# Some Belyi covers unexpectedly* defined over $\mathbb{Q}$ David P. Roberts University of Minnesota, Morris 

(* from a purely 3-point viewpoint)

1. Background on Hurwitz moduli spaces of $r$-point covers of $\mathrm{P}^{1}$
2. $r=3$ : the setting for general Belyi covers
3. $r=4$ : Hurwitz curves as a broad class of very special Belyi covers
4. $r=5$ : Curves in Hurwitz surfaces as another broad class of very special Belyi covers

Sections 2-4 will center on five examples, with equations explicitly given.

## 1. Background: Hurwitz parameters.

Definition. Let $r \in \mathbb{Z}_{\geq 3}$. A r-point Hurwitz parameter is a triple $h=(G, C, \nu)$ where

- $G$ is a finite centerless group.
- $C=\left(C_{1}, \ldots, C_{s}\right)$ is a list of distinct conjugacy classes in $G$.
- $\nu=\left(\nu_{1}, \ldots, \nu_{s}\right)$ is a list of positive integers such that $\Pi\left[C_{i}\right]^{\nu_{i}}=1$ in $G^{\mathrm{ab}}$.

Some group-theoretic quantities.

Given a Hurwitz parameter $h$, let

$$
\begin{gathered}
\mathcal{G}_{h}=\left\{\left(g_{1,1}, \ldots, g_{1, \nu_{1}}, \ldots, g_{s, 1}, \ldots, g_{s, \nu_{s}}\right):\right. \\
g_{i, j} \in C_{i} \\
g_{1,1} \cdots g_{1, \nu_{1}} \cdots g_{s, 1} \cdots g_{s, \nu_{s}}=1, \\
\left.\left\langle g_{i, j}\right\rangle=G .\right\}
\end{gathered}
$$

$G$ acts on $\mathcal{G}_{h}$ by simultaneous conjugation. Define the fiber associated to $h$ to be $\mathcal{F}_{h}=\mathcal{G}_{h} / G$.

Mass formulas plus inclusion-exclusion let one determine the degree $N:=\left|\mathcal{F}_{h}\right|$ exactly. Let

$$
\mu=\frac{\Pi\left|C_{i}\right|^{\nu_{i}}}{\left|G^{\prime}\right||G|} .
$$

Then

$$
N \approx \mu
$$

is usually close and often exact.

Hurwitz covers. Let Conf ${ }_{\nu}$ be the "configuration" space of ( $D_{1}, \ldots, D_{s}$ ), where the $D_{i} \subset \mathbf{P}^{1}$ are disjoint divisors with $\left|D_{i}\right|=\nu_{i}$.

The theory of Hurwitz schemes gives a degree $N$ cover

$$
\pi_{h}: \operatorname{Hur}_{h} \rightarrow \operatorname{Conf}_{\nu}
$$

of complex algebraic varieties. After choosing an auxiliary embedding $G \subseteq S_{n}$, a point $x \in$ Hur $h_{h}$ over $\left(D_{1}, \ldots, D_{s}\right)$ indexes a degree $n$ cover

$$
Y_{x} \rightarrow \mathbf{P}^{1}
$$

with local monodromy in $C_{i}$ about points in $D_{i}$ and global monodromy $G$.

The theory says that if the $C_{i}$ are rational, then the cover descends to a map of varieties over $\mathbb{Q}$. Moreover, this map has good reduction outside of the primes dividing $|G|$.

Reduced Hurwitz covers. The group $P G L_{2}$ acts on Conf $_{\nu}$ by fractional linear transformations. When there are no complications related to descent, the action lifts to $\mathrm{Hur}_{h}$. Let

$$
\pi_{h}: X_{h} \rightarrow U_{\nu}
$$

be the quotient. So these spaces have dimension $r$ - 3 .

When $r=3$, this moduli situation is trivial over $\mathbb{C}$ : $U_{\nu}$ is a single point and $X_{h}$ consists of $N$ points.

For $r \geq 4$, the fundamental group of $U_{\nu}$ with respect to a base point $\star$ is a braid group $\mathrm{Br}_{\nu}$. This braid group acts naturally on the fiber $\mathcal{F}_{h}=\pi_{h}^{-1}(\star)$. When $G$ is close enough to being simple, then the global monodromy group is often $A_{N}$ or $S_{N}$.
2. $r=3$ : the setting for general Belyi covers. Take $\nu=(1,1,1)$ always with $D_{1}=$ $\{0\}, D_{2}=\{1\}$, and $D_{3}=\{\infty\}$.

Rigid cases. A great many $\left(G,\left(C_{1}, C_{2}, C_{3}\right)\right)$ with $N=1$ have been studied in the literature. Simple examples include that

$$
\left(G,\left(C_{1}, C_{2}, C_{3}\right)\right)=\left(S_{n},\left(n, 21^{n-2},(n-1) 1\right)\right)
$$

yields the cover $\mathbb{P}_{y}^{1} \rightarrow \mathbb{P}_{t}^{1}$ given by

$$
t=\frac{y^{n}}{y n-n+1} .
$$

By specialization from rigid cases, many instances of the inverse Galois problem have been solved (e.g. the existence of number fields with Galois group the monster $M$, coming from $h=$ $(M,(3 B, 2 A, 29 A),(1,1,1)))$.

Non-rigid cases illustrated by Example A. The case

$$
h=\left(S_{12},\left(642,2^{5} 1^{2}, 532^{2}\right),(1,1,1)\right)
$$

has moduli degree $N=24$. To find the 24 functions $\pi_{i}: \mathbb{P}_{y}^{1} \rightarrow \mathbb{P}_{t}^{1}$ consider rational functions

$$
F(y)=-\frac{A(y)}{C(y)}
$$

where

$$
\begin{aligned}
A(y)= & y^{6}(y-1)^{4}(y-x)^{2} \\
B(y)= & \left(y^{5}+a y^{4}+b y^{3}+c y^{2}+d y+e\right)^{2} \\
& \left(y^{2}+f y+g\right) \\
C(y)= & (y+u)^{3}\left(y^{2}+v y+w\right)
\end{aligned}
$$

and

$$
A(y)+B(y)+C(y)=0 .
$$

Gröbner basis techniques gives 24 different $x_{i} \in$ $\mathbb{C}$ with each $x_{i}$ then determining the complete solution ( $x_{i}, a_{i}, b_{i}, c_{i}, d_{i}, e_{i}, f_{i}, g_{i}, u_{i}, v_{i}, w_{i}$ ).

The twenty-four $x_{i}$ are the roots of a polynomial $f(x) \in \mathbb{Z}[x]$. Writing $K_{f}=\mathbb{Q}[x] / f(x)$, one has $X_{h}=\operatorname{Spec}\left(K_{f}\right)$. The twenty-four dessins $\pi_{i}^{-1}([0,1])$ are


For general three-point $h$, all prime factors of the discriminant of $K_{f}$ divide $|G|$. Typically, $f(x)$ has Galois group $S_{N}$.

However in our example, $f(x)$ factors:
$(5 x+4)$.
$\left(48828125 x^{23}+283203125 x^{22}-4345703125 x^{21}\right.$
$-21400390625 x^{20}+134842187500 x^{19}+461968375000 x^{18}$
$-1670830050000 x^{17}-2095451850000 x^{16}+7249113240000 x^{15}$
$+6576215456000 x^{14}-23053309281280 x^{13}-10284915779584 x^{12}$
$+50191042453504 x^{11}+9449308979200 x^{10}-74715419574272 x^{9}$
$+5031544553472 x^{8}+71884253429760 x^{7}-35243151065088 x^{6}$
$-41613745192960 x^{5}+29347637362688 x^{4}+14541349978112 x^{3}$
$\left.+1765701320704 x^{2}+100126425088 x+2684354560\right)$.
The cover $\mathbb{P}_{y}^{1} \rightarrow \mathbb{P}_{t}^{1}$ corresponding to $x_{1}=$ $-4 / 5$ is

$$
t=\frac{5^{5} y^{6}(y-1)^{4}(5 y+4)^{2}}{2^{4} 3^{3}(2 y+1)^{3}\left(5 y^{2}-6 y+2\right)^{2}} .
$$

This is an example of a cover "unexpectedly" defined over $\mathbb{Q}$. Also unexpected is that it has bad reduction only at 2,3 , and 5 .

Q1. Why does it split off?

Q2. Why are 7 and 11 primes of good reduction?
3. $r=4$ : Hurwitz curves as a broad class of very special Belyi covers. For $\nu=(1,1,1,1)$, $(2,1,1)$, and $(3,1)$, the reduced configuration space $U_{\nu}$ can be identified with $\mathbb{P}^{1}-\{0,1, \infty\}$.

So a Hurwitz parameter $h=(G, C, \nu)$ determines a Belyi map $X_{h} \rightarrow U_{\nu}$. Its global monodromy and in particular the ramification partitions $\beta_{0}, \beta_{1}, \beta_{\infty}$ can be computed by braid group techniques.

Example B. Let

$$
h=\left(A_{5},(5 A, 5 B, 311,221),(1,1,1,1)\right)
$$

with $N=12$. Because of the outer involution of $A_{5}$, the cover $X_{h} \rightarrow U_{1,1,1,1}$ can be descended to a degree 12 cover $X_{h}^{*} \rightarrow U_{2,1,1}$. It has $\left(\beta_{0}, \beta_{1}, \beta_{\infty}\right)=\left(642,2^{5} 1^{2}, 532^{2}\right)$. It thus coincides with $\pi_{1}$ of the previous section. This answers Q1 and Q2.

Example C. Let $G=P S U_{3}\left(\mathbb{F}_{3}\right)=G_{2}\left(\mathbb{F}_{2}\right)^{\prime}$. It has order $6048=2^{5} 3^{3} 7$ and is the twelfth smallest non-abelian simple group. For

$$
h=(G,(2 B, 4 D),(3,1)),
$$

the degree is $N=40$. The global monodromy group is $A_{40}$, the ramification triple is

$$
\left(\beta_{0}, \beta_{1}, \beta_{\infty}\right)=\left(3^{12} 1^{4}, 2^{20}, 128^{2} 732\right)
$$

and $\mu \approx 1623$. We'll look only for $\pi: X_{h} \rightarrow U_{3,1}$ and not its many cousins.

The cover we seek has good reduction at 5 . Finding it first over $\mathbb{F}_{5}$, then lifting 5-adically gives $\mathbb{P}_{x}^{1} \rightarrow \mathbb{P}_{j}^{1}$. Explicitly,

$$
j=\frac{A(x)^{3} B(x)}{2^{8} 3^{12}\left(2 x^{2}-4 x+3\right)^{8} x^{7}(x-2)^{3}(x+1)^{2}}
$$

with

$$
\begin{aligned}
A(x)= & 64 x^{12}-576 x^{11}+2400 x^{10}-5696 x^{9}+7344 x^{8} \\
& -3168 x^{7}-4080 x^{6}+8640 x^{5}-7380 x^{4} \\
& -1508 x^{3}+8982 x^{2}-7644 x+2401 \\
B(x)= & 4 x^{4}-20 x^{3}+78 x^{2}-92 x+49 .
\end{aligned}
$$

Example D. Two independent and interesting phenomena are

- Sometimes one can determine $X_{h} \rightarrow U_{\nu}$ for many $h$ at once.
- Sometimes a central extension of the monodromy group $G$ in which all $C_{i}$ are split forces a given cover $X_{h}$ to be disconnected.

A five-parameter family $h(a, b, c, d, e)$ based on the combinatorics of the icosahedron illustrates both phenomena. In one instance,

$$
h(8,2,1,-6,-3)=\left(S_{11},\left(31^{8}, 821,632\right),(2,1,1)\right) .
$$

Here $N=164$ and the cover splits into $X_{a}$ and $X_{b}$. Each part has global monodromy group $S_{82}$, ramification triple
$\left(\beta_{0}, \beta_{1}, \beta_{\infty}\right)=\left(11^{2} 87^{4} 64^{2} 3^{3} 1,2^{41}, 5^{7} 432^{20}\right)$, and $\mu \approx 3.09 \times 10^{14}$.

## Polynomials defining covers $\mathbb{P}_{x}^{1} \rightarrow \mathbb{P}_{w}^{1}$ are:

$$
\begin{aligned}
& f_{a}(w, x)= \\
& 2^{10}\left(4 x^{2}-2 x+3\right)^{11}(x-1)^{8}\left(2 x^{2}-6 x+1\right)^{7}\left(4 x^{2}-10 x+1\right)^{7} \\
& (2 x-1)^{6}\left(2 x^{2}+4 x-1\right)^{4}\left(2 x^{2}-2 x+1\right)^{3}(x-2)^{3} x \\
& +w(x+1)^{3} \\
& \left(192 x^{7}-1056 x^{6}+2148 x^{5}-1980 x^{4}+916 x^{3}-180 x^{2}+9 x+1\right)^{5} \\
& \left(262144 x^{20}-3997696 x^{19}+25821184 x^{18}-90701824 x^{17}\right. \\
& +183734272 x^{16}-216097792 x^{15}+240297984 x^{14} \\
& -788157696 x^{13}+2540448288 x^{12}-5231714088 x^{11} \\
& +7324268208 x^{10}-7380740172 x^{9}+5516284328 x^{8} \\
& -3092311406 x^{7}+1296979268 x^{6}-401203533 x^{5}+89194284 x^{4} \\
& \left.-13709316 x^{3}+1371392 x^{2}-79877 x+2048\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& f_{b}(w, x)= \\
& 2^{10}\left(4 x^{2}-2 x+3\right)^{11}(x-2)^{8}\left(2 x^{2}+2 x-3\right)^{7}\left(4 x^{2}+6 x-3\right)^{7} \\
& \quad(2 x-3)^{6}\left(2 x^{2}-3\right)^{4}\left(2 x^{2}-2 x+1\right)^{3}(x+3)^{3}(x+1) \\
& +w x^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \left(192 x^{7}+160 x^{6}-924 x^{5}-336 x^{4}+1708 x^{3}-288 x^{2}-783 x+432\right)^{5} \\
& \left(262144 x^{20}-1376256 x^{19}-589824 x^{18}+17629184 x^{17}\right. \\
& -29061120 x^{16}-62555136 x^{15}+235740160 x^{14}-85084416 x^{13} \\
& -614464224 x^{12}+977666328 x^{11}+59320728 x^{10}-1697521860 x^{9} \\
& +1918037988 x^{8}-313452990 x^{7}-1429815078 x^{6}+1887180525 x^{5} \\
& -1283333787 x^{4}+548937000 x^{3}-150220656 x^{2}+24564384 x \\
& -1889568)^{2}
\end{aligned}
$$

Dessins are:


## 4. Curves in Hurwitz surfaces as another broad class of very special Belyi covers

Reduced configuration varieties $U_{\nu}$ can contain rational curves with only three points at infinity. Here is a window on $U_{4,1}(\mathbb{R})$ with some points in $U_{4,1}(\mathbb{Z}[1 / 30])$ drawn and the rational curves on which they cluster highlighted.


Covers $X_{h} \rightarrow U_{\nu}$ restricted to one of these rational curves give Belyi maps. Global monodromy and hence ( $\beta_{0}, \beta_{1}, \beta_{\infty}$ ) can be computed by braid group methods.

Example E. Let $G=P S L_{2}\left(\mathbb{F}_{7}\right)=G L_{3}\left(\mathbb{F}_{2}\right)$ be the simple group of order $168=2^{3} 37$. The Hurwitz parameter

$$
h=(G,(2 A, 3 A),(4,1))
$$

was studied by Malle and has degree $N=192$. Reducing via the outer involution gives a cover $X_{h}^{*} \rightarrow U_{4,1}$ of degree 96.

Restricted to the diagonal line $A B$ the cover has monodromy group $A_{96}$. The ramification triple

$$
\left(\beta_{0}, \beta_{1}, \beta_{\infty}\right)=\left(3^{32}, 2^{40} 1^{16}, 21^{2} 9^{3} 7^{1} 6^{3} 2\right)
$$

has $\mu \approx 3.10 \times 10^{15}$.

## The rational map $\mathbb{P}_{x}^{1} \rightarrow \mathbb{P}_{j}^{1}$ and dessin:

$\left(7411887 x^{32}-316240512 x^{31}+5718682592 x^{30}-57608479936 x^{29}\right.$ $+345466405984 x^{28}-1143902168192 x^{27}+500924971008 x^{26}+20121596404224 x^{25}$ $-178485128485440 x^{24}+1076315934382080 x^{23}-4902849972088320 x^{22}$ $+16964516971136000 x^{21}-45252388465854976 x^{20}+95197078307043328 x^{19}$ $-161987009378324480 x^{18}+229049096903122944 x^{17}-277106243726667264 x^{16}$ $+295558502345637888 x^{15}-284898502452436992 x^{14}+250987121290100736 x^{13}$ $-200876992270295040 x^{12}+143474999551229952 x^{11}-89556680876359680 x^{10}$ $+47950288840949760 x^{9}-21681369027919872 x^{8}+8162827596988416 x^{7}$ $-2520589064601600 x^{6}+626540088655872 x^{5}-122178152300544 x^{4}$
$\left.+17986994307072 x^{3}-1878160048128 x^{2}+123834728448 x-3869835264\right)^{3}$ $-2^{20} j x^{6}(3 x-2)^{2}\left(x^{2}+2 x-2\right)^{6}\left(7 x^{2}-14 x+6\right)^{21}\left(2 x^{3}-15 x^{2}+18 x-6\right)^{9}$.


Concluding remark. The covers in this talk were all computed with old methods. It would be great to apply new methods and compute more $X_{h} \rightarrow U_{\nu}$.

