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1. Cyclotomic polynomials
2. FCPs: basic properties extended
3. FCPs: greater complexity

The 4096 roots of Φ2;1,0,∞,1,0,∞,1,0,∞,1,0,∞,1(x),
one of the 313 analogs of Φ213(x). 466 of these
roots are real.
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1. Cyclotomic Polynomials. For n a positive
integer, the nth cyclotomic polynomial is

Φn(x) =
∏
r
(x− e2πir)

where the product is over rational numbers in
[0,1) with denominator n.

For n = 1, 2, 3, 4, 6, and 12, the index-
ing sets are {0}, {1/2}, {1/3,2/3}, {1/4,3/4},
{1/6,5/6}, and {1/12,5/12,7/12,11/12}. The
corresponding roots e2πir are as drawn:
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In general, one has

xn − 1 =
∏
d|n

Φd(x). (1)

Cyclotomic polynomials can be computed in-
ductively from (1) without any reference to
complex roots. E.g., one has

x− 1 = Φ1(x)

x2 − 1 = Φ1(x)Φ2(x)

x3 − 1 = Φ1(x)Φ3(x)

x4 − 1 = Φ1(x)Φ2(x)Φ4(x)

x6 − 1 = Φ1(x)Φ2(x)Φ3(x)Φ6(x)

x12 − 1 = Φ1(x)Φ2(x)Φ3(x)Φ4(x)Φ6(x)Φ12(x)

Inverting, one gets

Φ1(x) = x− 1

Φ2(x) = x + 1

Φ3(x) = x2 + x + 1

Φ4(x) = x2 + 1

Φ6(x) = x2 − x + 1

Φ12(x) = x4 − x2 + 1



The degree of Φn(x) is “Euler’s totient” φ(n),

the number of rational numbers in [0,1) with

denominator n.

The case when n is a prime power, n = pm > 1,

is the main case. Then, very simply

Φpm(x) =
xpm − 1

xpm−1 − 1

=
p−1∑
j=0

xjpm−1
.

The degree of Φpm(x) is φ(pm) = (p− 1)pm−1.

As another example, φ(105) = φ(3)φ(5)φ(7) =

2 · 4 · 6 = 48 and Φ105(x) =

x48 + x47 + x46 − x43 − x42 − 2x41 − x40

−x39 + x36 + x35 + x34 + x33 + x32 + x31

−x28 − x26 − x24 − x22 − x20 + x17 + x16

+x15 + x14 + x13 + x12 − x9 − x8 − 2x7

−x6 − x5 + x2 + x + 1



Cyclotomic polynomials are irreducible.

(Proof in the case n = p:

Φp(x + 1) =
(x + 1)p − 1

(x + 1)− 1

=
xn + pxn−1 + · · ·+ px + 1− 1

x

= xn−1 + pxn−2 + · · ·+ p,

an Eisenstein polynomial. )

The Galois group of Φn(x) is the multi-

plicative group (Z/nZ)×. In fact, for a ∈
(Z/nZ)× the corresponding permutation of the

roots of Φn(x) is

e2πir 7→ e2πiar.

(This fact, and the fact that φ(17) = 16 is a

power of 2, underlies Gauss’ construction of

the 17-gon by ruler and compass.)



The primes dividing the discriminant D(Φn)
of Φn(x) all divide n. Proof in the case n = 8:
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|D(Φ8)| =

 ∏
r1<r2

|e2πir1 − e2πir2|

2

=
(√

2 ·
√

2 ·
√

2 ·
√

2 · 2 · 2
)2

= 28

The ring Z[e2πi/n] is the full ring of integers
in the cyclotomic field Q(e2πi/n), and so
the field discriminant d(Φn) agrees with the
polynomial discriminant D(Φn).



2. Fractalized Cyclotomic Polynomials: ba-
sic properties extended. Consider the fol-
lowing linear operators from polynomials of de-
gree ≤ n polynomials of degree ≤ pn.

F ∗
n,p;0f(x) = f(1− (1− x)p)

F ∗
n,p;1f(x) = f(xp)

F ∗
n,p;∞f(x) = (xp − (x− 1)p)nf(

xp

xp − (x− 1)p
)

The complicated F ∗
n,p,0 and F ∗

n,p,∞ are conju-
gates of the simple F ∗

n,p,1 by fractional linear
transformations of the x-line stabilizing {0,1,∞}.

Define

Ψ0(x) = x

Ψ1(x) = x− 1

Ψ∞(x) = 1

Define Φp;τ(x) =
F1,p;1(Ψτ)

Ψτ
. For m ≥ 2, define

Φp;τ1,...,τm = F ∗
(p−1)pm−2,p;τΦp;τ1,...,τm−1.

The special case Φp;1,...,1 is just the classical
cyclotomic polynomial Φpm.



Properties of the operators Fn,p;τ : Vn → Vpn.

Preservation of cuspidal values. For f(x) =
a0xn + · · · + an−1x + an one has f(0) = an,
f(1), and also f(∞) = a0. Direct computation
shows

(F ∗
n,p;τf)(σ) = f(σ) (2)

for σ ∈ {0,1,∞}.

Transformation of discriminant. For f(x) =
a0(x−α1) · · · (x−αn), its discriminant is D(f) =
a2n−2
0

∏
i<j(αi − αj)

2. One has

D(F ∗
n,p;τf) = (3)

(−1)pnp(p−1)/2
pnpf(τ ′)p−1f(τ ′′)p−1D(f)p

where {τ, τ ′, τ ′′} = {0,1,∞}. This formula and
(4) below are proved by reduction to the simple
case of Fn,p;1(x) = xp.

Reduction modulo p. If f(x) ∈ Z[x] then

(F ∗
n,p;τf)(x) ≡ f(x)p (mod p). (4)



Consequences of the general properties for the

particular polynomials Φp;τ1,...,τm.

1. Cuspidal values. One checks directly that

Φp;τ1(σ) =

{
±p If σ = τ1
±1 If σ 6= τ1

(5)

for σ ∈ {0,1,∞}. By (2), the same formulas

hold with Φp;τ1 replaced by Φp;τ1,...,τm.

2. Polynomial discriminant. From (3) one

gets that

D(Φp;τ1,...,τm) = ±pc(p;τ1,...,τm)

with

c(p; τ1, . . . , τm) =

p− 2 +
m∑

j=2

(p− 1)2pj−2j +

m∑
j=2

δ(τ1 6= τj)(p− 1)pm−j.



3. Irreducibility. Equation (4) says

Φp;τ1,...,τm(x) ≡ Ψτ1(x)
φ(pm) (mod p).

This fact, together with (5), says that Φp;τ1,...,τm

is an Eisenstein polynomial if τ1 = 0. By

the Eisenstein criterion, which applies directly

if τ1 = 0, one gets that Φp;τ1,...,τm(x) is irre-

ducible.

4. Field discriminant. In general, polyno-

mial discriminants D(f) and field discriminants

d(f) = d(Q[x]/f(x)) are integers related by

d(f) =
D(f)

i(f)2
.

Since Φp;τ1,...,τm(x) is essentially Eisenstein at

p, the prime p does not divide i(Φp;τ1,...,τm).

Since D(Φp;τ1,...,τm) has the form ±pa, the only

possibility is

d(Φp;τ1,...,τm) = D(Φp;τ1,...,τm).



3. FCPs: greater complexity. Root plots
are much more complicated:

The 4096 roots of Φ2;1,0,1,0,1,0,1,0,1,0,1,0,1(x)
on the top (two real) and the 4096 roots of
Φ2;1,0,∞,0,1,0,∞,0,1,0,∞,0,1(x) below (338 real).
The maximum possible number of real roots
for analogs of Φ2m(x) is 2 Fibonacci(m), as
represented by the cover slide.



Roots of Φ3;1,0,0,1,1,0,0,1(x) on the top and

Φ3;1,0,∞,1,1,∞,0,1(x) on the bottom. Both poly-

nomials have φ(38) = 2 · 37 = 4374 roots.

When p 6= 2, all roots of analogs of Φpm(x)

are non-real.



Galois groups still have order of the general

form (p−1)pc. However, except in the classical

case, the order is always larger than the degree

(p− 1)pm−1 and so the group is non-abelian.

The table considers the case p = 2 and m = 4,

thus octic polynomials Φ2;τ1,...,τ4(x) generaliz-

ing the octic polynomial Φ16(x) = x8 + 1. On

the table, a, b, and c represent distinct ele-

ments of {0,1,∞}.

τ1τ2τ3τ4 |G| G τ1τ2τ3τ4 |G| G
aaaa 8 T2 abac 64 T28
aaab 32 T21 abba 64 T30
aaba 32 T19 abbb 16 T8
aabb 32 T17 abbc 64 T28
aabc 16 T6 abca 64 T27
abaa 16 T8 abcb 64 T27
abab 64 T30 abcc 32 T16



Concluding problem. Let K be the union of
all Galois extensions of Q of degree a power
of 2 and with absolute discriminant a power of
2. Remarkably, the infinite Galois group G =
Gal(K/Q) is known; it is the pro-p completion
of the free product of Z/2Z and Z.

From general ramification theory one knows
that G is filtered by ramification subgroups Gs

with all minimal subquotients Gs/Gs+ of or-
der two, indexed by positive rational numbers
s called “slopes.”

The problem is to find the slopes s that ap-
pear. Our discriminant formulas for FCPs al-
ready give some infinite families of slopes. A
closer study of low degree cases gives more
slopes. Can one somehow use FCPs to get
infinitely more slopes? Do FCPs get all the
slopes?

One has analogous results and questions for
p > 2 as well.


