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J’ai commencé a regarder M0,5 à des moments

perdus, c’est un véritable joyau, d’une géométrie

très riche étroitement liée à celle de l’icosaédre.

–A. Grothendieck, Esquisse d’un Programme

1. The exotic dodecahedron via tiling

2. The exotic dodecahedron via cross-

capping standard surfaces

3. The exotic dodecahedron via real alge-

braic geometry

4. Hints of deeper matters: M0,5(Z[ 1
P ]) and

π1(M0,5(C), ?).
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1. M0,5(R) via tiling. Twelve pentagonal

tiles colored with five colors satisfying obvious

rules:
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The group S5 = Sym{R,O,G,B, V } acts on the

twelve tiles, as in e.g.,

(R,O)[top left] = (R,O)[R,O,G,B, V ]

= [O,R,G,B, V ]

= [R,G,B, V ,O]

= [R,O, V ,B,G]

= [bottom right]
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The alternating group A5 stabilizes the two

indicated subsets of six tiles.

Also each tile [abcde] has an opposite tile [acebd],

where neighboring colors in a given tile are

non-neighboring colors in its opposite and vice

versa.
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To make the standard dodecahedron follow the

gluing rule:

(touching edges match colors and there are

three colors at each of two touching vertices,

as in picture). Each piece determines the other.

Theorem. Continuing this process yields the

standard dodecahedron with three faces meet-

ing at each vertex. Two collections of six tiles

of the same parity are used.
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To make the exotic dodecahedron follow the

gluing rule:

(touching edges match colors, touching ver-

tices match colors, adjacent edges don’t match,

as in picture). Each piece determines the other.

Theorem. Continuing this process yields the

exotic dodecahedron with four faces meeting

at each vertex. The twelve tiles are each used

once.
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Eleven tiles forming “pentagaman”. Gluing
and including a twelfth pentagon appropriately
forms either dodecahedron.
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Similarities and differences:

Standard Exotic
dodecahedron D dodecahedron M0,5(R)
12 pentagonal tiles 12 pentagonal tiles
30 edges 30 edges
20 vertices 15 vertices
Orientable Nonorientable
Euler char. is 2 Euler char. is −3
Sym. group is A5×C2 Sym. group is S5

Notations finally explained:

• M0,5(R) is a disconnected surface consist-

ing of the twelve open pentagons.

• M0,5(R)−M0,5(R) is a graph consisting of

thirty edges and fifteen vertices. It is better

thought of as ten circles meeting at fifteen

points.
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2. M0,5(R) as surfaces with cross-caps. We
now study only the exotic dodecahedron and
switch conventions to bring out its special fea-
tures. Replacing our previous tile

it now would be natural to use

To simplify, we use only the colored star.

9



Toroidal view.

The drawn square has symmetry group V =

〈(R,O), (G,B)〉. Its compactification the torus

has the larger symmetry group S2 × S3 with

orbits {R,O} and {G,B, V }. The exotic dodec-

ahedron M0,5(R) is the torus blown up at the

three black triple points.
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Projective view.

The drawn disk has D4 = 〈(R,G,O,B), (B,G)〉
symmetry. Its compactification the projective

plane has S4 symmetry belonging to the par-

tition {{R,O,G,B}, {V }}. The exotic dodeca-

hedron is M0,5(R) is the torus blown up at the

four black triple points.

11



Summary of views. For the standard dodeca-

hedron, the group A5 of rotational symmetries

can be visually understood all at once. The

rest of the symmetry group can be understood

by means of reflections.

For the exotic dodecahedron, our visual under-

standing is more abstract:

Euclidean Larger
Symmetry Symmetry

View E |E| H |H|
Pentagaman C5 5 F5 20
Torus with three CC V 4 S2S3 12
Plane with four CC D4 8 S4 24

Each of our three viewpoints breaks the sym-

metry so that the full group S5 of symmetries

is not visually evident. Instead we have a group

E ⊂ S5 of completely obvious Euclidean sym-

metries and a larger group H ⊂ S5 of symme-

tries which requires a bit more imagination to

see.
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3. M0,5(R) via real algebraic geometry.

A broad context: In algebraic geometry, the

schemes Mg,n are very important. They have

relative dimension 3g − 3 + n ≥ 0 over Spec Z.

The schemes Mg,n determine sets Mg,n(K) for

any field K. The key property of these sets is

that if K is algebraically closed then Mg,n(K)

is the set of isomorphism classes of smooth

genus g curves over K with n marked points.

The schemes Mg,n have natural compactifica-

tions Mg,n in terms of minimally singular curves

called stable curves.

We are concerned with the case g = 0 today.

The first case outside of the g = 0 context is

M1,1 which classifies the elliptic curves. One

has M1,1(K) = K and M1,1(K) = K ∪ {∞}.
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Direct description of M0,n and M0,n. Cases

with g = 0 can be described directly in terms

of P1(K) = K ∪ {∞}. Let

C0,n(K) =
{

(x1, . . . , xn) ∈ P1(K) :

the xi are all different} .

Then the desired moduli sets are obtained by

quotienting by fractional linear transformations:

M0,n(K) = C0,n(K)/PGL2(K).

The slightly larger sets M0,n(K) have a simi-

lar direct description. Relevant for us is that

M0,5(K) −M0,5(K) consists of ten projective

lines meeting at 15 points. While the five

points are generically all different, xi = xj over

Lij(K). Also xi = xj and xk = x` over the

single intersection point Pij,kl(K) = Lij(K) ∩
Lk`(K). More degenerate configurations, such

as xi = xj = xk are not relevant because they

are not stable.
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Very direct description of M0,n and M0,n. The
fact that any triple (x1, x2, x3) of distinct points
in P1(K) can be taken to the standard triple
(0,1,∞) by a unique fractional linear transfor-
mation in PGL2(K) lets one be even more ex-
plicit.

In the example relevant for us (x1, x2, x3, x4, x5)
can be uniquely normalized to (0,1,∞, s, t). Ac-
cordingly

M0,5(K) = {s, t ∈ K − {0,1} : s 6= t}.
We color the five points via 0,1,∞, s, t. The
very direct description is ideal in many respects,
but it obscures the S5 action which is still
present. For example, there is still a line L01(R)
at infinity, corresponding to where the points
called 0 and 1 collide.

The toroidal and projective views can now be
revisited with everything generalized from R to
K and given algebro-geometric meaning (some-
thing with no analog for the standard dodeca-
hedron!).
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Toroidal viewpoint revisited: there are five pro-
jections M0,5 → P1:
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0: red lines through (1,1),
1: orange lines through (0,0),
∞: green hyperbolas,
s: blue horizontal lines,
t: violet vertical lines.
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4. Hints of deeper matters. Arithmetic.

Sets Mg,n(R) are defined for any ring. For ex-

ample, for R a domain,

M0,5(R) =
{

(s, t) ∈ R2 :

s, t, (s− 1), (t− 1), and (s− t)
are all invertible.}

An interesting case is when R = Z[ 1
P ] is the

ring obtained from Z by inverting all primes in

a finite set P. Then Z[ 1
P ] is known to be finite

and a natural arithmetic problem is to identify

it.

Example: P = {2,3}. Then clearly (1
3,

2
3) and

(1
4,

3
4) are both in M0,5(Z[ 1

{2,3}]). Each gives an

S5-orbit, which has only 60 elements because

each is stabilized by the involution

(s, t) 7→ (1− t,1− s)

of M0,5. These two orbits form all of M0,5(Z[ 1
{2,3}]),

as drawn above.
17



Larger example: The set M0,5(Z[ 1
{2,3,5,7}]) has

19800 points:
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Topology. Suppose given a monic polynomial
f(s, t, x) ∈ C[s, t, x] where s and t are viewed as
a parameters and x as a variable. Suppose its
discriminant has the special form

D(s, t) = Cs∗(s− 1)∗t∗(t− 1)∗(t− s)∗.
Then a standard and important question is how
the root sets Xs,t ⊂ C vary as (s, t) varies over
M0,5(C) ⊂ C2.

For visualization, define

C1.5 = {(s, t) ∈ C2 : Im(s) = −Im(t)}
Let parameters vary in M0,5(C) ∩ C1.5, with
Re(s) and Re(t) as horizontal variables and h =
Im(s) as a vertical variable. Then M0,5(C) ∩
C1.5 consists of an upper half space h > 0 and a
lower half space h < 0 connected by the twelve
components of M0,5(R) at h = 0 viewed as
windows.

Work with base point ? = (i,−i). Then the
issue is how roots permute themselves as one
leaves the upper half space through a window
and comes back through a different window.
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If f(s, t, x) ∈ R[s, t, x], one has 12 complex con-
jugation operators σL on X?, indexed by faces.

Carefully making choices, use them to define
10 monodromy operators, e.g.

ms0 = σdσE (= σCσa, σBσf)

m1∞ = σCσf ( 6∼ other choices)

mst = σaσD ( 6= other choices)

Have these monodromy operators even when
f(s, t, x) 6∈ R[s, t, x].
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The diagram organizes many properties and
non-properties of the mij, e.g.

mij1mij2mij3,mij4 = 1

is only guaranteed when j1, j2, j3, j4 circle i

in a counterclockwise order.
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