q − 16632q2 − 122976q3 − · · · ∈M6(1).

Here the formulas refer to the usual sum of positive divisors, σj(n) =
∑
d|n d

j . The

ideal of cusp forms has generator

∆ =
Q3 −R2

1728
= q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − · · · .

Let η = q1/24
∏∞
n=1(1 − qn). Then one has the remarkable alternative expression

∆ = η24.

2.2. Operators and newforms. There are many important operators on the
spaces Mk(N). Among these are the push-up operators, corresponding to posi-
tive integers t. The operator for t takes the form g =

∑
anq

n in Mk(N) into the
form gt =

∑
anq

tn ∈ Mk(tN). Also playing an explicit role for us is the commut-
ing family of Atkin-Lehner involutions wpe of the graded ring M(N), one for each
prime power pe exactly dividing N . Finally, one has a commuting family of Hecke
operators Tp on Sk(N), indexed by primes p not dividing N . These Hecke operators
commute with the Atkin-Lehner operators and are given by the explicit formula

Tp(
∑

anq
n) =

∑
(apn + pk−1an/p)q

n.

Here ax is understood to be 0 if x is non-integral.
A form q + · · · ∈ Sk(N) which is a basis for a one-dimensional eigenspace of

the Hecke operators is called a newform. We let Pk(N) ⊂ Sk(N) be the set of
newforms. These newforms span the new subspace Snew

k (N). As (M, g, t) runs over
triples, with M a divisor of N , g a newform in Pk(M), and t a divisor of N/M , the
push-ups gt form a basis of Sk(N).
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Suppose q = pe exactly divides N and g =
∑
anq

n is a newform in Pk(N) on
which wq acts with the eigenvalue εq. If e = 1, then one has the formula

(2.2) ap = −εppk/2−1.

This formula is very useful because it identifies εp. If e > 1, then one has the
simpler but not so useful formula ap = 0.

The ring Mk(1) is different from all the other Mk(N) in that no push-up or
Atkin-Lehner operators are involved in its description. However the Tp behave
completely typically. For all N and g =

∑
n anq

n ∈ Pk(N), one has the simple
formula Tpg = apg. Also if m and n are relatively prime then amn = aman. For
example, the a6 = −6048 for ∆ ∈ P12(1) is indeed a2a3 = −24 · 252.

2.3. Dimension formulas. We are most directly interested in the spaces Snew
k (N).

There is an exact formula [Ste07, Prop 6.1] for the dimension of the larger space
Sk(N). Taking the largest term as an approximation gives

(2.3) dimSk(N) ≈ k − 1

12

∏
pe||N

pe−1(p+ 1).

The exact general formula for Sk(N) passes to one for Snew
k (N). The approximate

formula becomes

(2.4) dimSnew
k (N) ≈ k − 1

12

∏
pe||N

m(p, e),

with

m(p, e) =

 p− 1 if e = 1,
p2 − p− 1 if e = 2,
(p− 1)2(p+ 1)pe−3 if e ≥ 3.

Because the spaces Sk(d) are involved for all d|N , secondary terms are more com-
plicated in the exact formula for dimSnew

k (N).
Fix N =

∏m
i=1 qi with qi = peii and p1 < · · · < pm. Then the Atkin-Lehner

operators give decompositions

Mk(N) =
∑
ε

Mk(N)ε, Sk(N) =
∑
ε

Sk(N)ε, Snew
k (N) =

∑
ε

Snew
k (N)ε.

Here ε runs over the 2m sign strings (εq1 , . . . , εqm), with wqi acting by εqi . As one
might expect, an approximate formula for Sk(N)ε is 1/2m times (2.3). However for
Snew
k (N)ε, one has to replace each m(pi, ei) by the appropriate mεqi (pi, ei). Here

(2.5) m±(p, e) =

 (p− 1)/2, if e = 1,
(p2 − p− 1∓ 1)/2, if e = 2,
(p− 1)2(p+ 1)pe−3/2, if e ≥ 3.

For fixed N and increasing k > 2, all approximations discussed in this section are off
by a function which is periodic in k. An interesting feature of (2.5) is m+(2, 2) = 0,
and indeed Pk(N)ε is empty whenever ord2(N) = 2 and ε4 = +.

As an example, from the description of M(1) and S(1) above, one has the exact
formula

dim(Sk(1)) =
k − 1− δk

12
,
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with δk = 13, 3, 5, 7, 9, −1 for k = 2, 4, 6, 8, 10, 12 and satisfying δk+12 = δk. We
are interested particularly in one-dimensional spaces. These occur for k = 12, 16,
18, 20, 22, and 26. The corresponding unique newforms are

∆, Q∆, R∆ Q2∆ QR∆, Q2R∆.(2.6)

These newforms were all studied by Ramanujan [Ram00]; they provide six explicit
illustrations of the objects of our title, Newforms with rational coefficients.

2.4. Quadratic twists. Quadratic number fields are classified by their discrimi-
nants D. These integers, and also the discriminant 1 of the quadratic algebra Q×Q,
are called fundamental discriminants. Explicitly, a fundamental discriminant is an
integer of the form td, where d is a square-free integer congruent to 1 modulo 4,
and t ∈ {1,−4, 8,−8}. Fundamental discriminants form a set of representatives in
Q× of the group Q×/Q×2. Each fundamental discrimininant D gives a character
χD : (Z/D)× → {−1, 1} given by the quadratic residue symbol, χD(n) = (D/n).

The infinite group of these quadratic Dirichlet characters acts on the set of
newforms of a given weight k by twisting. Suppose g =

∑∞
n=1 anq

n ∈ Pk(N)
and χ = χD. Then gχ is a newform with level Ngχ dividing LCM(N,D2). It is
characterized by aχn = χ(n)an for n not dividing LCM(N,D2). Also, equality holds
in ordp(Ngχ) ≤ max(ordp(D

2), ordp(N)) if ordp(D
2) 6= ordp(N).

For a form g, one says its minimal level is the minimum of the levels of all its
twists. Say that a form is minimal if its level is equal to its minimal level. If g is
minimal of level N then g has t(N) minimal twists, where t is the multiplicative
function satisfying

t(2e) =

 1 if e ∈ {0, 1, 2, 3},
2 if e ∈ {4, 5},
4 if e ≥ 6.

and, for p odd, t(pe) =

{
1 if e ∈ {0, 1},
2 if e ≥ 2.

The naturality of this definition is apparent from its alternative description: t(N)
is the number of fundamental discriminants D such that D2|N . As a variant of the
standard notion of squarefree, say that an integer N is quadfree if t(N) = 1. So N
is quadfree if e := ord2(N) ≤ 3 and its odd part N/2e is squarefree.

2.5. CM newforms and the set Qk(N) of interest. We can now define some
of the terms used in the introduction. Most newforms g satisfy g = gχ only for
the trivial character χ. The remaining newforms satisfy g = gχ for exactly one
non-trivial character χ = χD and moreover D is negative. Such a newform is said
to have CM by D. Necessarily, its level is divisible by D2. So for most N , we do
not encounter CM newforms; for a very few N we do, and then we just discard
them.

In practice, the CM newforms to be discarded are immediately recognizable by
their Fourier expansions: while coefficients ap are rarely or perhaps even never zero
for a non-CM newform, they are always zero whenever χD(p) = −1 for newforms
with CM by D. On a rigorous level, we can confirm that a newform with apparent
CM by D really does have CM by D by a general structure theorem [Sch09, Theo-
rem 2.4]. Namely quadratic twist-classes of CM newforms in weight k = 1 + e are

in bijection with imaginary quadratic fields Q(
√
D) with class group of exponent

dividing e. Also minimal levels are known [Sch09, Table 1].
The classification just mentioned lets one see that the finiteness assertions of

Conjecture 1.1 are true to some extent in the parallel situation of CM newforms,
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but false in their full statement, as follows. For fixed k, the complete list of min-
imal levels N of CM newforms is sometimes known. For example for k = 2, the
discriminants D include −3, −4, and −8, with associated minimal levels N = 27, 32
and 256. The remaining discriminants are D = −p with p ∈ {7, 11, 19, 43, 67, 163},
always with minimal level N = p2. The twenty-six possible D for k = 4 and their
levels N are likewise listed in [Sch09, Table 3]. For general fixed k, finiteness of the
list of N is expected, as it is implied by the Riemann hypothesis for L-functions
of odd real Dirichlet characters [Sch09, Theorem 2.1]. For fixed N on the other
hand, the set of weights k for which there is at least one rational CM newform
with minimal level N can easily be infinite. For example, this set of weights is all
positive even integers for the six N = p2 above.

Returning to our main focus, all terms in the definition of Qk(N) from the
introduction have now been defined: Qk(N) is the set of all twist-classes of non-
CM newforms with minimal level N and rational coefficients. Such a class [g] has
exactly t(N) representing newforms of level N . In the common case that N is
quadfree, it has just one such representative.

2.6. General character. It is standard to work in greater generality, defining
spaces Mk(N,χ) for general Dirichlet characters χ and general weights k ∈ Z≥0.
These spaces can be nonzero only if the conductor of χ divides N and χ(−1) =
(−1)k. We have summarized standard material in the setting of trivial character
only, meaning our Mk(N) agrees with Mk(N,χ1).

We are focusing on the case of trivial character because a non-CM newform with
rational coefficients necessarily has trivial character. In Section 5 below, we will
encounter cases of non-trivial character. We will even allow weights to become
half-integral. However our summary here is adequate for following the discussion
there.

3. Forced vs. unforced rationality

This section discusses forced versus unforced rationality. We include a small
Magma program in this section and two more in the next. These programs allow
readers not familiar with Magma to directly see some of the calculations underlying
this paper. Run on small enough arguments, the programs finish in less than the
two minutes allowed by the free online Magma calculator.

3.1. The Galois action. Fix a weight k ∈ 2Z≥1 and a level N ∈ Z≥1. The

group Gal(Q/Q) acts on the corresponding set Pk(N) of newforms by conjugating
coefficients. Let p be a prime number not dividing N . Let fk,N,p(x) be the charac-
teristic polynomial of Tp acting on the space Sk(N)new. Then, assuming fk,N,p(x)

is separable, the action of Gal(Q/Q) on the set Pk(N) agrees with its action on the
coefficients an, these being the roots of fk,N,p(x).

A general program computing the fk,N,p(x) is obtained by concatenating built-in
Magma commands. First, to obtain output in a standard form, one can introduce
the variable x by _<x>:=PolynomialRing(Integers());. The general program is
then

charpol := func<k,N,p|

Factorization(CharacteristicPolynomial(

HeckeOperator(NewSubspace(CuspForms(N,k)),p)

))>;
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To compute say f50,3,2(x), one inputs all of the above and then charpol(50,3,2);.
In about a second, one finds that f50,3,2(x) factors as an irreducible quartic times
an irreducible quintic.

The action of Gal(Q/Q) on Pk(N) passes to an action on Qk(N). In this paper
we are interested in the fixed points of Gal(Q/Q) on Qk(N). When N is quadfree,
as defined at the end of §2.4, it is simplest to think of Qk(N) as being simply its
single representing form in Pk(N). Similarly for general N , a fixed point on Qk(N)
can be thought of using §2.4 as t(N) fixed points, all twists of one another, on
Pk(N).

There are different ways of expressing the Galois action. One convenient way is
to let Ek,N ⊆ End(Snew

k (N)) be the Q-algebra generated by all the Hecke operators
Tp. One has Ek,N = Q[x]/fk,N,p(x) whenever fk,N,p(x) is separable. In this case the
factorization of Ek,N into fields, which is the issue under study, is exactly reflected
in the factorization of fk,N,p(x) into irreducible polynomials.

3.2. The case N = 1. The Maeda conjecture [HM97, Conj 1.2] says that the image
of Gal(Q/Q) in its action on Pk(1) is always the full symmetric group on the degree
dk. A slightly strengthened version [GM12, Conj 1.1] includes also the separability
of all fk,1,p(x). In other words, it says that the Galois group of fk,1,p(x) is always
Sdk . The reference [GM12] also proves the strengthened conjecture for p = 2 and
k ≤ 14000, and surveys other results related to the conjecture.

In the six cases when dk = 1, the set Pk(1) coincides with its subset of rational
forms, these forms having been listed in (2.6). For the k with dk ≥ 3, the Maeda
conjecture is a stronger statement than Conjecture 1.1’s assertion that Qk(1) is
empty. The computed Hecke fields Ek,1 = Q[x]/fk,1,2(x) have very large discrim-
inants, rapidly increasing with k. For example, the first case beyond rationality
is the quadratic field E24,1, and its discriminant is already the fairly large prime
number 144169. The large discriminants constitute further heuristic evidence that
fk,1,2(x) is always irreducible.

3.3. Quadfree N . For general N , the action of Gal(Q/Q) on Pk(N) stabilizes the
Atkin-Lehner subsets Pk(N)ε. A very plausible analog of the Maeda conjecture
for general N was formulated in [Tsa14] and strengthened to be numerically more
precise and include Galois groups in [DT16]. For the case of quadfree N , it essen-
tially says that, a finite number of exceptional spaces aside, each Pk(N)ε behaves
qualitatively like Pk(1). More precisely, let p be the smallest prime not dividing
N . Then, outside of finitely many k, the characteristic polynomial f εk,N,p(x) should
have Galois group the full symmetric group on its degree.

As an example of generic behavior, consider again the polynomial f50,3,2(x)
computed in §3.1. The Galois groups of its irreducible factors are S4 and S5,
and the field discriminants have 51 and 79 digits. The factorization is completely
expected as the summands in the decomposition P50(3) = P50(3)+

∐
P50(3)− have

size 4 and 5 respectively.

3.4. General N . For N which are not quadfree, there are structures on the set
Pk(N) which go beyond the decomposition induced by the Atkin-Lehner operators.
To give an indication of this phenomenon, consider the case N = 25. Then Pk(25)
breaks into six parts, which are conveniently described via twisting by χ = χ5.
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Write g ∈ Pk(25)
ε
ω if g ∈ Pk(25)ε and gχ ∈ Pk(25)ω. Then

Pk(25) = Pk(25)±
∐

Pk(25)∓
∐

Pk(25)=
∐

Rest.

Here we do not particularly care about Rest, as it consists of the forms g ∈ Pk(25)+

with fχ ∈ Pk(1), Pk(5)+, or Pk(5)−. The number of possibilities for N = 25
replaced by a general pe is given in [DT16, Prop 3].

In general, one has a decomposition of Pk(N) into Gal(Q/Q) stable summands
Pk(N)δ refining the Atkin-Lehner involution. Just as ε is a string of signs indexed by
the prime powers exactly dividing N , so too is δ a string of symbols indexed by these
prime powers. For example, take N = 150 = 2 · 3 · 52. The set Pk(150) breaks into
2 ·2 ·6 = 24 parts, with 2 ·2 ·3 = 12 corresponding to minimal level 150. For large k,
one can expect fk,150,7(x) to factor into twenty-four irreducible polynomials, one for
each type δ. However f16,150,7(x) factors into twenty-five irreducible polynomials.
Here the number of irreducible polynomials arises as 25 = 24−1+2, as follows. Not
so interestingly, P16(6)+− being empty implies that one of the δ is not represented.
However there is a rational newform with type δ′ = (+,+,∓), namely

g = q − 128q2 − 2187q3 + 16384q4 + 279936q6 − 511994q7 + · · · .

Its twist gχ5 has type δ′′ = (−,−,±). These two exceptional δ each contribute an
extra irreducible factor, as

f+,+,∓
16,150,7(x) = (x+ 511994)·

(x3 + 701247x2 − 5978366987397x+ 3322646963771081149)(3.7)

and f−,−,±16,150,7(x) = f+,+,∓
16,150,7(−x).

Many Pk(N)δ cannot possibly have Gal(Q/Q) fixed points, because the struc-
tures on Pk(N)δ imply that all factors of the Hecke algebra Eδk,N contain a specified
cyclotomic field larger than Q. This phenomenon is familiar from the case of weight
2 forms and elliptic curves. It holds without change for k ≥ 4. In particular, ratio-
nality of a form in Pk(N)δ implies that ord2(N) ≤ 8, ord3(N) ≤ 5, and ordp(N) ≤ 2
for larger primes p.

3.5. The dichotomy. We can now explain the decomposition of Qk(N) into its

two parts Qfk(N) and Quk(N). Let [g] ∈ Qk(N) with representing newform g ∈
Pk(N). We say that the rationality of g is locally forced, or simply forced, if g is

the only non-CM newform in its refined part Pk(N)δ. We write [g] ∈ Qfk(N) in

this case and [g] ∈ Quk(N) otherwise. Exact formulas for |Pk(N)δ| are not available
at the moment, but they are surely within reach. Using these formulas and also
formulas or upper bounds for the number of CM newforms, one could compute a

cutoff ck such that Qfk(ck) is nonempty but Qfk(N) is empty for N > ck. In fact,
we are asserting in Conjecture 1.1 that for k ∈ [18, 50], the cutoff ck is the number
listed as N ′k on Table 1.1. Similarly, the next paragraph gives strong evidence that
c16 = 42, and (4.10) below suggests further than (c14, c12, c10) = (42, 90, 210).

To see 5=2+2+1 unforced instances of rationality, consider k = 16. As reported
on Table 1.1, rationality is forced for all the newforms with N ≤ 30, except for
the two with N = 8. For just one N ∈ [31, 149] is the set Q16(N) non-empty,
namely N = 42, where it has size four. For this exceptional level, f16,42,5(x) factors
into four linear and five quadratic irreducible factors. Closer inspection shows that
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|P16(42)ε| = 1 for ε = (−,−,−) and (−,+,+), while otherwise |P16(42)ε| = 2. Thus

|Qf16(42)| = |Qu16(42)| = 2. In fact, the source of the unforced rationality is

f+,+,−
16,42,5(x) = (x+ 58290)(x− 296442).

For the example presented in the last subsection, the unexpected factorization (3.7)

is saying that |Qf16(150)| = 0 and |Qu16(150)| = 1.

3.6. A heuristic model. This subsection describes a heuristic model for the fac-
torization of the Hecke algebras Eδk,N , obtained by considering the factorization of

defining polynomials fδk,N,p(x). While the model is very rough, we feel it comple-
ments our catalog of newforms by supporting Conjecture 1.1 in a different way.

Fix (k,N, δ) and a prime p not dividing N . The quantity w = p(k−1)/2 plays
the role of a scaling factor. Let d = |Pk(N)δ|, so that the monic polynomial
fδk,N,p(x) ∈ Z[x] has degree d. Its d roots are all real with absolute value at most
2w. The approximate number of such polynomials has the form

(3.8) Vd(w) =

2d

d!

d∏
j=1

(
2j

2j − 1

)d+1−j
w∆(d).

Here ∆(d) = d(d+1)/2 is the dth triangular number and the complicated coefficient
is a volume computed in [DH98, Prop 2.2.1].

Now let r < s be positive integers summing to d. The chance that a polynomial
in the ensemble of degree d polynomials under consideration factors into a degree
r polynomial times a degree s polynomial is approximately Probr,s(w) = VrVs/Vd.
If r = s, then this formula double counts, and one needs to insert a 2 in the
denominator. Applying (3.8) three times and simplifying, one gets

(3.9) Probr,s(w) =

 d!

2δrsr!s!

d∏
j=1

(
2j − 1

2j

)j−1
 1

wrs
.

For example, the first non-trivial case is r = s = 1. Here the chance that a quadratic
polynomial from the ensemble splits is approximately 3/(4w) = 3/(4p(k−1)/2).

-20 -10 0 10 20

-100

-50

0

50

100

Figure 3.1. Illustration in the b-c plane of the heuristic that a
quadratic Hecke polynomial for the prime p = 2 and weight k = 6
has approximately approximately a 1/8 chance of factoring.

The first non-trivial case in more detail goes as follows. The factorizing poly-
nomials are simply (x − a1)(x − a2) with |ai| ≤ 2w and a1 ≤ a2. All allowed
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polynomials are x2 + bx + c with |b| ≤ 4w and w(|b| − w) ≤ c ≤ w2/2. The re-
gions of the a1-a2 and b-c planes given by the inequalities respectively have area
V1(w)2/2 = 8w2 and V2(w) = 32w3/3. Their ratio is indeed P1,1(w) = 3/(4w).

Figure 3.1 draws this case for (p, k) = (2, 6) so that w = 25/2. Factoring polyno-
mials are represented as points. There are 276 of them, which is indeed close to
the approximation V1(w)2/2 = 256. The total number of polynomials x2 + bx + c
is 1951 while V2(w) ≈ 1930.9.

One way that our model is very rough is that it does not account for the fact
that roots of Hecke polynomials should be distributed according an approximation
of the Sato-Tate measure. More seriously, the number Probr,s(p

(k−1)/2) depends
on p, whereas the factorization behavior of Eδk,N is independent of p. To proceed

further, we take as our heuristic that the chance of Eδk,N factoring into a degree r

algebra times a degree s algebra is Prr,s(k) := Probr,s(2
(k−1)/2), whether or not 2

divides N .
Some explicit numerics are as follows. Corresponding to three of the 2’s on

Table 1.1, factorization patterns for E+
6,17, E−16,8, and E+

22,3 are all 1 + 1. Cor-

responding splitting probabilities are Pr1,1(k) for k = 6, 16, and 22, namely
13.3%, 0.4%, and 0.05%. The other 2 on Table 1.1 comes from E+

6,19 and E−6,19

having splitting behavior 2 + 1 and 4 + 1 respectively. The probability here is
Pr2,1(k)Pr4,1(k) ≈ 5.8% · 0.24% = 0.014%.

Some qualitative phenomena which the heuristic seems to get right are as follows.
First, the chance of splitting decreases rapidly as the weight k increases. Second,
for fixed k, this chance also decreases rapidly with increasing degree d. Third,
factorizations of the form d = 1+(d−1) are much more common than factorizations
of any other type. In fact, we have observed no other factorizations for quadfree
N in weights k ≥ 6 except for |P6(3 · 23)+−| = 2 + 4, |P6(3 · 5 · 17)++−| = 3 + 4,
|P6(455)+−−| = 2+10, and |P8(3 ·17)−−| = 2+4. This third phenomenon is one of
the reasons that this paper concentrates not on general factorizations, but rather
on just those which produce newforms with rational coefficients.

On a more quantitative level, there are definitely more factorizations than the
heuristic predicts. In weight two, the heuristic correctly predicts that there are
infinitely many elliptic curves, but considerably underestimates the number of el-
liptic curves per level. As examples in higher weight, one of the rational newforms
discussed in §4.4 has associated probability Pr1,12(10) ≈ 2.2×10−16 while one from
§7.2 corresponds to the even smaller number Pr1,83(4) ≈ 3.4 × 10−37. One is thus
led to ask for a conceptual source of rational newforms such as these, something we
will briefly pursue in §7.2.

4. Assembling the main table

In this section we discuss how we drew up Table 1.1, as well as its unprinted
extension to a larger region in the N -k plane. We present a number of examples
similar to those of the last subsection, but now with more reference to Table 1.1
itself.

4.1. Computing the cardinality |Qk(N)|. Combining several built-in Magma
functions, we define a new one:

RatNewforms := func<k,n|

[fs : fs in Newforms(CuspForms(Gamma0(n),k))|#fs eq 1]>;
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Following this definition by RatNewforms(22,3) then returns approximations to
the two elements in Q22(3):

f1 = q + 1728q2 − 59049q3 + 888832q4 − 41512770q5 − · · · ,
f2 = q − 2844q2 − 59049q3 + 5991184q4 + 3109950q5 + · · · .

This particular computation takes less than a second and accounts for the 2 in the
row 3 column 22 of Table 1.1. On the other hand, for N a highly factorizing level
close to our cutoff Ck, RatNewforms(k,N) takes around an hour.

To convert the output of RatNewforms(k,N) into cardinalities Qk(N) one needs
to take quadratic twisting into account. If no CM newform is present, for example if
a prime exactly divides N , then this cardinality is the number of newforms returned,
divided by the number t(N) of twists allowed from §2.4. When CM newforms are
present, they are in practice easily recognized by their ap being zero for many p.
We used the theory of CM newforms as summarized in §2.5 to confirm that CM
is really present, discarded the forms, and then divided the number of remaining
forms by t(N).

4.2. Identifying the decomposition Qk(N) = Qfk(N)
∐
Quk(N). In the example

of the previous subsection, both coefficients of q3 are −310, so by (2.2) they both
belong to Snew

22 (N)+. They thus contribute to the unforced part Qu22(3) of Q22(3).
To systematically separate the forced part from the unforced part in the case of
quadfree N , we used the following refinement of our previous charpol:

charpol2 := function(k,N,signs,p)

fN := Factorization(N); fN2 := [g[1]^g[2]:g in fN];

New := NewSubspace(CuspForms(N,k));

return Factorization(CharacteristicPolynomial(

HeckeOperator(New,p)*(&*[(AtkinLehnerOperator(New,fN2[i])^2+

signs[i]*AtkinLehnerOperator(New,fN2[i]))/2: i in [1..#fN2]])));

end function;

Running charpol2(22,3,[1],2) and then charpol2(22,3,[-1],2) lets one con-
clude det(x − T2|S22(3)+) = (x − 1728)(x + 2844) and det(x − T2|S22(3)−) =
x2 − 666x − 2464992. This computation shows again that rationality of these two
newforms is unforced. Some non-quadfree cases can also be done via this program,
as illustrated by the example of (k,N) = (16, 150) in §3.4.

4.3. Sample calculations at small level. Table 4.2 gives the result of running
charpol2 for three hundred different (k,N, ε). All polynomials obtained were irre-
ducible, except for the cases (22, 3,+) and (16, 8,−) where the result was a factor-
izing quadratic. On the table, q is either 2, 4, or 8.

The column m gives the mass belonging to (N, ε), calculated as a product of
local masses (2.5). The absence of a line for (N, ε4) = (4,+) reflects the vanishing
m+(2, 2) = 0 mentioned after (2.5). The many 1’s on the lines for N = 2 arise from
the small value m±(2, 1) = 1/2. The similarly many 1’s for each line belonging
to N = 6 arise because m±(2, 1) = 1/2 is not increased by the second factor
m±(3, 1) = 1.

Table 4.2 clarifies the lines corresponding to N = 2, 3, 4, 6, and 8 of Table 1.1.
More importantly, it serves as an overview of the newforms studied in the next two
sections.
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N εq ε3 m 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
1 1 1 1 1 1 1 2 1 2 2 2 2 3 2 3 3 3 3 4 3
2 + 0.5 1 1 1 1 1 1 1 1 1 2 1 1 2 2 1 2 2 2 2
2 − 0.5 1 1 1 1 1 2 1 1 1 2 1 2 1 2 2 2 1 3
3 + 1 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4
3 − 1 1 1 2 1 2 1 2 1 3 2 3 2 3 2 4 3 4 3 4 3 5
4 − 1 1 1 1 1 1 2 1 2 2 2 2 3 2 3 3 3 3 4 3 4 4 4
6 + + 0.5 1 1 1 1 1 1 1 2 1 1 1 2 1 2 2 2 1 2 2
6 + − 0.5 1 1 1 1 1 1 1 1 1 1 2 2 1 1 2 2 2 2 2
6 − + 0.5 1 1 1 1 1 1 1 1 2 1 1 1 2 2 2 1 2 2 2
6 − − 0.5 1 1 1 1 1 2 1 1 2 1 2 1 2 1 2 2 3 1
8 + 1.5 1 1 1 2 1 2 2 3 2 3 3 4 3 4 4 5 4 5 5 6 5 6 6
8 − 1.5 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5 6 6 6

Table 4.2. Dimensions of Atkin-Lehner subspaces of Sk(N)ε,
with sources of rational newforms highlighted in bold.

4.4. Sample computations at larger level. To represent our computations for
larger level, consider the weights 10, 12, 14, and 16 just below the weights k ≥
18 where Conjecture 1.1 becomes effective. For these weights, the sequences of
observed minimal levels, with multiplicities, end as follows:

(4.10)

k = 10 : . . . , 210,210,210,285,294,330;
k = 12 : . . . , 90,96,114;
k = 14 : . . . , 42,60;
k = 16 : . . . , 42, 42,42,42,150.

We discussed the case k = 16 in §3.4 and §3.5. The other cases are similar, with
ordinary type indicating forced rationality and boldface unforced rationality. For
example, the forced 210 comes from the one-element set P10(210)−−−−, while the
unforced 210, 210 comes from the two-element set P10(210)+−−+. The largest set
Pk(N)δ where we have observed splitting in k ≥ 10 is P10(285)−+−, which splits as
1 + 12.

4 6
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1214
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x0

50

100
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#

Figure 4.2. Graphs of the summatory functions #k(x) =∑
N≤x |Qk(N)|, for k = 4, 6, 8, 10, 12, and 14.
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Figure 4.2 graphs the summatory functions indicated by its caption. One has
#2(1000) = 1612 and #4(1000) = 802, the cases k = 2 and k = 4 being not drawn
and partially drawn respectively. For k = 6 and k = 8, the graphs are still slightly
rising as x reaches the cutoff Ck. For k = 10, 12, and 14, the complete flattening
of the graph makes it plausible that the last minimal level seen N ′k is indeed the
last minimal level Nk. The undrawn graph for k = 16 almost coincides with the
drawn graph for k = 14, although for k = 16 the last minimal level seen N ′16 = 150
is close to the cutoff C16 = 200.

5. Rings M(N) for small N

According to Conjecture 1.1, non-CM newforms in large weight k rarely have
rational coefficients. Our viewpoint is that those newforms which do have rational
coefficients are of particular interest and deserve to be exhibited explicitly, in the
style of Ramanujan’s formulas (2.6). We present some such explicit formulas here,
systematically working in analogs of the classical ring M(1) = C[Q,R]. As a general
convention, if Pk(N)ε has just one element, then we call it ∆ε

k,N .

We treat the cases N = 2, 3, 4, 6, and 8. The new rings M(N) contain M(1)
with indices 3, 4, 6, 12, and 12. We deal with the greater complexity by first

embedding these rings into yet larger rings M̂(N), all of which, like M(1), are
free on two generators. We then keep formulas concise by systematically exploiting
Atkin-Lehner operators in the cases N = 2, 3, 6, and 8 and by discarding old forms
cleanly in the cases N = 4 and 8.

An overall theme is that the five cases we treat are remarkably similar to the
classical case M(1). For example, the cuspidal ideal S(N) is always generated
by an η-product analogous to the generator ∆12,1 = η24 of S(1). As analogs of
Ramanujan’s six newforms, Table 4.2 for N = 2, 3, 4, 6, and 8 lists 23, 13, 6, 47,
and 10 newforms. We keep things relatively brief by giving explicit formulas only
for a small subset of these newforms. Proofs of all statements are straightforward
and omitted. To proceed similarly for other N , Magma’s Relations command
would be very useful.

5.1. Theta series. We build all our modular forms from two types of theta series,

Θ =
∑

(x,y)∈Z2

qx
2+xy+y2 = 1 + 6q + 6q3 + 6q4 + 12q7 + · · · ,

θ =
∑
x∈Z

qx
2

= 1 + 2q + 2q4 + 2q9 + 2x16 + · · · .

These theta series are modular forms in their own right, with weights 1 and 1/2
respectively, and certain characters. Using standard notation, Θ ∈M1(3, χ−3) and
θ ∈ M1/2(4, χ1). As mentioned in §2.6, these two forms are outside of the context
of the main review in Section 2. However, we are using them only to build forms
which are in that context.

Using the second push-up operator q 7→ q2 of §2.2, which does not change the
weight, we obtain the graded rings

M̂(6) = C[Θ1,Θ2], M̂(8) = C[θ1, θ2].

The rings of §2.1 are then the subrings

M(6) = C[Θ2
1,Θ1Θ2,Θ

2
2], M(8) = C[θ4

1, θ
2
1θ

2
2, θ

4
2].
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These rings relate to their common subring M(1) via

Q = Θ1

(
5Θ3

1 + 12Θ2
1Θ2 − 16Θ3

2

)
= θ8

1 + 56θ6
1θ

2
2 − 40θ4

1θ
4
2 − 32θ2

1θ
6
2 + 16θ8

2,

R =
(
Θ2

1 + 2Θ1Θ2 − 2Θ2
2

) (
−11Θ4

1 − 20Θ3
1Θ2 + 16Θ1Θ3

2 + 16Θ4
2

)
=
(
θ4

1 + 4θ2
1θ

2
2 − 4θ4

2

) (
θ8

1 − 136θ6
1θ

2
2 + 152θ4

1θ
4
2 − 32θ2

1θ
6
2 + 16θ8

2

)
.

The four formulas just displayed are already a little bit long. In our treatment of
the various M(N), we are exploiting structure to keep analogous formulas as short
as possible.

5.2. Level 2. The ring M(2) is freely generated by

A = θ4
1 + 4θ2

1θ
2
2 − 4θ4

2 ∈M2(2)−,

B = θ8
1 − 24θ6

1θ
2
2 + 40θ4

1θ
4
2 − 32θ2

1θ
6
2 + 16θ8

2 ∈M4(2)−.

The cuspidal ideal S(2) is generated by

∆+
8,2 = η8

1η
8
2 = 2−8(A4 −B2) ∈M8(2)+.

Table 4.2 shows 23 rational newforms in S(2), all of which have explicit expressions
as polynomials in A and B. The one of largest weight is

∆−48,2 = 2−16A2B
(
49A4 − 81B2

) (
25A4 − 9B2

)
·(

375531625A8 − 755257890A4B2 + 379726137B4
)

∆+
8,2.

Here the fact that the total degree in A and B has to be odd cuts the number of
terms roughly by half. Throughout this section, there are many striking factoriza-
tions such as the one just displayed; we are not pursuing their meaning.

5.3. Level 3. Here we work in the graded ring M̂(3) = C[Θ,Φ] with Φ = 4Θ3
2 −

3Θ2
1Θ2 = 1 − 36q − 54q2 − 252q3 + · · · ∈ M3(3, χ−3). The even part of this ring

is exactly M(3). The order four automorphism given by Θ 7→ iΘ and Φ 7→ iΦ
restricts to the Atkin-Lehner involution w3 on M(3). The cuspidal ideal S(3) is
generated by

∆−6,3 = η6
1η

6
3 = 2−23−3(Θ6 − Φ2) = q − 6q2 + 9q3 + 4q4 + · · · .

The newform ∆−6,3 is the first of the thirteen rational newforms with level 3 on
Table 4.2. The newforms from §4.1 exhibiting unforced rationality are

∆+a
22,3 = 6−1ΘΦ

(
75Θ12 − 44Θ6Φ2 − 25Φ4

)
∆−6,3 = q + 1728q2 − · · · ,

∆+b
22,3 = 3−3ΘΦ

(
−869Θ12 + 1072Θ6Φ2 − 176Φ4

)
∆−6,3 = q − 2844q2 − · · · .

The difference of the coefficients of q2 is 4572 = 2232127. Computation quickly
suggests that in fact ∆+a

22,3 ≡ ∆+b
22,3. In fact, seeing this congruence on the coefficient

of qn for n ≤ 11 suffices to confirm the general congruence, by a version of Sturm’s
theorem [CKR10, Prop. 1].



16 DAVID P. ROBERTS

5.4. Level 4. Here again we work in a larger graded ring M̂(4) = C[θ,D], with θ in
weight 1/2 and D = θ4

1−8θ2
1θ

2
2 +8θ4

2 = 1−24q+24q2−· · · in weight 2. The graded
ring M(4) is then just the sum of the graded pieces indexed by even integers. Let
ρ be an eighth root of unity. Then the automorphism θ 7→ ρθ,D 7→ D restricts
to the Atkin-Lehner involution w4 on M(4). One thus has M(4) = C[C,D] with
C := θ4 ∈ M2(4)− and D ∈ M2(4)+. Note that our presentation is a variant of
[Kob93, IV.1 Prop. 4], which uses the generators θ and F = 2−5(θ4 −D).

For k an odd integer, one has M̂k(4) = Mk(4, χ−4). For example, the element

∆5,4 = 2−6θ2(θ8 + D2) = η4
1η

2
2η

4
4 = q − 4q2 + 16q4 − · · · of M̂5(4) is a cuspidal

newform with character χ−4 and CM. Multiplying this element by θ2 we get a
non-CM newform which fits into our framework,

(5.11) ∆−6,4 = η12
2 = 2−6C(C2 −D2) = q − 12q3 + 54q5 − 88q7 − · · · .

Thus one has the unusual situation of two quite different eta-products with quotient
just θ2.

The N = 4 block of Table 4.2 has two interesting features. First, as commented
already after (2.5), the w4 = + part is zero and thus missing from the block. But
second, the entries on the w4 = − line are exactly those of the familiar N = 1 line,
shifted to the left by a weight difference of six. In fact, newforms on N = 4 nicely
separate from old forms via the formula

(5.12) Snew
k (4)− = Mk−6(1)2∆−6,4.

The source of this equation is that the group S3 acts on the graded ring M(4) with
quotient M(1)2, with the isotypical component corresponding to the sign character
of S3 being exactly Snew(4)−.

To be more explicit about (5.12), one has M(1)2 = C[Q2, R2] with Q2 =
2−2(3θ8 + D2) and R2 = 2−3D(9θ8 − D2). Ramanujan’s six rational forms (2.6)
in S(1) becomes six rational forms in Snew(4)− via the simultaneous replacements
∆12,1 7→ ∆−6,4, Q 7→ Q2, and R 7→ R2. For example, the largest weight rational

form on Table 4.2 is ∆−20,4 = Q2
2R2∆−6,4.

5.5. Level 6. The ring M̂(6) = C[Θ1,Θ2] and its even weight subring M(6) have
already been introduced in §5.1. The space M2(6) has dimension three, with a basis
consisting of a sum, product, and difference:

s=Θ2
1+2Θ2

2∈M2(6)+−, p=Θ1Θ2∈M2(6)−+, d=Θ2
1−2Θ2

2∈M2(6)−−.

Via the equation d2 − s2 = 8p2, every element in M(6) can be written in the
canonical form f1(s, p) + df2(s, p).

The cuspidal ideal S(6) is generated by

∆++
4,6 = η2

1η
2
2η

2
3η

2
6 = 2−23−2(9p2 − s2).

Illustrations of how ∆++
4,6 is indeed a generator include

∆−+
6,6 = p∆++

4,6 , ∆−−8,6 = sp∆++
4,6 , ∆+−

10,6 = 2−13−2(5s2 − 39p2)s∆++
4,6 .

None of these expressions involve the generator d. However the canonical expression
for the rational newform of largest weight does:

∆−−50,6 = 2−23−9d·(
140349306081007255050000p22 − 111659120501660492670000p20s2
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+27589681151783316300150p18s4 + 2577120214736187574830p16s6

−3234565067472714047760p14s8 + 921682623552505460496p12s10

−149165289449290130931p10s12 + 15554206382841117045p8s14

−1070217851875219680p6s16 + 47245789680492400p4s18

−1218365734678125p2s20 + 14004203846875s22
)

∆++
4,6 .

In comparison with the newform of the next largest weight, ∆−48,2 from §5.2, the

expression for ∆−−50,6 is much longer. Like for the case N = 2, our treatment of N = 6
fully exploits the Atkin-Lehner operators, but does not cleanly discard old forms.
The difference in complexity can be attributed to the fact that asymptotically 1/3
of dim(Sk(2)−) comes from newforms but only 1/6 of dim(Sk(6)−−) does. The
complexity of the displayed expression underscores the usefulness of discarding old
forms cleanly, as in (5.12) for N = 4 and (5.13) for N = 8.

5.6. Level 8. The ring M̂(8) = C[θ1, θ2] has already been described in §5.1. Its
integral weight part is generated by three forms in weight one, θ2

1, θ
2
2 ∈M1(8, χ−4)

and θ1θ2 ∈M1(8, χ−8). The ring M(8) =
∑
kMk(8, χ1) constitutes half of the even

weight part of M̂(8). A monomial θi1θ
j
2 with total weight (i + j)/2 is in M(8) if

both i and j are even, and in the other half
∑
kMk(8, χ8) if both i and j are odd.

The cuspidal ideal S(8) of M(8) is generated by

∆+
8,4 = η4

2η
4
4 = 2−2θ2

1θ
2
2(−θ2

1 + θ2
2)(θ2

1 − 2θ2
2) = q − 4q3 − 2q5 + 24q7 − · · · .

Asymptotically, Snew
k (8) has one-quarter the dimension of Sk(8). Analogously to

(5.12), each Atkin-Lehner eigenspace on newforms can be conveniently isolated via

(5.13) Snew
k (8)ε = M(2)ε2∆+

8,4.

So all the 1’s in the N = 8 block of Table 4.2 have monomial formulas of the form
E∆+

8,4, with E as follows:

4 6 8 10 12 14
Qk(8)+ 1 A2

2 A2B2 A3
2B2

Qk(8)− A2 B2 A3
2 A2

2B2

.

The unforced splitting in weight k = 16 yielding a 2 on Table 1.1 and a 2 on
Table 4.2 is given by

∆−a16,8 = 2−1B2(23A4
2 − 21B2

2)∆+
8,4 = q + 2700q3 − 251890q5 + · · · ,

∆−b16,8 = 2−1B2(−25A4
2 + 27B2

2)∆+
8,4 = q − 3444q3 + 313358q5 − · · · .

Applying [CKR10, Prop. 1] as we did at the end of §5.3, one has ∆−a16,8 ≡ ∆−b16,8

modulo 6144 = 2113.

6. Reductions modulo ` and associated number fields

In general, the arithmetic of coefficients of newforms is governed by Galois repre-
sentations which in turn can be described in terms of number fields. In particular,
for a rational newform

∑
anq

n, the reductions an ∈ Z/`e are determined by a num-
ber field with Galois group inside GL2(Z/`e). In this section, we briefly discuss our
ninety-nine newforms from this point of view. Our goal is to make clear that the
newforms here are a rich source of examples, in a way which complements the much
studied N = 1 case [SD73, Bos11].
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6.1. Overview. In the interest of brevity, we restrict to the cases `e ∈ {2, 3, 5, 7}.
For further brevity, we focus on number fields with Galois group surjecting onto

number of fields number of newforms governed
` \N 1 2 3 4 6 8 1 2 3 4 6 8

2
3 1 10
5 1 1 1 2 7 6 24 7, 3
7 1 2 1 2 4 12 8, 3 6 24, 12 2, 4, 2, 2
Total number of forms: 6 23 13 6 47 10

Table 6.3. Summary of examples of number fields governing newforms

PGL2(F`). We call the other cases degenerate. The numbers of PGL2(F`) number
fields involved in various parts of this section, blanks indicating 0, are indicated
in the left half of Table 6.3. Thus the classical case N = 1 gives no examples
in our restricted context. This degeneracy continues somewhat into our setting
N ∈ {2, 3, 4, 6, 8}. However as `N increases, number fields with Galois group all of
PGL2(F`) begin to appear. In §6.3 we give defining polynomials in all cases.

A remarkable feature of our collection of examples, indicated in the right half of
Table 6.3, is that each of the sixteen number fields governs more than one rational
newform. The numbers listed in the right half follow the alphabetic order of the
labeling in §6.3. For example, of the thirteen newforms for N = 3, eight and three
are governed modulo 7 by F3a and F3b respectively; the remaining two newforms
are thus degenerate modulo 7.

6.2. The projective correspondence for ` ≤ 7. Knowledge of the ap for a
newform

∑
anq

n ∈ Snew
k (N), for p running over prime numbers, determines the

entire newform via the explicit formula

(6.14)
∑
n=1

an
ns

=
∏
p|N

1

1− app−s
·
∏
p-N

1

1− app−s + pk−1−s .

Accordingly, we focus attention on the ap. When studying the reductions of the ap
to F`, we exclude the p dividing N`, which behave differently.

The ap are governed by a Galois representation into GL2(F`) which we take to
be semisimple, making it well-defined. To simplify, we will be working mainly not
with the ap themselves, rather with their normalized squares sp = a2

p/p
k−1 ∈ Q.

Let f(x) ∈ Z[x] be a degree ` + 1 polynomial capturing the associated Galois
representation into PGL2(F`). Then the sp, considered in F`, are correlated with
the partitions λp giving the degrees of the irreducible factors of f(x) over Qp. For
` ≤ 7, these correlations are as follows:

` = 2 ` = 3 ` = 5 ` = 7
sp 0 1 0 1 2 0 1 2 3 4 0 1 2 3 4 5 6
λp 21 3 22 31 4 222 33 411 6 51 2222 3311 44 611 71 8 8

13 211 14 4 2211 6 16 22211 18

.

The Galois group of f(x) is all of PGL2(F`) if and only if all sp arise.
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In our restricted setting of ninety-nine newforms and four residual primes, a mod
` projective representation is either surjective or has cyclic image. In the latter case,
the newform moreover satisfies a general congruence of the form

(6.15) ap ≡ pi + pj (`).

Thus our restriction to surjective representations corresponds to concentrating on
the more mysterious cases.

6.3. Explicit polynomials. For any of the ninety-nine newforms, all of the ap with
p - 2N are even. Thus sp is always 0 in F2 and the projective Galois representations
into PGL2(F2) = S3 are all non-surjective. For ` = 3, all newforms with N < 8
are likewise degenerate, but the ten newforms at N = 8 are all nondegenerate and
governed by

φ8(x) = x4 − 2x3 − 6x+ 3, δ8 = −2435.

Here and later, next to each displayed polynomial f(x) we show also the discrim-
inant of the number field Q[x]/f(x). In fact, for a given k, N , and `, theory, as
partially summarized in §6.4 below, gives only a small list of possibilities for these
field discriminants. The polynomials we display were found on the database [JR14].
Matching as in §6.2 for all small p makes it very likely that the f(x) are correct. For
` ≤ 5, the completeness of the database confirms correctness. For all `, correctness
is confirmed using the Serre conjecture [Ser87, KW09a, KW09b] which implies that
any PGL2(F`) field which is not totally real will appear already in weight k ≤ `+1.

For ` = 5, Table 6.3 says there are five fields. Indexing by the relevant level as
we did before, defining polynomials with Galois group PGL2(F5) and the indicated
discriminant are

f3(x) = x6 − x5 + 5x4 − 5x2 + 16x− 1, d3 = 3459,

f4(x) = x6 − x5 + 5x3 + 10x2 − 27x− 23, d4 = 2459,

f6(x) = x6 − x5 + 30x3 − 15x2 + 3x+ 222, d6 = 243459,

f8a(x) = x6 − 2x5 − 8x− 4, d8a = 2657,

f8b(x) = x6 − 2x5 + 10x+ 5, d8b = 2659.

One can sometimes describe the situation much more completely while still remain-
ing brief. For example at N = 6, the polynomial f6 governs all twenty-four forms
with ε2ε3 = −1, while all twenty-three forms with ε2ε3 = 1 are degenerate.

For ` = 7, Table 6.3 says there are ten fields. Defining polynomials with Galois
group PGL2(F7) and the indicated discriminant are

F2(x) = x8 − x7 − 196x2 + 28x− 28, D2 = −26713,

F3a(x) = x8 − 4x7 + 21x4 − 21x2 − 15x− 3, D3a = −36711,

F3b(x) = x8 − 3x7 − 7x6 + 49x5 + 42x4, D3b = −36713,

F4(x) = x8 − x7 − 7x6 + 7x2 − 27x− 1, D4 = −24711,

F6a(x) = x8 − 2x7 + 42x4 − 126x3 + 84x2 + 66x− 48, D6a = −263679,

F6b(x) = x8 − x7 + 21x6 + 21x5 − 21x4 + 945x3 D7b = −2636713,

− 441x2 + 45x+ 3168,

F8a(x) = x8 − 2x7 + 7x4 − 14x2 + 8x+ 5, D8a = −2879,
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F8b(x) = x8 − 2x7 − 14x4 + 28x2 − 60x+ 92, D8b = −28711,

F8c(x) = x8 − 2x7 + 14x6 + 42x5 + 140x4 D8c = −28713,

+ 266x3 + 322x2 + 222x− 157,

F8d(x) = x8 − 2x7 + 49x4 − 196x2 − 140x− 63, D8d = −28713.

All twelve newforms in M(2)+ are governed by F2, while the eleven newforms in
M(2)− are all degenerate. The twenty-four newforms in M(6) with ε2 = + are
governed by F6a; of those in M(6) with ε2 = −, twelve are governed by F6b and
eleven are degenerate.

6.4. Field discriminants and ramification. General facts, some used to find
the polynomials of the previous subsection, are illustrated by the displayed dis-
criminants D. Certainly, all primes dividing the discriminant must divide N` and
for odd ` the discriminant must be a square times χ−4(`)`.

Ramification at ` is directly related to weight. As mentioned earlier, all poly-
nomials necessarily arise already from newforms in weight k ≤ ` + 1. In fact
if ord`(D) ≥ ` + 2, then in this range the polynomial arises only in weight
ord`(D) + 2 − `. Thus in the reduction bijection from {∆+

4,8,∆
−
6,8,∆

+
8,8,∆

−
8,8}

to {f8a, f8b, f8c, f8d}, discriminants force the correspondences ∆+
4,8 ↔ f8a and

∆−6,8 ↔ f8b. In fact, the only ambiguity as to the canonical lowest weight source

of each of our fifteen polynomials is the rest of this bijection. For ∆+
8,8 and ∆−8,8,

one has s3 = 6 and 0 respectively. For f8c and f8d, one has λ3 = 8 and 22211
respectively. By §6.2, the bijection is completed by ∆+

8,8 ↔ f8c and ∆−8,8 ↔ f8d.
In general, ramification at primes p different from ` is directly related to the

refinement of the Atkin-Lehner decomposition discussed in §3.4. With our tiny
levels, we see only a small part of this complicated theory. If p exactly divides N ,
then ordp(D) is usually `−1 but exceptionally can be zero. For the ten instances in
§6.3, it is always `− 1. If ord2(N) is 2 or 3, then the 2-decomposition group has to
be S3 and S4 respectively; these nonabelian subgroups exclude the simple abelian
behavior (6.15); they partially explain why all newforms at these levels 4 and 8
have surjective mod 5 and mod 7 projective representations. For ord2(N) = 3, the
slope content as in [JR06] has to be [4/3, 4/3]23, as opposed to the other possibility
for S4 2-adic fields, [8/3, 8/3]23. This restriction accounts for the small exponents
on 2 in the seven polynomials in §6.3 associated to N = 8.

6.5. Congruences. A necessary condition for two rational newforms with the same
level N to reduce to the same power series in F`[[q]] is that their projective mod
` representations coincide and their weights are congruent modulo ` − 1. This
condition is sufficient for ` = 2, but not for ` > 2, as there is still a sign ambiguity in
each of the ap. For example, the two newforms ∆±8,8 satisfy the necessary condition,

but differ via twisting by χ−3, as illustrated by (a5, a7, a11, a13, a17, a19, a23, a29) =
(±1, 0,±1, 1,±2, 2,±1,±0).

Remarkably, the sign ambiguity can be resolved in a simple way in all our cases.
Most strikingly, for N ∈ {2, 4, 6} the above necessary condition is also sufficient,
and in the degenerate case only the congruence condition on weights needs to be
verified. As examples with ` = 7,

∆+
8,2 ≡ ∆+

14,2 ≡ ∆+
20,2 ≡ ∆+

26,2 ≡ q + 6q2 + 5q3 + q4 + 2q6 + q7 + 6q8 + · · · ,
∆−10,2 ≡ ∆−22,2 ≡ ∆−28,2 ≡ ∆−40,2 ≡ q + 2q2 + 5q3 + 4q4 + 2q5 + 3q6 + q8 + · · · .
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Other similar examples can be read off from Table 4.2.

7. Concluding discussion

Sections 5 and 6 examined particular non-CM newforms with rational coeffi-
cients. Here we return to discussing Conjecture 1.1, which concerns the landscape
of all non-CM newforms with rational coefficients. Given that the Maeda conjecture
has been open for twenty years, we do not expect that our similar Conjecture 1.1
will be proved soon. In contrast, our assessment is that there is still insight to be
gained by continuing exploratory computations in this spirit of this paper. Our
concluding discussion proposes three directions for such computations.

7.1. Larger cutoffs. We have simply used Magma’s general modular form package
to compute the sets Qk(N). Programs optimized for this exact problem could likely
go further, meaning larger cutoffs Ck for each given k. Steps have been taken in
this direction [KM], with one of the main ideas being to first work with modular
forms modulo two.

7.2. Connections with extra vanishing. Let Pk(N)δ be a locally defined collec-
tion of newforms, as in §3.4. Every newform g in this set has a completed L-function
Λ(g, s), with functional equation Λ(g, s) = wΛ(g, k − s). The sign w of the func-
tional equation is the same for all g. As a consequence, the order of vanishing r(g)
at the central point s = k/2 satisfies (−1)r(g) = w and so has constant parity.
While the rank r(g) itself can certainly vary with g, the Beilinson-Bloch arithmetic
interpretation of central vanishing implies that conjugate g should have identical
r(g).

Vanishing beyond order one therefore has the potential to “explain” some locally
unforced splittings. For example, we have looked at all rational non-CM newforms
g with k = 6 and N ≤ 400. Eight of them have r(g) = 2 and none have r(g) ≥ 3.
Seven of these eight have quadfree level and are members of sets P6(N)ε as follows:

N
95 116 122 260 308 359 371

5 · 19 4 · 29 2 · 61 4 · 5 · 13 4 · 7 · 11 359 7 · 53
ε +− −+ +− −+ + −+ + − +−
d 9 + 1 6 + 1 6 + 1 4 + 1 6 + 1 83 + 1 34 + 1

.

In each case, we work with the smallest p not dividing N . The degree d character-
istic polynomial f ε6,N,p(x) always factors as a linear factor times a polynomial with

Galois group Sd−1. For example f−6,359,2(x) = (x − 5)(x83 − 7x82 − · · · ) with the
degree 83 polynomial having a 4128-digit field discriminant.

The order of vanishing r(gχ) of quadratic twists gχ can also be taken into consid-
eration. As an example, let g = q+4q2 +11q3 + · · · be the unique form in the space
denoted P6(50)−± in §3.4. Both g and its twist gχ5 = q−4q2−11q3+· · · ∈ P6(50)+∓

have rank zero. However the twist gχ−4 with level 400 has rank two. To deal
with arbitrary quadratic twists of a fixed form g, it would be natural to bring in
half-integral weight modular forms via the Shimura-Waldspurger correspondence
as described with examples in [Kob93, IV.4].

In weight six, we computed also in levels larger than 400 and have seen several
more examples of extra vanishing, all again with rank two. We have not seen any
extra vanishing at all in weights ≥ 8, and so in particular we have no explanation
of the various unforced splittings seen there. However, we have not computed
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systematically and there may be extra vanishing for twists at larger levels. In
weight eight, order two vanishing has been seen in CM newforms [Wat08, §6.6.2].

7.3. A broader notion of rationality. This paper has addressed the problem
of tabulating all non-CM newforms which satisfy the rationality condition that all
their Fourier coefficients an are rational. There is second much weaker rationality
condition that is equally natural from a motivic point of view, namely that all the
|an|2 are rational. In this larger setting, one has to work with general characters
χ and allow odd weights k as well. The rings described in Section 5 include some
interesting examples.

The two problems are both instances of a common general problem concerning
objects in the categoryM(Q,Q) of motives over Q with coefficients in Q. Roughly
speaking, the problem of this paper is equivalent to classifying rank two motives in
this category with Sato-Tate group the symplectic group Sp2. The larger problem
with the weaker rationality condition is equivalent to classifying rank three motives
with Sato-Tate group the special orthogonal group SO3. With this weaker notion
of rationality, there would of course be more newforms to collect; however we would
still expect finiteness in all weights k ≥ 5.
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