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Abstract

Let N be a positive integer. The modular curve Xo(N) plays a prominent
role in arithmetic geometry. For example it is conjectured that every
elliptic curve over Q with conductor N is uniformized by Xo(N). We
define for each “odd” relatively prime factorization N = N+N- a Shimura
curve Xy+ n-. Xn, is just another name for Xo(NV). In general, the curve
XN+ n- is analogous to Xo(V) in several ways. First, if Xo(/N') uniformizes
an elliptic curve E with conductor N then so does Xy+ y-. Second the
geometry of Xy+ n-, considered as an arithmetic surface over Spec Z,
is similar to that of Xo(N). An important difference is that at primes
dividing N~ the reduction of Xy+ y- is considerably different from that
of Xo(N).

We begin this paper by specializing a number of general facts about
Shimura curves to the particular Shimura curves Xy+ N-. Then we con-
sider four topics particular to these Shimura curves: 1. We give a
conjectural description of the bad reduction of Xy+ y- at primes p with
p?|N -, the other cases being known. We assemble evidence for these con-
jectures. 2. We give a formula for the intersection of certain complex
multiplication divisors on the arithmetic surface X ~N+n-. This formula
generalizes that of Gross, Kohnen, and Zagier for the special case Xy(N).
3. We identify the Jacobians of certain genus one quotients of X N+ N- With
elliptic curves given in Swinnerton-Dyer's tables. Here the identification
is made by comparing bad reductions. 4. We consider a parametrization
X157 — E in considerable detail. This example illustrates the intersection
formula in a concrete fashion.
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Introduction

Let N be a positive integer. Let ¢ be the number of prime factors of N. If
N = N+N- is one of the 2! factorizations of N into two relatively prime
positive integers we put

D(N*,N7) = {p:ordy(N ") is odd} U {e0} C Places(Q).

We say that a pair (N*,N~) is even or odd according to whether the
integer #(Z(N*,N7)) is even or odd. Thus if N is not a perfect square
it has 2t-! factorizations of each parity; in the exceptional case where N
is a perfect square all 2! factorizations are odd.

In this paper we define for each such pair (N + N~) an algebraic curve
Xn+ n- over Q. Xy, is just another name for the usual modular curve
Xo(N) figuring in our title. In general the odd curves are analogous to
Xo(N) and equal in complexity. The even curves are also analogous to
Xo( N') but much simpler objects. Only the odd curves are Shimura curves
in the usual sense (e.g. [Sh 71]); however the words “Shimura curves” in
our title are meant to refer to both types.

In Section 1 we introduce the notion of an oriented Eichler order of type
(N*,N-). Sections 2—4 consist mostly in specializing results about gen-
eral Shimura curves to our particular Shimura curves. Section 5 contains
two new conjectures concerning bad reduction of our particular Shimura
curves at primes p with p?|N~. Section 6 contains an intersection formula
generalizing that of [GKZ 87} from Xo(N) to all the odd Xn+ n-. Sec-
tions 7 and 8 contain some new examples. Here is a section-by-section
summary:

Section 1. We define what it means for a quaternionic order R to be an
Eichler order of type (N*,N~). For example

Ro(N) := {(Z 3) € My(2): N|c}

is an Eichler order of type (N, 1). If R is an Eichler order of type (N*+,N7)
then B := R®Q has ramification locus Z(N*, N7)if (N*, N~} is even and
T(N*,N-)—{oo} if (N*,N~) is odd. We definea notion of orientation on
an Eichler order R of type (N*, N~} which will prove technically useful;
such an order R has exactly 2 orientations.
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Section 2. Here we define complex analytic curves Xy+ y- by direct
uniformization in a way analogous to the usual description

Xo(N) := Ro(N)*\(C — R)] J{cusps}.

For N = 33 the four possibilities appear as follows:

@ o e oo
2 2 22

Q00 O
O0, O N~

X331 Xs.n X113 X133

In general if (N*,N~) is even then An+ y- is disconnected for all but a
few small N; all components have genus zero. In fact the components
of Xn+ n- are indexed by oriented Eichler orders of type (N*,N~). If
(N*,N-) is odd then Xy+ - is connected; it has positive genus for all
but a few small N.

Despite the rather striking difference in appearance we treat the two
cases simultaneously. For example there is a notion of CM point which
is defined in the same way for the two cases; the points labeled 2 and
3 above are examples of CM points. As a second example let W(N)
denote the group of symbols {wpy}mn, multiplication being defined by
Winymy = Wmyma/(my,ma)- W(N) is called the Atkin-Lehner group and is
clearly an elementary 2-group with order 2‘. There is an action of W(N)
on X+ n- defined in the same way for both cases.

We explain how the Jacquet-Langlands theorem specializes to give a
precise relation among the curves A+ y-. For those readers already fa-

miliar with the terminology the most important part of this relation is
easy to state: the Hecke modules H*(Xy+ n,C)™" and H"(Xo(N), C)™"



are isomorphic. It is also useful to sum up another part of this relation
in an imprecise and informal way: as one moves primes from N¥ to N~
the complementary subspace H *(Xn+ n-,C)M becomes smaller, in fact
strictly smaller except for certain small values of N such as 33. Indeed, in
our example dim(H=(Xy+n-,C)"") = 2 for all four factorizations 33 =
N+N-. Hence dim(H*(Xy+n-,C)?) is four for the cases (N*,N7) =
(33,1),(11,3) and zero for the cases (N+,N-)=(3,11),(1,33).

Section 3. We define Xy+n- as algebraic curves over Q. The even
case is trivial; the odd case is highly non-trivial and involves a moduli
problem. The Jacquet-Langlands theorem reviewed in Section 2 together
with the Eichler-Shimura congruence and Faltings’ isogeny theorem relates
the Jacobians Jy+ n- of the odd curves Xy+ v- in a precise way. Again
the most important point is that J3¥ y- is isogenous to Jo(N )"V

Let E be an elliptic curve over @ with conductor N. E is called
modular if there exists a surjective map Xo(N) — E. Whether or not
E is modular can be verified by a finite computation. The relation just
mentioned implies that if E is a modular elliptic curve of conductor N
then there are also surjective maps Xn+ - — E for all odd (N+*,N™).
The Taniyama-Weil conjecture adds interest to this already interesting
situation: it says that one need not verify modularity as all elliptic curves
are modular.

Section 4. We define the natural model X y+ y- over Z for (N*,N-)
an odd pair. Let M = [[,zv-p. We describe this model X+ y- over
Z[1/M]. It is smooth over Z[1/N]. It is — ignoring elliptic points —
regular as a scheme over Z{1/M ]. The most basic phenomenon when p IN
is that there is a finite subscheme z,; C (X N+ N-)F, which is, up to a
quadratic twist, a copy of the even curve X+ N-py cOmponents having
been replaced by copies of Spec Fp. Za is called the supersingular locus.
Similarly, when p|N many of the phenomena can be described concretely
in terms of oriented Eichler orders.

Section 5. If p?| N~ then the scheme X+ n- is badly singular over Z,..
The conjectures mentioned above concern the minimal desingularization
X'v+ n- of Xn+ n-. According to our conjectures, the scheme X y+ n-
can be rather completely described in terms of definite oriented Eichler
orders. We give quite a lot of evidence for our conjectures.
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Section 6. Let z4 and z; be two points on an even curve An+ y-. We
define — ignoring elliptic points here in the introduction — their coinci-
dence number (zo, ;) to be one if they lie on the same component and zero
otherwise. By linearity this pairing is defined on all divisors. Now let z,
and z; be two distinct scheme-theoretic points on an odd curve Xy+ x-.
Let z, and g, be their closures on Xy, y-. We define the intersection
number (zg, Z,) € R to be log #(A) where A is the ring of functions on the
scheme-theoretic intersection g,Nz,. Again by linearity (-, -) is defined on
arbitrary divisors with disjoint support. The main result of this section
is a formula for the coincidence and intersection numbers of certain divi-
sors constructed from CM points. Here is a picture which illustrates our
intersection formula.

X o
-67

X [
e

Spec 7 @ —@ g * Do *
2 3 S 7 1R

We have drawn the arithmetic surface X, 3;. The horizontal divisors are
closures of two scheme-theoretic points associated to the discriminants
—67 and -163, the first drawn solid, the second dotted. We find that
these divisors intersect exactly twice, each intersection being transverse.
One of these intersections occurs at a supersingular point in characteristic
S, the other at a supersingular point in characteristic 7.

Section 7. We systematically consider all involutory parametrizations
Xn+ ny- — E where E is an elliptic curve with conductor N < 60. Here
a parametrization Xy+ y- — E is called involutory iff it factors through
some genus one quotient Xy+ y-/W, W being a subgroup of the Atkin-



Lehner group. As an example let E run over the isogeny class 334 — 33D
of modular elliptic curves of conductor 33. Here, as in Section 7, we
systematically use the notation of the tables in [SD 75]. The possibilities
for genus(Xo(33)/W) are 0,2, and 3 so none of the usual parametrizations
X,(33) — E are involutory. However X 3; already has genus one and so
all parametrizations X33 — E are involutory.

We compare the bad reduction of the genus one quotients Xn+ n-[W
with that given in the Table 1 in [SD 75] for modular elliptic curves E.
As an example X a3 has bad reduction of type I6 at 3 and type I2 at 11,
as drawn above. The tables in [SD 75] give

3 1
334 I3 11
33B Is I2
33C N2 n
33D I3 I4

Hence (over any field F' with X;33(F) # @) we have X33 = 33B. These
considerations serve to illustrate the generalities of the previous sections,
especially the description of bad reduction given in Sections 4 and 5. Also
we explain a connection with the Birch-Swinnerton-Dyer conjecture.

Section 8 We consider one of the involutory parametrizations of Section 7,
namely X, s7 — 57E in more detail. This section serves as an illustration
of Section 6.

Finally I would like to thank my thesis advisor, Benedict H. Gross, for
introducing me to the circle of ideas which led to this thesis. I would also
like to express my appreciation to the National Science Foundation and
the Sloan Foundation for financial support during my years of graduate
study.
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1 Oriented Eichler orders

In the section we dispense with a number of preliminaries necessary for
defining the curves X+ n-. The focus is on the notion of oriented Eichler
order. Eichler orders in various levels of generality have been introduced
by many authors; see [Gr 88] for a notion slightly more general than ours.
The rather elementary idea of orienting Eichler orders, and the recognition
that the notion of orientation is technically useful, seems to have appeared
first in [M-O —].

We assume that the reader is familiar with quaternions; a standard
reference is [Vi 80).

1.1 Rigidifying choices

We want to define our curves X+ y- up to unique isomorphism, not just
up to isomorphism. To do this in a down-to-earth fashion we will simply
make some arbitrary choices.

Definition 1.1.1 Let p be a prime. If p =2 then Qpu := Q,[1,)/i2+ 3. If
P # 2 then Qu 1= Qy[i,)/i2 + d, where d, is the smallesi positive integer
prime to p such that z* 4+ d, = 0 has no solution in F,.

Thus while all unramified quadratic field extensions of Q, are isomorphic
they are not canonically isomorphic. We have chosen one, namely Q,,
and will view it as the standard unramified quadratic field extension of
Q,. This is completely analogous to the usual practice of considering the
field C := R[:]/i* + 1 as the standard algebraic closure of R. We put Z,:
equal to the ring of integers in Q2 and F,2 equal to its residue field.
Qur rigidifying choices will most typically appear in the guise of certain

finite rings. For p a prime, e € Z5,, let

Apa = L/p"®L,/pf

Aype = ZLpfpt
So Ay, and A, ;. each have exactly p* elements. If € # 0 then they each
have exactly one non-trivial automorphism, namely that induced by o,.

Let N = []p*r be a positive integer with ¢ prime factors. Let N =
N*N- be a relatively prime factorization. Then we put

Ans - = [ Apern [] Arper
pIN+* pIN=

11



so that Ay+ y- has N? elements and 2 automorphisms.

1.2 Local Eichler orders

Let B, be a quaternion algebra over Q, and let R, be a Z,-order in Q,.
If R, has reduced discriminant p° then we call e the level of R,. We are
interested in a particular kind of quaternionic order which we call Eichler
orders. They come in three types:

Definition 1.2.1
1. If R, has level zero then we say R, is an Eichler order of type (1,1).

2. If R, has level e > 1 and contains ¢ quadratic order isomorphic to
Z,®Z, then we say R, 13 an Eichler order of type (p%,1).

3. If R, has level e > 1 and conlains ¢ quadratic order isomorphic to
2,2, we say R, is an Eichler order of type (1,p°).

LL I Y

We refer to these three types as “level zero”, “split”, and “twisted”. We
warn the reader that the notion of Eichler order varies somewhat in the
literature, perhaps the most common encompassing only our level zero
and split orders. However, from our point of view it is natural to consider
split and twisted Eichler orders as being on the same footing.

Before proceeding we construct one Eichler order of each type. We
will consider these examples to be our standard Eichler orders. Naturally
we take Ry, := M3(Z,) as our standard level zero Eichler order. More

generally, for e € Z5¢ we put
* % .
(0 *) (v )} )

ab ab
B

Turning now to twisted Eichler orders we put

Ry, := {(ZS) €EM(Ip):a=d", c= pb"} .

R,, is the unique maximal order in its quotient skew-field By*™. More
generally, for e € Z5; put

Ry e = % + p*PMy(Z,) C Ma(Q,) € even
1" = 2 +pleV?Ry, C BP™ eodd.
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Eichler orders of positive level are not quite rigid enough for us. We
will rigidify them by orienting them:

Definition 1.2. 2 Let (et,e7) € (Z30,0)U (0,Z50). Let R, be an Eichler
order of type (p*, p° "). Then an orientation on R, is a homomorphum

Jo: Rp_’Ae’f,

If R, has type (1,1) then an orientation on R, is clearly no extra data
as A;, is the zero ring. We will be considering oriented Eichler orders all
the time and will typically let a single symbol like ﬁ,, denote an oriented
Eichler order (R,, f,).

Before proceeding we give our standard Eichler orders their standard
orientations. We orient R,.; by

fpiRpe.l E— p°,1

We orient Ry, by

fp i Ryge — At pe

a b —_
pb® a® a

By an isomorphism from one oriented Eichler order (R,, f,) to another
(R, f,) we mean an isomorphism of rings ¢ : R, — R, such that

F{
Rp —Lb AP°+'P°-
tlg Il
R o4

P

commutes,

Proposition 1.2.3

1. An Eichler order of positive level has ezactly two orientations.

2. Two oriented Eichler orders are isomorphic iff they have the same
type. An oriented Eichler order of type (p¢*,p*”) lies in e ramified
quaternion algebra iff e~ is odd.

13



3. All automorphisms of an oriented Eichler order are inner.

Proof. In the next subsection we will translate our entire situation into
geometric terms. From this new point of view all three statements will be
obvious. O

Remark 1.2.4 Let ﬁp = (R,, f,) be an oriented Eichler order of positive
level. Let L, be a right R,-module which is free of rank one. Let R,
be the left order of L, i.e. End(L,)n,. Then R, is isomorphic with R,
canonically up to inner automorphisms. Namely let £, € L, be a basis for
L, as an R,-module. Then £, determines an isomorphism i, : R, — R,
by rhé, = Lyie, (7). We then define f} := f, via any of these identifications
R, = R,. This remark will be used repeatedly and often without comment
in the sequel, mostly in Section 4.

1.3 Trees and symmetric spaces

We will translate our entire situation into geometric terms, leaving the
details of the translation to the reader. Let B, be a quaternion algebra
over Q,. Let By be the base-change of B, to Q2. B is split. Consider
the set V of orders of level zero in Bj:. If we identify By with M3(Qp2)
then it is elementary that V consists of My(Z,2) and its conjugates. V is
naturally the set of vertices of a tree T(By2), two vertices vg 2 and URY,
being connected by an edge iff level(Rp» N R);) = 1. T(By) has p+1
edges incident upon each vertex and the distance function on vertices has
the property d(vr P,,vn;’z) = level(R;» N R;;). The reader can check that
the action of o, on T(B;) is as indicated by the following two pictures,
drawn for p = 2:

14



Here the left diagram represents the split case. o, fixes precisely the solid
lines. The right diagram represents the ramified case. g, acts by reflection
in the vertical line of symmetry.

We have bijections

1. op-fixed vertices «—  Level zero Eichler orders
2a. op-invariant geodesics «—  Split subalgebras K, C B,
2b. Oriented o,-invariant geodesics « Embeddings Q, ® Q, — B,
3a. op-antiinvariant geodesics « Inert subalgebras K, C B,
3b. Oriented op-antiinvariant geodesics «~ Embeddings Q.2 — B,
4a. op-invariant segments of length ¢ —  Eichler orders with type (p*, 1)
4b. Oriented such segments «~+ Oriented such orders

5a. op-antiinvariant segments of length ¢ —  Eichler orders with type (1,p%)

5b. Oriented such segments —  Criented such orders
Here a vertex YR, is on a segment sg, iff 5, C R,2. Similarly a vertex vg
is on a geodesic vk, iff Kp N R is the full ring of integers in K,. There
are actually two natural bijections in each of the four cases 2b-5b. To
choose one of them, say in cases 4b and 5b, one has to make a convention
identifying our algebraic notion of orientation with the usual geometric
notion of orientation. This is quite easy to do explicitly but not necessary
for us.

Symmetric spaces. We now give an archimedean analog of the above
considerations. Let B,, be a quaternion algebra over R.

Definition 1.3.1 Y := {b€ By : t(b) =0, n(d) = 1}.

Here ¢ denotes the reduced trace and n denotes the reduced norm. Con-
sider the quadratic form on the three-dimensional space B?, := {b € B :
t(b) = 0}. n has signature + + + if B, is definite and + — — if B, is
indefinite. Thus Y is a sphere in the definite case and a two-sheeted hy-
perboloid in the indefinite case. BY acts transitively through its quotient
BX /R*: b.y := byb~'. If B, is definite then Y has a unique B -invariant
Riemannian metric with constant curvature 1. Similarly if B, is indefi-
nite then Y has a unique B, -invariant Riemannian metric with constant
curvature —1.

The points of Y can be interpreted as parametrizing embeddings 4 :
C — B, via hy(i) :=y. We turn ) into a Riemann surface by declaring

15



that hy(e™/) acts by 7 on the tangent space to y. If B, = M>(R) then we
have just constructed the upper and lower half-plane (from a rather non-
standard point of view!). In general Y is a symmetric space canonically
associated to By.

p-adic upper half plane. Returning to the ultrametric case, suppose
B, is split. Then one has a formal scheme T over Z,, often called the
p-adic upper half plane. We refer to [Mu 72], [Dr 76], or [Te —| for full
definitions from several points of view. The special fiber T? is easy to
describe and we describe it here. T is a reduced scheme. All components
have genus zero. The components are in bijection with level zero orders in
B,. Here Cp, is characterized by the fact that it is stabilized exactly by
Q R}. Alternatively Cr, is characterized by the fact that it is pointwise
fixed exactly by QX(Z, + pRp)*. It is thus canonically isomorphic to the
conic in the projective plane Rg / pRg defined by the norm. The F,-rational
points on C, are thus in bijection to Eichler suborders S, of R, of type
(p,1). The components are glued together pairwise along their F,-rational
points in the obvious way (so that the dual graph of TP is exactly the tree
T(B,))-

1.4 Ideal theory

Let R, = (Ry, f») be an oriented Eichler order of type (p**,p°") and level
e (so that e = max{e*,e"}). Let B, = R, ® Q; as usual. We now turn to
consideration of the set

Lat(B,)r, = {Lattices in B, with right order Ry}

Lat(B,)r, is identified with the coset space BX R} via bRy — bR}. Thus
Lat(B,)r, is naturally a left B}'-space.

Lat(B,)r, supports several natural BX-equivariant correspondences.
Namely we certainly have S,L, := pL,. More interestingly in the case
e = 0 we have the Hecke correspondences

TpL,:= Y. L,
LycCLp

Here the sum is over L), C L, such that lengthy L,/L, = 2k. In the
complementary case e # 0 we have the equally important Atkin-Lehner
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automorphism:
Wpe 1= Jpr 5

Here J, is the kernel of the orientation map f,. We have the relations

Tp = TpaaTp, — pTa-:S, (1.4.1)
‘w:, Spe. ( 1.4.2)

If one mods out by scalars it is easy to treat interpret these correspon-
dences geometrically. Namely if e = 0 then homothety classes in Lat(B,)n,
correspond to level zero Eichler orders in B, (via “take left order”). If
e > 0 then homothety classes correspond to oriented Eichler orders of
type (p°*, p°7) (again via “take left order”, now using Remark 1.2.4 to fix
the orientation). We then have the geometric descriptions

Ta(v)= Y w

d{w,v)sk
d{w,v)2k (2)

ife=0 and
Wpe(3) = ¢
if € > 1. Here t is the same segment as 3 but with the opposite orienta-

tion. Note that from this geometric point of vew relations 1.4.1-2 become
obvious.

1.5 Embedding invariants

Let K, be a semisimple quadratic algebra over Q, with maximal order O,.
Let O] be the order in K, with conductor c € Ly, i.e. let O i=1,+ p“O

Let (e"‘,e ) € (Z50,0)11(0,Z50). We consider pa.u's (k, Rp) where R, =
(Ry, fp) is an oriented Eichler order of type (p**,p*") and & : O; = R, is

an embedding with R,/h(O5) torsion-free. We call such a pair an optimal
embedding.

Definition 1.5.1 €.+ .-(O;) denotes the set of isomorphism classes of
optimal embeddings. An element of E et 5= (Of) s called an embedding
inveriant.

Note that two optimal embeddings (4, ﬁ,,) and (&, R;) are isomorphic iff
there exists r € R, with h(-) = rh’(-}r-%.
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Theorem 1.5.2 The number #(E,.+ - (O)) 13 as given in the following

table.
et e” O, split O, ramified O, inert
O=c<m 2m 0 2 0 0
0 2m 0 0 2
2m+1 0 2 0 0
0 2m+1 0 0 2
O£fc<m 2m 0 2(p + )p°~' 0 0
0 2m 0 0 2(p - 1)p°?
2m + 1 0 2(p + 1)pt! 0 0
0 2m + 1 0 0 2Ap- )t
0O=c=m O 0 1 1 1
1 0 2 1 0
0 i 0 1 2
0O<c=m 2m 0 | (p+2p" " (p+1p ?°
0 2m * (p-1pt  (p—2p"
2m+1 0 (p+ 1)pe! p° 0
0 2m+ 1 0 P (p - 1)p°!
c>m= 0 0 1 1 1
om+1 O 2 2 2
0 2m+1 0 0 0
e>m>0 2m 0 |(p+Dp~ " (p+Dp™ T (p+1pp""
0 om | (p-1p™' (p-1p™' (p—1)p™7"
2m+1 0 2™ 2p™ 2p™
0 2m+1 0 0 0

Proof. Computations of this sort have been done in many places, often
inder the name of “orbital integrals”. We will translate the problem into
the geometric setting of §1.3 and then leave it for the reader. For a more

algebraic approach see e.g. [H-P-S 89).

Fix a quaternion algebra B, over Q;, split if e~ is even and ramified if
e~ is odd. If K, is split and B, is ramified then certainly £+ -(0}) is
empty exactly as asserted on the table. In the remaining cases K, embeds
in B,. Fix such an embedding & : K, — B,. Consider the set of oriented
Eichler orders R, in B, such that h='(R,) = O}, We need to count the
orbits of this set under the action by conjugation of h(K})*.

We therefore have a fixed tree 7(B,2) and a fixed subtree ¢y consisting
of either a o-invariant geodesic (O, split), a o-stable edge (O, ramified), or

18



a o-antiinvariant (O, inert) geodesic. We are considering varying oriented
segments § of length e, o-invariant if e = e* and o-antiinvariant if e = e~
such that

n&gic(dlstance(tg, v)) =c.

The problem is to count such segments up to the action of A(K,)*. O

Here are some important special cases:

1.

&

#(£:1(05)) = 1 irrespective of the type of O,. This can be viewed
as a Skolem-Noether theorem on an integral level.

Define the Eichler symbol by

{ﬁ}={ (£) if O is maximal (c = 0)

p 1 if O; is nonmaximal (¢ > 1).
Then
OC
#(Ea(0;) = 1+ {?"} (1.5.3)
OC
#(6p(0;) = 1- {?’} (1.5.4)

The general trace formula alluded to in §2.2 makes use of the full
theorem. However when N is squarefree — the case treated in [Ei 56]
— one only has to use the simple statement just given.

Suppose O is maximal, i.e. OF = O,. If O, is split or inert then

#(Een(0p) = 1+{%} (1.55)
H(E(0p) = 1-{%} (15:6)

for all e > 1. Moreover the natural maps

Epe1(0p) — Hom(O0,,Q, & Q;) (O, split)
E1p:(0;) — Hom(0O,,Q,2) (O, inert)

are bijections (of two element sets). This fact will appear critically
in our intersection formula of Section 6, and hence in the detailed
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example worked out in Section 8. Less importantly, if O, is ramified
with discriminant p/ (= 8,4 or an odd prime p) then

. #(Epe1(05)) = #(E1p(Op)) =2 Nyt pe =: { fl) g'z § ;

1.6 Global Eichler orders

Let R be a quaternionic order over Z. Let N* = [lp* and N- = [1p**
be a pair of relatively prime integers.

Definition 1.6.1 R is an Eichler order of type (N*,N~) iff R, is an
Eichler order of type (p**,p°") for all primes p.

Suppose that R is an Eichler order of type (N+,N-). An orientation
on R is an orientation f, on each of its localizations R,. Equivalently
an orientation on R is is a homomorphism f : R — An+ny-. Thus if
N = N+N- has t prime factors then R has 2' orientations, permuted
simply transitively by the automorphisms of Ax+ n-.

Definition 1.6.2 O-;dNaf'N- denotes the set of oriented Eichler orders of
type (N*,N=) up to isomorphism.
Let B be an oriented Eichler order of type (N*,N~). Then we have a
bijection
BA\B*/B* —» Ordys -
L +— Left order(L).

Theorem 1.6.3

1. BX\B*/R* is finite.

2. If B is indefinite then B*\B*/R* has one elemeni. Moreover R

contains an element of negative norm.

Proof. See [Vi 80]. We will give a numerical refinement of these assertions,
also citing [Vi 80] for a proof, in Theorem 2.1.3. Statement 2 is referred
to as “strong approximation”. More precisely let U be any open compact
subgroup of B*. Then the norm map

BX\B* /U — @*\Q*/n(U)
is a bijection; it is this fact which is referred to as strong approxima-

tion. In our case U= R*sonU) = 1*; Statement 2 follows because
#(Q*\Q*/Z*) = 1 precisely because Q has class number one. O
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2 Analytic curves Xy+ y-

Fix for this and the next four sections a pair (N*, N-). In this section
we will allow (N+, N~) to have either parity. In §1 we define a complex
analytic curve Anx+ n-. In §2 we discuss the cohomology groups of this
curve. In §3 we interpret Xy+ n- as the coarse solution to a certain moduli
problem. Since (N*,N~) is fixed we will often drop it from the notation.

2.1 Definition via uniformization

Choose an oriented Eichler order B = (R, f) of type (Nt,N~). Here the
underline is to distinguish our fixed Eichler order from other Eichler orders
which will arise. Choose further identifications

R,=R, .- (2.1.1)

the right side being the standard local oriented orders of §1.2; these iden-
tifications are for convenience only and will be used only occasionally. Let
B := R®Q and let Y C B, be the associated symmetric space. Put
N ax €qual to the squarefree part of N=. Our identifications 2.1.1 give us

a preferred oriented Eichler order in B of type (1,Nz,,) and we denote it
B

First we define a possibly non-compact space X/ := X 1{r+, N—-
Definition 2.1.2 X/ := B*\ Y x BX/R*.

Up to isomorphism X/ depends only on the datum (N+,N-). Up to
unique isomorphism it depends on the rigidifying choices made in §1.1
(which were needed to define the notion of orientation in the twisted case).
We empbhasize that X/ does not depend on the extra choice of B just
made. In fact one can give an alternative description of X/ which makes
no reference to R. Namely points of X/ are in bijection with isomorphism
classes of pairs (4, ﬁ), here R is an oriented Eichler order of type (N*,N-)
and h is an embedding C — R.

This alternative description is useful for describing the set mo(X/) of
components as well. Namely mo(¥/) is in bijection with the set Ordy+ -
of isomorphism classes of oriented orders of type (N*+,N=). If (N*+,N")
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is odd then X/ is connected by Theorem 1.6.3. If (N*+, N~} is even then
X = X/ is in general disconnected and we write

X= [l X
ReOrdyy y-

The topological sphere X4 has volume 47 /u(R) where u(R) := [R*,Z*] =
#(R*)/2.

Theorem 2.1.3 Area(X7) is finite and given by the formula

N a+r Ma-s.

piN+ pIN-

Proof. The key point is that le Nz has area

ﬂNm-ﬂx H (1 _ p_l).
3 -
Pleu

This statement is proved in [Vi 80]. The general case follows because

N
#(RY - R n-) = [L(1+P7). O
Vmax Nmax PN+

Now we discuss the crucial notion of a CM point. We recall that
imaginary quadratic orders in C are indexed by negative integers congruent
to 0,1 mod 4. Namely given O, put D equal to —4 times the area of a
fundamental parallelogram. Conversely given D put

0 =Z|(D +vD)/2

where

- _ { 0 fD=0(4) (2.1.4)

1 if D=1(4).

Definition 2.1.5 Let O be a imaginary quadratic order in C. Let ¢ =
B*(y,L) € X! and let hy : C — By be the associated embedding. T 1s

called o CM point with order O iff h;'( Left order(L)) = O. The set of
such points is denoted zo.
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Equally important is the action of K%/O* on zo.

Definition 2.1.6 K*/O* acts on zo by

’E(ya L) S (y’ hy(é)L)'

It is clear that this action of K'*/®* on zo factors through the quotient
group Cl(O) := K* \ K*/O* and that this quotient group acts freely.

To a CM point z € zo we associate an embedding invariant i(z) €
En+ N-(0) = [1E,e+ o~(Op). Namely let z = B*(y,L) have order O
and define i(z) to be the class of h, : O — Left order(L) in Ex+ n-(O).
Chasing through the definitions we find that i(-) is well-defined on zo and
that i(zy) = i(z;) iff =, and z, are in the same orbit under Cl(®). This
proves the following formula:

Proposition 2.1.7 #(zo) = h{O)#(Ex+ nv-(0)). O

We remark that there are simple algorithms for determining h(©). See
e.g. [B-S 66] for one such algorithm due to Lagrange and Gauss. [B-S 66]
also contains tables of A(O) for D small.

We can now treat elliptic points quite explicitly. Let z = B*(y,L) €
X/. Then the stabilizer of (y,L) in B* is finite and contains {£1}. We
put 2e(zr) equal to its cardinality. Clearly if r is not a CM point then
e(z) = 1. On the other hand if z is a CM point then e(z) = #(O*)/2.
Thus O_3 gives 3-elliptic points, O_4 gives 2-elliptic points, and these are
the only sources of elliptic points.

Often X/ is already compact:

Theorem 2.1.8 X/ is compact iff B % M,(Q).

In the exceptional case one adjoins cusps. The set of cusps is in natural
bijection with the set R*\P'(Q). In particular it has

I (Z” ¢(pm;n(.-.,,,-e))) I ( { ﬁ@ep/z) ife, =0(2) )

N+ \izo iyl else

elements (for example if N~ = 1 then it is natural to group the cusps
into clumps indexed by divisors of N; representatives of the M-clump are
(a, M) with 1 < a £ M relatively prime to M).
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In general for a compact Riemann surface with constant curvature K
and singularities such as ours one has
e(z) — 1

AP P

zeX

area( X)

x(X) = K——

by the Gauss-Bonnet theorem. Here if = is a cusp we put e(z) = oo and
consider (e(z) — 1)/e(z) to be 1. Thus putting everything together we
have a formula for the Euler characteristic of X"

Corollary 2.1.9

X(X) — (_1)#(2(N+,N‘))% H (1 +p_1) H (1 _ p"l)

p|N*+ p|N-
+§77-3.N ”11 (1 + {?}) PII;[_ (1 - {:E})
p#3 pei3
+%n-4,~ ,,.l;[»« (1 + {_?4}) ,,,I;[- (1 - {—f})
e:ﬂ e ” c2/2) ife, =0(2)
) B (7 570

This formula, and its term-by-term interpretation, justifies the four pic-
tures drawn in the introduction. We will use this formula often in the
sequel, most especially in Section 7 in our computation of examples.

Our adelic definition of X/ makes it trivial to define Atkin-Lehner
involutions and Hecke operators on X/. Namely if m =] p’?||N then we
have a natural automorphism

wy Y x Lat(B)g — Y x Lat(B)a
(v, {Lp}) — (y?{wpIPLP})‘

This automorphism descends to an involution, also denoted w,,, on X7.
Similarly if m = [] p’» is prime to IV then we havea natural correspondence

T : ¥V X Lat(B)R — Y x Lat(B)R
(W, {Lp}) — W, {TLp})
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of degree o,(m). This correspondence descends to a correspondence, also
denoted T, on X/. We use the same notation for the extension of these
correspondences to all of X.

Let W(N) denote the group of symbols {wy, }m)n, multiplication being
defined by wm,Wm, = Wm;m,f(m,,mg)- Then W(N) acts faithfully on X (in
fact the datum (N+, N~) alone, i.e. without any extra rigidifying choices,
determines Xy+ y- up to the ambiguity of W(N)). We also denote by
W(N) the group algebra Q(W(N)). So W(N) in this sense is a commu-
tative algebra of Q-dimension 2'. Similarly let T(N) = Q({Tn}(m,n)=1)
denote the usual Hecke algebra (relations generated by

{Tp’ = Tp’ a7 - Iy }p prime, f€l5,
{Trim, = Tmlez}(mn'mz)ﬂ)-
The Q-algebra W(N) ® T(N), for which {wm, Tn, }ouy||¥,(mz,N)=1 18 2 con-
venient basis, acts naturally on X’ by correspondences with coefficients in

Q.

2.2 Decomposition of cohomology H*(Xy+ y-,C)

In this subsection we let W(N) := W(N)}®C and T(N) := T(N)®C. The
cohomology groups H'(Xy+ n-,C) are naturally modules for the complex
algebra W(N) @ T(N). They are semisimple and hence determined up to
isomorphism by their traces

{Tr(wmaTm: IHi(X1 c))}m;llN,(mg,N)zl-

In this subsection we explain how H*(X,C) can be expressed as a sum
of standard W(N) ® T(N)-modules constructed from the cohomology of
Ao(M), M|N. The theorem has its origins in [Ei 56). It is a specialization
of one of the main theorems of [J-L 70].

First we decompose H*(X, C) into a two-dimensional piece H*(X, C)Ei*
and a complementary piece H*(X,C)**P. I (N*,N-) is odd then we
simply set

H*(X,C)®* = H°%X,C)® HY(X,C)
H*(X,C)™ = H\(X,C).

If (N*,N~) is even then H%(X,Z) and H*(X,Z) are naturally identified
with the group Z™*) of integer-valued functions on the set of components

25



wo(X). Assume for simplicity that X’ has no elliptic points. Then the
actions of W(N) ® T(N) on HX,C) and H*(X,C) induce the same
action on C™®), The representation T(N) ® W(N) — End(C™W) is
symmetric for the standard inner product. (1,...,1) is an eigenvector and
we put

H*(X,C)% = C(1,...,1)e®C(1,...,1);
H*X,CyX™® = C(1,...,1)§ ®C(1,...,1);.

First we treat the piece H*(X,C)E® which in our context should be
regarded as trivial. Define a W(N)®T(N)-module Cg;, by putting Cg;, :=
C as a complex vector space and letting w,,, T, act by the scalar o(me) :=
Tdjm, d- Then it is clear that

H*(X,C)E* = 2Cg.

Now we treat the non-trivial part H*(X,C)™P. It is traditional, al-
though hardly necessary, to state the result in terms of normalized new-
forms. We will follow this tradition, referring to e.g. [B-SD 75] for defini-
tions. The main point for us is that the space of holomorphic cusp forms
of weight two on T'y(N) has a canonical basis

[T L £d2)

MIN d|N/M feNew(M)

Here New(M) denotes the finite set of normalized newforms on T'o(M).
So if f = %2, ang” € New(M) then a) = 1 and Tnnf = amf. We put
Norm(N) = TIpn New(M).

Let M|N and let f = 3 a.q” be a normalized newform on To(M).
Let C; € HO(Xo(M), ©2) be the corresponding one-dimensional eigenspace
for W(M) ® T(M). C; is naturally a T(N)-module as T(N) T(M);
in fact for all (m,N) = 1, T, acts on C; by a.. Cy is not naturally a
W(N)-module if M # N. Let M =[] p%r, N =[] pt>. We artificially turn
C; into a W(N)-module by declaring wpe to act on Cy the way that wpya,
does; in particular if d, = 0 then wyer acts as 1.

Some important twisting is associated with Atkin-Lehner operators.
To treat this twisting we introduce the following notational convention.
Let pf||N. If H is a W(N) @ T(N)-module then we let spH denote the
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same complex vector space with W(N)® T'(N)-module structure given by

TalspH = T,|H (m,N)=1

werlspH = wy|H [IN,e#p

Wpe|spH = —wpe|H.
Theorem 2.2.1

H(Xn+n-, CY™ 22 37 &t N-seond()Cy
feNorm({N)

as W(N) ® T(N)-modules where if N = [1p™, N/M =] p,

) _ & e_,J ) { spr if €p = 0(2)
A pll;,[+ ([2] * lz ° pll;I_ 0 iflp Z0(2).
Proof. This theorem is proved in [Ei 56] when N is squarefree, (Nt, N-)
is odd, and one removes all reference to Atkin-Lehner operators. One
computes the traces Tr(wpm, T, |H'(X,C)) by using the Lefschetz fixed
point theorem. One of several key points is Equations 1.5.3-4. The proof
given there generalizes straightforwardly to our case; here however one
has to the entire table of §1.5 (refined to give the appropriate information
about Atkin-Lehner operators).

A much more general theorem is proved, in the very illuminating con-
text of representation theory, in [J-L 70]. See also [Gr 88] where some of
the details for deducing Theorem 2.2.3 from the main theorem of [J-L 70]
are given. [J

If one is interested only in Hecke operators one doesn’t have to worry

about twisting:

Corollary 2.2.2

H(Xpen-, O™ 22 37 eyt N-jeond()Cs
f€Norm(N)

as T(N)-modules where
cntNv-as = [ (1 + ordy(N/M)) T[ (1 + (=1)0N/M)) - o
pINt pIN—

For example in the most familiar case Xy(N) the eigenspaces of T(N)
on H'(Ap(N),9) have T(N)-generators the normalized eigenforms f €
Norm(N).



2.3 Moduli interpretation

In this subsection we realize the curve A’ ,{H'N_ as the solution to a certain
moduli problem. As a preliminary we define [ to be the largest lattice
in R which is stable under right multiplication by Rq,,. For example if
R = Ry(N) then

ab ab * %
= {(cd) € My(2): (cd) = (00) (N)}
Definition 2.3.1 Let S be an analytic space. An (N*+, N~)-toroidal sur-
face over S is a triple (T,C,i) where

P~

1. T is a toroidal surface over S.
2. ¢ c T is a finite subgroup space of constant rank N/N_,...
3. i is an inclusion (of sheaves of rings over S) R, - — End(T)°P?

such that By+ y- stabilizes C and as a right Ry+ n--module C 13
locally cyclic with annihilator I+ n-.

To lighten the notation we will henceforth drop explicit reference to the
inclusion i. Consider the functor

-7:1{'+.N- : Analytic spaces — Sets
S — {(N*,N~)-toroidal surfaces over S}/ ~ .

Here and later in similar situations “~" means “isomorphism”. There is a
natural identification A’ ,‘{,+‘N- — f,{,.,.N_(C) namely (y, L) — (7,,1,Cy) =
(Boo/LI,L/LI). Here the real four-torus Beo/LI is turned into a complex
two-torus by declaring i € C to act on B by y on the left. This identifi-
cation, together with a standard deformation theory argument, gives the
following proposition:

Proposition 2.3.2 .7-'1{,,,‘1,,_ is coarsely represented by the analytic space
Xf y-- O

Polarizations. Now we fix y € ) and consider polarizations [Mu 70]
on T,p. Let v € B°. Then E,(l;,1s) := tp/q(vh, Iz) is a Q-valued skew-
symmetric pairing. The set of v such that E,(l;,lz) € Zfor L, € Lisa
lattice NS° c B. Each v € NS° corresponds to an algebraic equivalence
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class of line bundles £, on T, 1) via the standard dictionary [Mu 70}. £, is
non-degenerate with index ¢ (i.e. for all £ € £,, H¥(T, 1, L) # 0iff i = j)
iff the Hermitian form

Hy(h, ) := Ey(ily, ) +iE, (L, 1)

on Lie(7, ) = B is non-degenerate with i positive eigenvalues. But one
can easily check that H,(:,-) is non-degenerate iff n(v) # 0 and further-
more that in this case

0 n{v)>0,v/n(v)~y
#(Pos. eigenvalues(H,)) = { 1 n(v)<0
2 n(v)>0,v/n(v) £y

if B is indefinite and
#(Pos. eigenvalues(H,)) = 1

if B is definite. Here “~” means “lies on the same component of Y”. Thus
the construction v — E,(-,-) gives us polarizations (:= non-degenerate line
bundles with index 0) iff B is indefinite. We have the following proposition:

Proposition 2.3.3 If(N*,N~) is odd then every (N*, N~)-toroidal sur-
face is an (N*,N~)-abelian surface. O

Finally if y is not a CM point on Y then every line bundle comes from an
E,(-,+), i.e. NS is the entire Neron-Severi group NS(7, ); thus if B is
definite the (N*, N~)-toroidal spaces 7,1 for y a non-CM point are not
polarizable.

Connection with usual moduli interpretation of Xo(N)/. Suppose
now that (N*,N~) = (N,1) so that Ry, is identified with the familiar
Eichler order Ry(N) := {(: g) € My(Z): N[c}.

Definition 2.3.4 Let S be an analytic space. An N-elliptic curve is a
pair (€, 2) where

1. € 13 an elliptic curve over S.

2. Z 1s a locally cyclic subgroup of order N.
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We can consider the functor

Fo(N ) : Analytic spaces — Sets
S +— {N-elliptic curves over S}/ ~

We have a canonical isomorphism -7'-1{!.1 — Fo(N). Namely given an
(N*, N-)-abelian surface (T,C) over a space S let

= Image((gtl)):T-r‘T)C‘T
Z = C.

Then (€, Z)-is an N-elliptic curve over §. Conversely given an N-elliptic
curve (£, 2) define

T = EBE
Z = 0862

b
(er,€2) (z d) = (ae; + cez, bey + dea).

Compactifications. We recall that & / is compact except in the excep-
tional case where Z(N+ ,N-) = {00} so B = M3(Q). In this case one
can define a notion of generalized (N*, N~)-abelian surface so that the
corresponding functor Fy+ n- is coarsely represented by the compactified
curve X. See [K-M 85 where this is done in the equivalent language of
elliptic curves with appropriate level structure.



3 Algebraic curves Xy y-

We keep fixed the pair (N*, N~) fixed in Section 2. If (N*,N-) is even
then one can trivially define a model X over Q for the complex analytic
space X. Namely seeing how

X = BX\Y x BX/R*

we simply define -

X := B*\Y x B*/R*
Here ¥ is the genus zero curve canonically associated to B (the conic
in the projective plane of trace zero elements given by the norm). The
definition makes sense because the stabilizer in B* of each component of

Y x B*/R* is finite. We assume therefore that the fixed pair (N*,N-)
is odd.

3.1 Definition via moduli

We define the notion of (N+, N-)-abelian scheme over a scheme S over
Z[1/N] simply by replacing “complex analytic space” in Definition 2.3.1
with “scheme over Z[1/N]” (and interpreting “toroidal” as “abelian”). The
analytic moduli problem F/ naturally comes from an arithmetic moduli
problem:

F/ : Schemes over Z{1/N] — Sets
S = {(N*,N~)-Abelian surfaces over S}/ ~

The analog of Proposition 2.3.2 holds here but lies considerably deeper.

Theorem 3.1.1 F/ is coarsely represented by a regular, connected, two-
dimensional scheme XN.,, n- 3mooth over Spec Z[1/N]. If (Nt ,N-) #£

{oo} then _}QN+'N_ is proper over Z[1/N].

Proof. See e.g. [Dr 76]. O

An important fact, which will be used crucially in §3.3, is the Eichler-
Shimura congruence. We recall that in general if C is a d-dimensional
variety over F, then one has the absolute Frobenius map F, : C — C
which is a finite map of degree p®.
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Theorem 3.1.2 Let p be a prime not dividing N. On X¢ , T, = F,+F;.

Proof. This relation follows from the description of the bad reduction of
X y+pn- givenin §4.3. O

3.2 Behavior of CM points

First we recall some facts from class field theory. Let D = dC? be an
imaginary quadratic discriminant. Then one has the Hilbert ring class
field K; € Hp C C. Hp is an abelian extension of K; ramified only at
primes dividing C. The Artin map

(Primes in Ky prime to C) — Gal(Hp/Kg4)
P — op

factors precisely through Cl(Op) and this fact characterizes Hp. Thus we
have a canonical isomorphism

Gal(Hp/Q) — Cl(Op) » {1,001} (3.2.1)

Theorem 3.2.2 To,.\UZop,— lies in the subset X(Hp) of X(C). More-
over the action of Cl(Op) % {1,0.} 0on ZTo,. U Top,- defined in §2.1
coincides with the natural action of Gal(Hp/Q) en X(Hp) vie 3.2.1.

Proof. This identity follows from the theory of complex multiplication for
abelian varieties which was developed in [S-T 61] (alternatively, it could
be deduced from the corresponding theory for elliptic curves only). O

The theorem asserts in particular that the divisor zop . ® 0p,~ 00 A is
defined over Q and thus comes from a divisor on X; we will denote this
divisor by zp s.. If € # —e then Tp 1. is a single scheme-theoretic point;
the choice of a point in zp4.(C) identifies the residue field with Hp. If
¢ = —¢ then zp 1, consists of a single scheme-theoretic point counted with
multiplicity two; the choice of a point in zp, +.(C) identifies the residue
field of zp +. with a subfield of index two in Hp. The former case is the
more typical; however the latter case is perhaps more familiar as it is the
only one which occurs on the j-line X ;.
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3.3 Decomposition of Jacobian Jy+ y-

We will be considering both abelian varieties in the usual sense and abelian
varieties defined up to isogeny. If A is an abelian variety then we let
A® denote the corresponding abelian-variety-up-to-isogeny. In general all
symbols used to represent abelian-varieties-up-to-isogeny will contain a
superscript 0. As an example of our notation suppose that A is an abelian
variety and 1 = e, +: + -4-€, is a decomposition of the identity of End(A?) =
End(A4) ® Q into orthogonal idempotents. Define A,, to be the largest
abelian subvariety such that ¢; acts by the identity and e;, j # ¢ act by
zero. This exact definition is partly just a convention as one could have
alternatively defined A.; as a quotient variety. While one certainly doesn’t
have A = ©A,, in general one does have A® = @A .

Let M|N. Let Jo(M) denote the Jacobian of Xo(M). Let f be a
normalized newform on I'o(N). The Fourier coefficients of f generate a
totally real number field E; C R of finite degree over Q. The g-expansions
f?, o € Hom(Ey,R), are also normalized newforms on ['g(M). Let f* :=
{f°} C New(M). Then f* determines an idempotent in the Hecke algebra
T(M) C End(Jo(M)°) and hence a factor

A%, C Jo(MY.
We have dim(A4%.) = [E}. : Q] and End(AY%.) = E;. canonically.
Theorem 3.3.1

Thew-2 D enven-conay A7
f*CNorm(N)

where

en+ - = [ (14 ord (N/M)) TT (1 4 (=1)°re(N/aD))
pIN#¥ pIN=

(as in Corollary 2.2.2).

Proof. First we recall some general facts. Let A; and A; be two abelian
varieties each of dimension g. Let £ be a prime number. Consider the
contravariant Tate modules

H](As',Qs Zf) = HOI’H(A,'(Q)[@“’], Gm(Q)[gm])
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These are Z,(Gal(Q/Q))-modules which are rank 2g as Z,-modules. If A;
has good reduction at a prime p # € then any inertia group I, at p acts
trivially on H'(4; q,Z¢). The corresponding Q¢(Gal(Q/Q))-modules

H'(A;0,Q¢) = H'(Aig, L) ® Qe

only depend on A?. Faltings’ semisimplicity theorem says that the two
Q(Gal(Q/Q))-modules H'( A, q, Qe) are semisimple. His isogeny theorem
says that if H'(4;q,Q¢) = H'(A2q, Q) as Q/(Gal(Q/Q))-modules then
in fact A = A3

Still speaking generally, suppose that one is given two semisimple
Q(Gal(Q/Q))-modules M; and M;, each unramified outside the set of
primes dividing an integer N. Let p be a prime not dividing N. Let
o, € Gal(Q/Q) be a geometric Frobenius element. Then, as the corre-
sponding inertia group I, acts trivially, o, acts on M;. Furthermore the
characteristic polynomials P,i(z) := det(1 — 0,z|M;) depend only on p.
The Cebotarev density theorem implies that if Ppj(z) = Pp2(z) for all
p}N, then in fact M = M,.

The last general fact we need is as follows. Let P be a place of Q over
the prime p not dividing N{. Let F, be the corresponding residue field
2/P. Then there is a canonical identification H'(Aq,Z;) = H'(4e,, L)
Furthermore the automorphism o, of Ag and the degree p** self-map F,
of Ag, induce the same endomorphism of this Z,-module.

Now we return to our particular setting. On the one hand we have

Tr(op|H' (Jg, Qe)) = Te(F|H'(Je,, Qc))
_ %Tr(T,,|H1(JFP,Q¢))

= STHT|H' (7, Q)

- %Tr(Tlel(J,c))

- %Tr(Tle’(X,C))-

On the other hand by a similar passing through characteristic p argument
we have

Tr(o,| H' (€D en+ N-iconds)AT+0: Q) = €D en+ N-icona(n Tr(THIC)-
f* !
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The result then follows the characteristic zero identity
HY(Xn+ n-,C) = D en+ N-reona()Cs
J

of Corollary 2.2.2. O

Corollary 3.3.2 The abelion varieties JRY - and Jo(N)™*™ are isoge-
nous. []

This corollary was in fact proved before Faltings’ isogeny theorem in [Ri 80)
under the assumption that there exists a prime p with p||N.

3.4 The Taniyama-Weil conjecture

Let A be an abelian variety over Q. Then A has a conductor C = [] p».
¢y 1s defined as the Artin conductor of the associated representation of
any inertia group I, at p on HL(A4,Q), any € # p. c, = 0 iff A has good
reduction at p. C depends only on A%. If End(A%) contains a field of
degree d then C is necessarily a d'* power.

The example of principal interest to us is the case where dim(A4) = 1,
i.e. A is an elliptic curve. Then one has the following facts:

=0 good
¢4 = 1 if Ahas ¢ multiplicative reduction at p.
> 2 additive

In fact if p # 2,3 then the last inequality is an equality, giving a completely
geometric interpretation of the conductor.

Theorem 3.4.1 Let f* = {f, f%%,..., f°4} C New(N). Then AY. has

conductor N9,

Proof. See [Ca 87] for a thorough discussion of this theorem and similar
theorems. The basic point is that to determine cond(A%.) at a prime p
one has to thoroughly analyze the bad reduction of Xo(N) at p. O

Conjecture 3.4.2 Let A be a d-dimensional abelian variely over Q such
that End(A°) contains a totally real field of degree d. Let N¢ := cond(A).
Then there ezists f* = {f, f2,..., f*¢} C New(N) such that A® = AJ..

See e.g. [B-SD 75] or [Si 86] for a discussion of this conjecture (in the case
of elliptic curves).
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4 Arithmetic surfaces Xy+ y-: facts

We continue to assume that our fixed pair (N+, N~)is odd. So as not to be
distracted by elliptic points and cusps we make the following assumptions.

1. N- is not a perfect square (= no cusps).

2. At least one of

ot (2 0 (),

P

is zero and at least one of

r-w Ll {1 ! {::'}} piavt U {1 ' {—?4}}"}55

is zero (= no elliptic points in characteristic 0)

3. (Like 2 with “one” replaced by “two”) (= no elliptic points in any
characteristic)

However almost everything we say is literally true for (N'*, N7) arbitrary
and the remainder can be rather simply fixed up. In the sequel, most par-
ticularly in Section 7, we will apply the theorems of this section generalized
to the arbitrary case without comment.

In §1 we define a proper scheme X y+ - over Z extending the scheme
X n+n- over Z[1/N] defined in §3.1. For §§2—4 we fix a prime power p°
exactly dividing N. We describe the schemes X7 in the case p AN, p|Nt,
and p|| N~ respectively. The remaining case p?| N~ will be discussed in the
next section.

Our object in this section is simply to describe the schemes X n+ n-»
not to prove our descriptions are correct. We will give references as we
go. These references certainly contain the main points. However we will
omit deriving our specific statements from the general theorems of our
references. The reader should note that were we to prove all the statements
we would have to modify our order of presentation. In particular we would
have to treat the deformation theory considered in §2-4 first and only then
give the main existence theorem 4.1.1.
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Our fundamental references for this and the next section are [K-M 85]
for the case p ¢ L(N*,N~) and [Dr 76] for the case p € T(N*+,N-).
Strictly speaking, [K-M 85] treats only the case T,(N*, N=) = 0; however
we will use it without comment as a reference for the general case: the
situation above Spec Z, for p ¢ E,;(N*,N~) is governed by p-divisible
groups and for many questions it makes no difference what Z,(N+, N-)
is.

4.1 Definition via moduli

We define the notion of (N+, N~)-abelian scheme over an arbitrary scheme
S by replacing “complex analytic space” in Definition 2.3.1 with “scheme”
(and again interpreting “toroidal” as “abelian”). Even at the level of defi-
nitions there is subtlety. Namely here “locally cyclic” has to be interpreted
in Drinfeld’s sense; see [K-M 85).

The naive extension of Fy+ y- from schemes over Z[1/N] to all schemes
is not what we want. One has to add an extra condition first introduced
in [Dr 76]. Let (A4,C) be an (N*, N-)-abelian surface over a scheme S.
Suppose p|Ng,.. Let F be a field containing F,2. Let s € S(F). Con-
sider the two-dimensional F-vector space Lie(A,). It is naturally a right
R, nz,,-module, hence a right R, - /p-module. Now R, N, /P is a non-

commutative rank four Fp-algebra which sits in a short exact sequence:

L1 N © Bang /P = vz Lanz,, -

Embed F: into B, - /pso that the projection onto B, Naoldinz, = Fp
is the identity. For the moment we consider Lie(A4) simply as a module
-over the subalgebra F,2. There are three possibilities.

1. Fp2 acts through scalars through the inclusion Fjz C F (pure of type
1).

2. Fp2 acts through scalars through the conjugate injection Fpz — F
(pure of type -1).

3. Lie(A) is the direct sum of one-dimensional vector spaces Lie(A4)"
and Lie(A)~! on which F,2 acts as scalars as indicated (mixed).

Here we follow the terminology of [Ri —] (mixedp; -) = specialjp, 7¢)). If
F is simply a field of characteristic p, rather than an extension field of Fz,
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possibilities 1 and 2 are indistinguishable but we still have the distinction
of pure versus mixed.

An (N*,N-)-abelian surface over a scheme § is called mixed if for
all p|Nz,,, all fields F of characteristic p, and all s € 5 (F), A, is mixed.
Consider the functor

Fn+ n- : Schemes — Sets
S —— {mixed(N*, N~)-abelian surfaces over 5}/ ~ .

It is this functor which is the good extension of Fy+ ny-:

Theorem 4.1.1 Fy+ - 18 coarsely represented by an arithmetic surface
Xy -

Proof. [Dr 76]. O

The fact that X represents F only coarsely presents an annoyance but
not a serious problem. Namely our assumption excluding elliptic points
implies that Aut(4,C)g = {£1} for any (N*, N~)-abelian surface (4,C)
over a comnected scheme S. Let S be a scheme over X. Then descent
theory says that there exists an (N*, N~)-abelian scheme over § induc-
ing the given map § — X iff a certain obstruction in H*(S,+1) van-
ishes. Moreover, if this obstruction vanishes then the set of such abelian
schemes up to isomorphism is naturally a principal homogeneous space
over H'(S,+1). The key example for us is when § is some closed point
z on X or the completion X, of X at such a point. Since the residue
field F is finite H*(S, 1) = H2(Z,+1) = 0 and so the obstruction van-
ishes. Also H'(S,%1) = Hom(Z,+1) = &1, so there are two (N*,N7)
abelian varieties over z inducing the identity map, each defined up to the
ambiguity of +1. Instead of repeating awkward phrases like “Let (A, C).
be a semi-universal (N*, N~)-abelian surface over z and let (4,C)x, be
its universal deformation” we will leave all this fussiness implicit and just
write (A4, C),. Thus we use abbreviated language which invites the reader
to simply pretend that X is a fine moduli space.

4.2 pfN

In this section we assume that pJN so that X := X 2, is smooth over Z,
by Theorem 3.1.1. We describe the closed points on X and their formal
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neighborhoods. The most basic of the several phenomena discussed is that
there is a finite subscheme z,, C X which is up to a quadratic twist a copy
of the even curve Xy+ y-p, components having been replaced by copies of
Spec F,,..

Let F,, be an algebraic closure of F,: and let (4,C) be an (N*+, N-)-
abelian surface over F,. End(Lie(A))g is then simply F,. Hence in par-
ticular End(A, C)Rr comes equipped with a map j : End(4,C)p — F,.

Theorem 4.2.1 Either
1. End(A)g #s an Eichler order R of type (N+,N-p).

2. End(A)g 1s en imaginary quadratic order, O C Z, mazimal at p and
embeddable in R.

Furthermore all possibilities admitied by 1 and 2 occur.

Proof. The necessary general theorems are in [Wa 69]. O
One says that A is supersingular in the first case and ordinary in the
second case. One thereby obtains a partition

X=z]l [l 2

ocz,

in the sense of closed points. Here z,, and each of the z¢ are finite disjoint
unions of spectra of finite fields.

Supersingular points. The points in z,, have residue field either F,
or F:. Instead of describing z,, directly we will describe the base change
Zas '= (255 )F » together with the natural action of ¢,. This equivalent point
of view is more convenient for several reasons — for starters, all points in
zes now have the same residue field, namely F ..

Theorem 4.2.2 The map

2y — Ordy+ -
z — End((4,C):)r

is a bijection. Here End((A, C);)r is oriented by Remark 1.2.4.
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Proof. [Wa 69]. O

We will therefore write z,, = [[ zg. One of course has to carefully distin-
guish between the single fixed oriented order R and the varying oriented
orders R. R is indefinite and plays a completely passive role; for example
in the most classical case (N*+,N-) = (1,1) — technically excluded from
our present discussion because of cusps and elliptic points — R = My1)
and one can certainly discuss X, without mentioning R at all. The R
are definite Eichler orders and in contrast play an active role in our con-
siderations.

We now consider the completion Xz of the scheme X =X 2 at
the point zg. Xp is identified with the universal deformation space of
(A4,C):p considered with its right R-module structure. By the Serre-Tate
theorem it is further identified with the universal deformation space of the
p-divisible group A.[p™], considered with its right R,-module structure.
But now R, = M;(Z,) and so we have a decomposition

Ax, = Ax [P™] @ Ax [p™]

as in §2.3. For purely formal reasons Ax o[p™]! is identified with the
universal deformation of 4. ,[p™]'.

A [p7]'isa connected self-dual p-divisible group over F2 with height
two. All such objects become isomorphic over F,. Their deformation
theory has been studied in detail in [Gr 86).

Before stating the result we need to make a few preliminary remarks.
End(A:,[p™])g, is the local Eichler order R, of type (1,p). If S is a non-
empty closed subscheme of X 4 then the natural map End(As[p™))r, —
End(A.,[p™])g, is injective. We shall therefore view End(As[p™])g, as
simply a suborder of R,. As an example the theorem below implies that
End(Ax ,[p*])r, consists only of the scalar endomorphisms Z, in R,.

Theorem 4.2.3 Let OF be @ quadratic suborder of End(A. [p®])g, with

. - _P .
conductor c. Then there is a unigque closed subscheme Zos,A of X p having
the following properties:

1. zoc is the spectrum of a discrete valugtion ring.

2. Bnd(Az,, ™)z, = O
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Also ZosA 13 the spectrum of @ ring class eziension of O,. If O, is inert
1 ife=0

(p=-1)p! ife>1.
If O, is ramified then z Zoy, a/Spec O, has inertia degree 2 and ramification

then Zos, a/Spec O, is totally ramified of degree {

degree r°.

Proof. [Gr 87]. O
If ¢ = 0 then the p-divisible group A4, ox, 41P™] is called a canonical lift of

A:,[p®). If ¢ 2 1 then one uses the term quasi-canonical instead. As O,
runs through all inert and maximal quadratic orders in R,, T, A FUNS Over
all points on X 5 with residue field Q,: (this statement follows from the
intersection formulas given below). On the other hand ramified canonical
lifts and quasi-canonical lifts of both types are more thinly dispersed on
X 5. In general one has

End(A’og,R)ﬂ = End(A-fo;_,q[Poo])E, Nk

the intersection taking place in R,. The intersection on the right is
clearly either Z or an imaginary quadratic order O with p¢ exactly di-
viding cond(O).

The key point for us is the following intersection formula. In general for
two distinct curves z, and z; on X 5 we put z5-2;, = lengl;th2 (zonz;) €

Zs,.

Theorem 4.2.4 Let Op¢ and O, be two distinct quadratic suborders of
R, both inert and mazimal. Let S, C R, be the guaternionic order they
generate. Then

20,0, L0,,.8 = (1 + level(S;)) /2.

Proof. [Gr 87] again. O

Note that level(S,) is odd since S, is an Eichler order in a ramified quater-

nion algebra over Q,; thus the right side is integral for elementary reasons.
We will use another intersection formula as well. Namely let O, be

an inert and maximal suborder of R,. Let O,, be a quadratic suborder

which is either ramified or non-maximal. Then

Eop_o'ﬂ * ﬁom.‘q =1,
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This formula follows formally from Theorem 4.2.3 since 25, g X =1

while Zo, A . X° > 2. Quite conveniently we have the following situation.
We summarize our situation with two pictures of X g.

XO 50

Here the left picture shows some inert canonical lifts. The right diagram
shows the same inert canonical lifts and some inert quasicanonical lifts as
well.

Ordinary points. Let O be an imaginary quadratic order in Z,, maxi-
mal at p. So @ is split at p. Let P = ON(p) C Z, be the distinguished
ideal above p in O. Let z € zo(F,). For ¢ # p consider the covariant
Tate module Hy(A,/C:,Z¢). 1t is a right R,-module which is free of rank
one. Hence R, := End(H,(4./C:,Z¢))g, is an Eichler order, isomorphic
to R, canonically up to inner automorphisms. For ¢|N the given orienta-
tions f, on R, thus give rise to orientations f¢ on R;. The embeddings
O, — Ry, € varying, gives an element €(z) € En+ n-(0). Thus we have a
decomposition
o= ]_I Z0.e-
cé€~+'N._(0)

The scheme zo, has a natural action of Cl{O) on it defined as in §2.1.

Theorem 4.2.5 Let f € Ly, be the order of P in the class group of O.
Then zo, consists of hff scheme-theoretic points, each with residue field
having p/ elements.

Proof. [Wa 69]. O
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In distinction with the supersingular case there is no simple way of labeling
the k/f points of 2o, (nor of identifying their residue fields up to unique
isomorphism if f # 1). However if one chooses a point zo,, € zo, then
for any a € Ci{O)/{P), 20,c,c = @20, is well-defined.

We now consider the completion X, , of the scheme X at the closed
point zo,.s. Thus Xo ., is the spectrum of a complete regular local ring
with residue field F having p/ elements. It is identified with the universal
deformation space of (4,C);,,., considered as a right R-module. By the
Serre-Tate theorem it is identified with the universal deformation space of
the p-divisible group A, [p™], considered as a right R -module.

Theorem 4.2.6 Let Of be the quadratic suborder of O, with conductor
c. There 13 a unique subscheme Zogea Of Xoeo satisfying

1. Zogen is the spectrum of a discreie valuation ring.
2. End(4,,, . [p™]) = O;.

Moreover 2o ., is the spectrum of a ring class extension of O, with inertial
=058,e, p P
1 ifc=0

degree f and ramification degree { (p—1)p=! ife>1.

Proof. [L-S-T 64]. O
As in the supersingular case one has further that End((A, Czoe e.') =

0,N0O € O,. However here O° := End((4, C),,, e )R IS gua.ranteed to be
a quad.ratlc order rather than Z. In fact if © has discriminant D then O
has discriminant Dp%.

The divisors zp ;.. Let D be an imaginary quadratic discriminant and
write D = dC? with p||C. Let € € £(Op) be an embedding invariant. It
is now easy to describe the divisor £p., on Xz, Namely first suppose

that (%) =0 or 1. Then zp ;, lies entirely on X,,. In fact

zps.= P Lo,.A
(0.R)

on X, 2t Here the summation is over pairs (&, R) with discO®) = D and

[Tezp inve(O, R) = e in Exs N-{Op). The latter condition makes sense
because O and Op C C are isomorphic, canonically up to sign. We recall
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that in the typical case € # —e the divisor zp s+, on Xz consists of a single
scheme-theoretic point with degree 2h(D). If (%’-) = —1, zp s, consists of
h(D/p*¢) scheme-theoretic points on Xy a If (-‘E;’-) = -1, zp s, consists of
h(D/p*)/2 scheme-theoretic points on Xz ,.

Now suppose that (%) = 1. Then

LDe = @E.o;.ie.u-
a

Here O° is the imaginary quadratic order in Z, of discriminant D and
a € CY(O)/(P}.

4.3 p|Nt

This case is treated in considerable detail in [K-M 85]. One has a decom-

position
X = Za ]_I I_l 20,
o

just as in the case p/N. The main new phenomenon here is that the special
fiber X° is not smooth as in fact it has e + 1 components all meeting at
each supersingular point.

Let (A, C) be an (N*+, N-) abelian surface over a field F' of character-
istic p. Let C[p®] be the p-primary component of C. So C[p°] is a group
scheme over F of rank p®. If A is supersingular then C[p°] is in fact the
unique subgroup scheme of A[p®]' of rank p° and for this reason the nat-
ural Map z,, — ZN+/pe N-gs i aN isomorphism. If A is ordinary then C[p®]
is one of e + 1 subgroup schemes of A[p*]! of rank p°. It is distinguished
from the other such subgroup schemes by a simple numerical invariant.
Namely consider the canonical decomposition

C[Pelmuh—' C[pe] - C[pe]et_

Define a,b € Zyo by rank(C[p*[™") = p* and rank(C[p°]*) = p*. Then
ii=b—a€{—e2—e,...e —2¢} is the distinguishing invariant.

The invariant ¢ gives us a decomposition of the special fiber X° into
its irreducible components:

X=X
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We put C; equal to the reduction of X;. We have

c_lc if i = ke
=T (p=1)ple-1D20; if i £ te

as divisors on X. Also

an isomorphism fi>0

_ 0 : :
Ci = Xy fpe n- 1 { totally inseparable of degree plil if i < 0

and so in particular the two curves have the same genus.
The local intersection number between C; and C; at a supersingular
point s € X-sz is

1 if i <0
Ci-C;= { piniLliD  if 35 > 0

Thus all intersections are transverse iff e equals one or two.
We summarize the above discussion with a picture of X¢ 20 drawn for
e =4 and #(z,) = 3.

D

4.4 p||N-

This case is treated in [Dr 76]. See also [Jo-Li 85] and [Jo-Li 86]. The
main phenomenon is that the choice of an (N*, N ~)-abelian surface (A, C)
over Fy gives a group theoretic description of the whole scheme X5 all
at once, precisely analogous to the description of the analytic space X

45



given in §2.1. Namely let B = End(A4,C)a®Q. Bisa quaternion algebra
with ramification locus B(N+, N-) — {p}. Associated with B is the p-adic
upper half plane T over Z, discussed in §1.3. Put ¥ = T x Spec F:. Here
BX acts on T as in §1.3 and on Spec Fy: via bf = a;'“’P(““'”f. One has

X = B*\Y x B”[R*

over Z,. The theorems of this section are derived from this fundamental
group theoretic description.

Let (A, C) be a mixed (N*, N~ )-abelian surface over a field F contain-
ing F,2. Consider the right action of R/p on the two-dimensional F-vector
space Lie(A). Note that Lie(A)J is naturally a right R/J = F,z module,
since Lie(A)J? = Lie(A)p = 0. There are three possibilities:

1. dimg(Lie(A)J) = 1 and F 2 acts via the inclusion F C F (mixed
of type 1).

)

dimp(Lie(A)J) = 1and F 2 acts via the conjugate injection Fpz — F
(mixed of type —1).

3. dimp(Lie(A)J) = 0 (mixed exceptional).

Theorem 4.4.1 a) The special fiber X° is reduced. All irreducible compo-

nents have genus zero. These components of X° are in bijection with pairs
(i, R) with i = £1 and R an oriented Eichler order of type (N*,N~/p).
Here K-?R is characterized by the properties

1. (A,C), , 1s mized of type i.
2. End((A,C), g)r =1+ pR.
Here §; g is the generic point of the component X?' g

b) All singularities of X° are ordinary nodes. The nodes are in bijection
with oriented Eichler orders of type (pN*,N~/p). Here the point zg is
characterized by

1. (A,C),R is mized exceptional.

2. End((4,C).)g=R. O
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All points in characteristic p should be considered supersingular. We
call a point z in X° a special supersingular point if it has residue field
F,2 and is not a crossing point. Special supersingular points are indexed
by pairs (i, R) where i € {+1} and R is an oriented Eichler order of type
(N*,pN~). Here z; g is characterized by

1. (A,C)z',.k has type <.

2. End((4,C):, )z = R.

Let z; 5 be a special supersingular point. Let X, 4 be the completion of
X at the closed point z; 5. The deformation theory of (A4, C)s, , coincides
with that of 4.  [p™] exactly as in the case p fN.

Theorem 4.4.2 Let O, be ¢ mazimal inert quadratic suborder of R,.
There s a unique subscheme Zo,i A having the following properties:

1. Zo,in ¥ the spectrum of a discrete valuation ring
2. End(Agop ™)) = O,.
Moreover Zo,in = Spec Z,2. O

This theorem is clearly analogous to Theorems 4.2.3 and 4.2.6. Moreover
there is another analog, which we don't need, concerning canonical lifts
of crossing points associated to maximal ramified quadratic orders. One
should also note two differences between the present situation and that
of §4.2. First there are no quasicanonical lifts here. Second, most of the
closed points, namely all those with residue field # F 2, do not have natural
lifts at all. The abelian surface (A4, C)’op.-. 5 satisfies End((4, C)
O, N RCR,.
Again a key point for us is an intersection formula.

xOp.s.ﬁ) =

Theorem 4.4.3 Let O, and O, be two distinct quadratic suborders of
R, both inert and mazimal. Let S, C R, be the quaternionic order they
generate. Then

Zo, il Eo,,qA = level(5;)/2. O

Note that here level(S,) is even since S, is an Eichler order in a split
quaternion algebra over Q,; thus the right side is integral for elementary
reasons.
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5 Arithmetic surfaces Xy+ y-: conjectures

We continue with the basic set-up of the previous section. Now we fix
a prime power, p, e > 2, such that p°||[N~. The schemes X7, are now
normal but not regular, i.e. they have isolated singularities. We give a
conjectural description of the minimal resolution of singularities X '1,~

51 p*N-

Instead of describing Xz, directly we will describe X := X3 2 and keep
track of the Galois involution . We treat the two cases e even and e odd
separately even though we conjecture that they look very much the same.

e even. First we consider the case where e := ord,(N~) is even. This case
falls in the framework of [K-M 85]. However the treatment given there is
not explicit enough for our purposes. In any case the special fiber X % on
X has just one irreducible component and this component has multiplicity
(p— l)ps'?‘z‘. The natural map from the smooth curve X2, to X+ v- fpe 18
totally inseparable of degree p*/?. Thus we have a canonical isomorphism
Zes = ZN+N-/pess» €ach scheme having %HP1N+(1 + p~ ) yv-(1 — p71)
points, all with residue field F2. As a scheme X is regular except at
the supersingular points where it is singular. Let X " denote the minimal
desingularization of X. It is known that the reduced exceptional divisor
above each supersingular point in X is a tree of genus zero curves (see §5.2
Point 2 below).

We conjecture that all singularities are removed by iterating the pro-
cedure “blow up all singular points” £ times:

X =X® x5, o x5 xO =X,

The irreducible components of X'°, besides the non-exceptional compo-
nent X4, should be in canonical bijection with pairs (i, R) with i €
{-e,2—¢,-+-—2,2,---,e—2,¢} and R an oriented Eichler order of type
(N+, N-/p+1-Hil). The reduced components C; g should have multiplicity
ple=li/2 i the full special fiber X'°. Thus the outer components i = %e
should have multiplicity one. The curves should be glued together accord-
ing to the following diagram, drawn for p = 2, ¢ = 4, and two supersin-
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gular points on X+ n-/16, €8 (N*, N™) = (23, 16) (dotted curves to be

explained momentarily).
il
i’it
—|: ii:m BRI

EHEH T Y

2

Assuming these conjectures now, we call a point z € X’ special super-
singular iff it lies on one of the extremal components C, ¢ = e, has
residue field F 2, and is not the attachment point. The set of exceptional
points should then be in bijection with pairs (3, R) with i € {x(e + 2)}
and R an oriented Eichler order of type (N*,N-p).

There should be a theory of canonical lifts whlch applies to each special
supersingular point z; 5. Namely for each quadratic suborder O, C R,
isomorphic to Z,2 there should be a subscheme zo,;p of X 5 which is
a section of the structure map X' — Spec Z,». These are the dotted
curves drawn on the figure above. Let 0,9 and O,; be two distinct such
suborders. They generate a quaternionic suborder S, which is a local
Eichler order of type (1,p**'*%) for some i € Zyo. In analogy with the
known cases we should have

Zo,00f" To,, i = (14 level(S,) — e)/2. (5.1.1)

All this should apply in particular to the case when O, N R is a quadratic
L-order O (as opposed to Z itself). Then To,:;a € X would be a CM
point.

e odd. Suppose now that e is odd and hence > 3. This case is considered
in [Dr 76} and involves uniformization by coverings of the p-adic upper half
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plane. However [Dr 76] is not explicit enough for our purposes. In any
case the reduction X%, of the special fiber X' 9 is isomorphic to X n+ - jpe-1
and thus consists of genus zero curves glued together as in §4.4. Again let
X' be the minimal desingularization of X. The reduced exceptional fiber
above each special supersingular point is a tree of genus zero curves again.

We expect that as a scheme X should be regular except at the points
which have residue field F,2 but are not crossings. We conjecture further
that again all singularities are resolved by iterating the procedure “blow
up all singular points” £3* times:

X=X axE 5 o X0 L X0 =X,

The irreducible components of X' should be in canonical bijection with
pairs (i,ﬁ) with i € {—e,2 —¢,---,—-1,1,-++,e = 2,e}, R an oriented
Eichler order of type (N*+, N~ /pt'-l). The reduced components C;p
should have multiplicity p~1/2 in the full special fiber X 0, Thus the
outer components i = e should have multiplicity one. The curves should
be glued together according to the following diagram, drawn for p = 2,
e = 5, and two components on X+ y-/3z) €8 (N*,N-)=(1,13.32).

it
i"
uftlhirrn
E

_—

@
% xm @
We call a point z € X' special supersingular iff it lies on one of the
extremal components C, g, ¢ = =e, has residue field F,2, and is not the
attachment point. Just as in the case where e is even, the set of exceptional
points should be in natural bijection with pairs (z, R) with i € {£(e +2)}
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and R an oriented Eichler order of type (N*, N~p). There should be a
theory of canonical lifts which applies to each special supersingular point
z; g exactly as in the case e even, the analog of 5.1.1 being

5.2

Zo,0iR " £o,, .0 = (level(5,) — e)/2. (5.1.2)

Evidence for conjectures

Here are five reasons why we believe our conjectures:

1.

-]

The special fibers we describe have the right arithmetic genus. This
assertion is explained in detail in the next subsection.

. Let g = g5 4 gmult 1 g% he the canonical decomposition of ¢

according to the special fiber of the Neron model J¢, (see [D-R 73)).
Similarly we have ¢ = g% 4 - - - + g° where
g‘ = Z CN+ N= cond(f)

p*llcond( f)

Theorem 3.4.1 implies that ¢&°°d = ¢% and g™ = 4!, These equali-
ties imply that the resolutions of our singularities consist of trees of
genus zero curves. Our conjectured resolutions do indeed consist of
trees of genus zero curves.

We can prove the case p?| N~ starting from the description in [K-
M 85] of the model over Z, of a full level p structure X+ y-/,2[p).
This model is regular as a scheme; it is a (p? — 1)-fold covering of X.
Since (p* — 1) is prime to p this covering is tame and we can apply
the theory of Hirzebruch-Jung singularities [BPV 84].

There have to be multiplicity one components as X , has sections
(namely closures of CM points with p /D). Our proposed resolutions
do indeed have multiplicity one components, namely the compo-
nents in C,,. More generally, our conjectures admit several natural-
looking refinements such as the conjectural extension of the theory
of canonical lifts which we have given.

The examples of X, ;o and X5, worked out in Section 7 do not lead
to contradictions.
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A final remark. We are concerned with the description of the formal
neighborhood of the exceptional fibers of the minimal resolution X - X
This is purely a local problem concerning p-divisible groups. However the
evidence we have collected, or rather 1,2,4, and 5, is all of a global nature.
We should say moreover that we have not investigated the problem locally
as one should, for lack of expertise. It is not even clear to us whether the
problem is hard.

5.3 Arithmetic genus

In general let Z be a discrete valuation ring with field of fractions @ and
residue field F. Let X be a smooth, proper, geometrically connected curve
over Q of genus g. Let X be a regular model for X over Spec Z. Then
the arithmetic genus of the special fiber X % is necessarily g.

In this subsection we start with our description of X%+ - which we
simply assume is correct in the unknown cases p*|N-. We then directly
compute its arithmetic genus g(X%+ y-). We find that it coincides with
g(Xn+.n-) in all cases. Our computations simply illustrate the general
constancy-of-arithmetic-genus theorem in the known cases p* N~ while
they provide evidence for our conjecture in the unknown cases PIN-.

First we recall the exact definition of arithmetic genus. Let C be 2
proper, purely one-dimensional scheme over F' which is geometrically con-
nected. Then its arithmetic genus is defined by ¢(C) := dimp H'(C, 0).

We will work not directly with ¢(-) but rather with a modified no-
tion A(-) of arithmetic genus. Let C be a proper, purely one-dimensional
scheme over F. We do not assume that C is geometrically connected. We
define its modified arithmetic genus by

h(C) = dimp H'(C, 0) — dimg H%(C, 0).

C is geometrically connected iff dimg H%(C, O) = 1 in which case of course
h(C) = g(C) — 1. The advantage of h(-) is that it behaves well with
respect to disjoint unions h(Cy L1 C3) = h(Ci) + h(C:) and etale covers
h(C) = deg(C : C)R(C). Of course if C is smooth then h(C) = —3x(C)
and so these nice properties should come as no surprise.

We now return to our original situation where C is given as the special
fiber Xp of the map X — Spec Z. Suppose that as a divisor C can be
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decomposed

C= Z m.-C,-,

with ¢ running over a finite subset of Z, m; € Z5, and C; (not necessarily
reduced or irreducible) effective subdivisors of C. Then the adjunction
formula says

h(z m;C;) = Em;h;+%2mg(m;—1)c,'-0;+ Z m;m,;,C; -C;,. (5.3.1)

W <iz
We now begin our calculations, splitting into the four cases

P°||N*, eeven
plINt, eodd
p°|IN~, eeven

P°lIN~, eodd.
In all four cases we use the natural decomposition

X°= 3 mc.
—egige
i=e (2)
We know the multiplicities m; and the intersection matrix I, ;, := C;, - Cy,
and so it is simply a question of plugging into 5.3.1. Note that C_, and C,
each have multiplicity one and so do not contribute to the self-intersection
term.

In cases 1 and 2 we put h := A{Xn+ pe nv-). In case 3 we put k :=
h(Xn+N-/pe). In case 4 we put h = #{components of AN+ N=-ype). So
as not to be encumbered by the completely passive constant factor A we
introduce the convention a’ := a/h where a is any real number. Also for
convenience we write e = 2f if e is even and e = 2f — 1 if e is odd.

p|N*, e even
We need to show that h/(Xy+ y-) = p® + p*~L.

label i £ te te
#(components) n; 1 1
multiplicity m; (p — 1)p/-Fl/2-1 1
modified genus h; h h

self-intersection C;- C; —2phlp —(p—1)p¥h
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If il < ig then

C;, -Cy =

First term:

Z m.'h';

Second term:

% Z m,-(m; C 1)I£,:-

Third term:

')
Z my, my Ly

1y <ig

_{ (p—1)h if 132 €0

(p — 1)hpmirtirkliah) 5f 4,4, > 0.

f=1

moh'o +2 z m2jh;j + mchfg
1=1

= ,
(P +2 3 (p- 1P 42

i=1
(- M+ -2)+2

= p +p/7L.
1 . .
§mo(mo -Vl + Z mai(ma; — 1)I2j.-23'
=1

M
g

+2

%(p -1 Hp-1)p' " - 1(-2)

1=t . _ _
+ S (p = 1)p Y (p — 1)~ - 1)(—2p")
j=1
_p2f + 2p21—l _ p2_f-2 +pf _ pf-l
/=1
—2(P _ 1) szf-l _ P?f-z _ Pf+j-1
i=1
__p2] + 2p2f-l . p2f-2 +pf _ pf—l
—2(f - 1) — 2"+ ) 297 — 2pf
(=2f + 1)p¥ +4fp¥ ' + (<2f + 1)p*~?

-p/ -p7L

(]
m_zimaed’ ;0

Aty
1
-

f-

-

5

']
Y mamalyig
0 k=j4+1

™

J
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/ f
2omoz ) mu(p—1)
k=1

=1
f-1 . o
+23 (p—-1)p/=-1p¥pl-i"Y(p - 1)
=0
=1
= pp M p-1)+2) (0¥ - 2p¥ 7 4 p¥ P
i=0

= 2fp* + (—4f + 1)p 1 + (2f — 1)p* 2
Combining the three terms,
KX = (o' +p)

H(=2f + 1) +4fp 7 + (—2f + 1)p* =2 - p/ — /)
+2fp* + (—4f + 1)p* 7t + (2f - 1)p¥7?)

= p¥ 4 p¥1 g
p|N*, e odd
We need to show that h'(Xy+ n-) = p° + p*L.
label # e te
#(components) n; 1 1
multiplicity m; (p — 1)p/-(il+n)/2 1
modified genus h; h h
self-intersection C; - C; —2plilh —(p—=1)p¥h
If il < ig then
C..C. = (p - l)h . if 1432 < 0
TR T (p = Dhpminliablizl - if 45, > 0.
First term:
J-1
Y omhl = 2 > Mo ey + Mk,
i 3=0
-1 _
= 23 (p-1)p'7" +2
i=0
= (2pf -2)+2
= 2p/.

55



Second term:
-1

1
SYomimi= DI = 3 man(main — Dl o
= i =0
/-1 ) ) .
= Y (p-1)p/ 7 (p-1)p/ 7 = 1)(-2p")
i=0
J-1 J=1 ]
= =2 -2+ 1) Y. P +2p-1) Y PV

i=0 Jj=0
—2fp g afpt —2fpHt 4 opt —opl.

Third term:
J
Z m'lmu u g2 = Z Z -21—1m2’=+1I—2J 1,2k+1
11 <t2 j=0k=0
f-1 f
+2 Z M2j417M2k41 I2;+1 241
j=0k=3+1
f-l + - -
= (p-1pY +23 (p—- VPP (p - 1)

§=0

f-1

= (p-1p¥Y +2(p* - 2p+1) ) p¥!

j=0

= (2f + )p* + (—4f = 1)p* +2fpY

Combining the three terms,
R(X®) = 2p/ +(=2fp¥* +afp? —2fp¥ 7 + 29 — 2
+((2f + )P+ (—4f - 1)pY +2fp !
= pu"'1 +p21. O

p|N~,e even
We need to show that h'(Xy+ n-) =p° —p L.

label ¢ 0 - #£ 0,+ke +e
#(components) n; 1 (p-1)p"*-%h | (p— 1)p*2h
multiplicity m; (p-1)p/? p/-hl? 1
modified genus h; h -7 -1
self-intersection C; - C; —-2h —2pn; —-pn;
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If i] < ig then

I . & 5 — * - 2 . . = —2 2
Ci, -Cy= { gmx{[t, Ltsal} ::islg 2| or (21,42) = (—2,2)

First term:

f
Z mihi = mohy+2)  my; »

=1
J . .
= (p-1)p/' +2) /i [-(p - 1)p¥"?
j=1
J ) ‘
= (pl _pf—1)+ 22(_pf+1-l +pf+1-2)
i=1

= ('~ +2A-p 4P
= =24 pf +p/

Second term:

/-1

1 1 1
g mimi= DL = gmo(mo —DEo+2-5 3 myy(ma; ~ 1o,
24 1

i=

= %(p PN - 1) - 1)(-2) +

I_l B 5 .
gl pf—J(pf-J _ 1)[—-2p(p _ 1)p2;-2]

= pﬂ _ 2p2f-—l _l_pzf-z _pf +p!_1
J-1
-2 Z[pzf = pzf"l _pJ+J + pf+J—l]
i=1
— p2f _ 2p2f—l +p2f-2 _pf_l_p‘(_.l
~2(f = 1)(p* - 7N + 2977 — 2
= (=2f +1)p* + (2f + 2)p*
_p2f-2 - pf - pf—l_
Third term:

f-1
e I _ ! E : : . '
Z my,my, Iil PSS m_2m21_2'2 + 2 m21m21+2I2jI2j+2
iy <iz =0
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= p W p-1)+20p -1 - 1) +
=1
2y pl=ip! N p - 1)p¥
=1
= (' - P+ (@2 -4 + 20
J-1
+23 (¥ -p¥ )
=1
= (2f)p +(=2f +3)p*/ " + p*/ 2.

Combining the three terms,

W) = 2 4 4
+(=2f + 1)p¥ + (2f +2)p* 71 = pH 7t = p! - p/!
+(2f)pY + (=2f +3)p" ! 4 p¥

p|N~—,e odd
We need to show that A'(Xn+ n-) =p° —pe — L.
label ¢ +1 # £1, Le +e
#(components) n; B [(p=1)p"%h|(p-1)ph
multiplicity m; o pl-G-1/2 1
modified genus h; —-n; —n; —n;
self-intersection C;- C; | —2pn; —2pn; —pn;

If i; < i3 then

Cu - Ctz = Rpaz{|izl\li21} if lzl - 32' =2 and (il’i2) ?l" (_1, 1)
0 else.

First term:

J
Em.h: = 2m1h'1+22m2_,-+1h'2j+1

=1
! . )
= 2/ (-1)+23 p/(=(p - 1)p¥™")
i=1
—2p7 — 2p¥ +2p/

—2p2f .
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Second term:

f-1

1
5 Z mi(m; ~ 1)If,=' = my(m; - 1)1{,1 + Z Majy1(majp — 1)I§j+1,2j+1
= =1

= p/(»' - 1))(-2p)

f=1
+3 (! = 1)(=2p(p — 1)p¥"Y)
=1

= _2p2.f+1 + zpf-l-l
f-l !-l . .
+2 Z(_p2f+1 _l_pzf) +2 Z(pf‘i'J-H _ pf'('J)
Jj=1 =1
- _2p2!+1 + 2pf+1

—(2f = 2)p"*! + (2f — 2)p* + 2p¥/ - 2p/H
= =2fp* 4 2fp¥.

Third term:

=1
E m;, ms’zf.",.s, = m—lmlf'-m +2 Z m2j+1m2j+3155+1.2j+a
1<y j=0
= pp/(p+1)
f-l Il . 1]
+2 Z pf-pr-J-l(p - 1)p¥H
=

f-1

= (2f+1)p¥* -~ Ezf —-1)p¥.

Combining the three terms,

X% = (=20)+ (=2 + 2fp¥) + (2f + 1)p¥/ ! — (2f - 1)p¥

= p¥H_p o
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6 An intersection formula

In this section we allow the pair (Nt,N~) to be of either parity. §1 -
§3 consist in preliminaries. In §4 we compute some coincidence numbers
and in §5 some intersection numbers as defined in the introduction. The
special case of the j-line — i.e. X, in our notation — was treated very
explicitly in [G-Z 85]. The case of Xy, N prime, was treated in [Gr 87].
Finally the case of Xo( V) was treated in [G-K-Z 87].

6.1 Set-up

Let Do = doC? and D, = d,C? be imaginary quadratic discriminants and
abbreviate @; := Op, € C. Let ¢g € £(Op) and € € £(O;). We make the
following simplifying assumptions.

1. To,e and Zo,,, both consist of Heegner points, i.e. Co and C, are
each relatively prime to V.

2. Do and D, are relatively prime.

Here Assumption 1 is particularly important as it allows us to explicitly
identify the embedding invariants ¢; with some concrete objects. Also,
in the odd case, it keeps the local computations at primes p{N manage-
able. Assumption 2 is less important; it cuts down the number of possible
phenomena and correspondingly keeps the final formula rather simple.

So our first task is to explicitly identify the sets En+ v-(O;). Since we
are in the Heegner situation we have identifications

EN"’,N-(Oi) = Hom(O;,AN+,N—)
(O; AR EN AN+,N-) — (O o AN"'.N‘)

mentioned in §1.5 Point 3. As motivation let’s assume for a moment that
ordy(N) # 1. Then we have the further identification

Hom(O;, An+n-) = (Square roots of D; in An+n-)
O; 5 Ays n- — g(yDi),

VD; € O; by convention lying in the upper half plane. Thus we can
identify € and ¢ with elements ro and ry of An+n- respectively. We
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need to fix up this simple construction in order to treat the case 2||N. In
fact the modifications necessary are useful in the case 2 }{N.
Define Aj., by the Cartesian diagram of rings
2eq — Z/2
l !
Agerny — Z/21Z)2
and similarly define 4} ;. by

Alpe — 1/2
! !

Al'ze-i-l —_— F4 .

We have just given two definitions of A} ;; however they coincide: 4}, =
Z/2.

We need the analogous construction on the level of quaternionic orders:

Definition 6.1.1 Let R; be an Eichler order over Z,. Then its derived
order 13

R; = 22 + 2R2.

Suppose now that R; has type (2°,1) and comes equipped with an ori-
entation f; : Ry — Az,;. Then there is a natural map f; : R) — 4. .
To define this map it suffices to define it on our standard oriented order
(Bae1, f,) since (Ry, f2) is isomorphic to (Rg;) canonically up to inner
automorphisms and Aj.; is commutative. Very simply we define

fg :—‘B:),‘.l - A'2=,1
ab
(c d) — (a,d).

Similarly we treat the twisted case by defining

fg’El,ze N A'l,ze

@ b —_ -
b a a.

Thus the formulas are exactly those of §1.5; its just that the smaller do-
main allows us to take a bigger range. The upshot of this discussion is
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that we can identify € and €, with traceless elements ro and r; of Ajyy y--
In particular we can form the product rory which is a squareroot of DyD;
lying in the subring Z/2NZ of the ring Ajy+ y--

We are interested in the divisors zp, +r,. For convenience we consider
the following linear combination:

CD kr += E U(Di/az)_lxD./az.ir.'la- (6.1.2)
a|Ci

The main theorems of this section consist in formulas for the coincidence
number (cpy +ros €Dy 2y ) if (NF,N7) is even and the intersection number
(D res €Dy 2y ) if (N, N~) is odd. The inverse equation to 6.1.2 is

ITDitr; = U(Di) E :u(a)cD./a'*‘.d:r/as
alC,

4 being as usual the Mobius function. We thus obtain formulas for the
geometrically more appealing quantity (Zp,,+ro) ZDy,dn )-

6.2 Explicit Eichler orders

Let n be an integer with the same parity as DoD), and satisfying n? <
DoD,. Let [Do,n,D,] denote the binary quadratic form Doz? 4 2nzy +
D1y?. Put A equal to the discriminant of this form, i.e. put A := (n® —
DoDy)/4. So A is a negative integer.

Let p]A. Our hypothesis (Do, D;) = 1 says that at least one of the O;
is maximal and unramified at p. We need to exclude one more possibility.

Lemma 6.2.1 Suppose that both Oy and O, are mazimal and unramified
at p. Then either both Oy and O, are split or they are both inert at p.

Proof. First consider p = 2 so that

&y={2 5n2id

But now

2|(n2 - DoDl)/4 = 8|(ﬂ2 - D()Dl)
= DODI =1 (8)
= .Do = Dl (8).
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Now consider the remaining case p odd.

p|(n2 - DoDl )/4 = n2 = D(]DI (p)

- (%22) =1
+ (5)=(3)

We define a relatively prime factorization —A = A* A~ by the following
prescription

+ .
{ P 'A_ iff at least one of the O; is { ?pht and maximal at p.
plA inert

Of course here we are using Lemma 6.2.1 to ensure that our two conditions
are mutually exclusive.

Let B := Bp,ap, := Qleo,e1)/(ed = Do,e? = Dy, e0e; + €160 = 2n).
Let S := Sp,.,p, be the lattice generated by

b] =1 b2 = (60 + Do)/z
b3 = (61 + Dl)/2 b4 = (6081 + GQDI + elDO + DQD])/4
Here D; = 0,1 is as defined in 2.1.4.
Proposition 6.2.2 Sp, . p, i3 an Eickler order of type (AT, A7),

Proof. One can easily verify that S is closed under multiplication; for
example this is obvious in the excluded case where both D; are even so
both D; are zero. With respect to the basis {5;, b, b, by} the form (z,y) :=
Tr(z7) has matrix representation

_2 B Do Dl (n-l:DoD1)/2
Do (Do=Do)/2  (DaDy —n)/2 Dy(Do — Dq)/4
D] (.Dl - .Dl)/2 (.D]Do - n)/2 Do(Dl - Dl)/4

(n+ DoDl)lz Dl(Do - Dg)/f4 Do(D1 - D,)/4 (Do — Do)(D1 -Dy)/8

One can compute directly that the determinant of this matrix is A2. This

shows that the reduced discriminant is —A. Let p|A. Choose i such that
O; is maximal and unramified at p. If (Qpi) = 1 then §, contains a copy of
Z,®Z,, namely Z,[(e; + D;)/2]. Similarly if (%) = —1 then 5, contains
a copy of the inert quadratic algebra Z2, again Z,[(e; + D;)/2]. O
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6.3 A finite Dirichlet series

Here we define some finite Dirichlet series which will allow us to give a
concise formulation of the two main formulas.

Definition 6.3.1 Let p be a prime number and let e € Zyo. Then

Lpe'l(s) = 14--- +p'i’ T5EC _l_p-es
Ll,pe(s) = 14---4 (_1)lp-n o (-l)gp_e,-

Clearly we have the functional equations

Lpea(s) = p~*Lpea(—3)
Lipe(s) = (=1)°p™"Lype(—3).

Evaluating at the central point,
Lpe'l(O) =e+ 1.

Also if e is even then
L]ipe(O) = 1

while if e is odd

Lype(0) = 0

Li (0) = %(1 + ¢)logp.
Finally:

Definition 6.3.2 Let (M*,M~) be a pair of relatively prime positive in-
tegers. Then

LM-!-'M—(S): H ch.l(S) H Ll'pe(S).

pellM+ peliM -

Thus L+ a-(5) has a zero of order #(Z,(M*,M ™)) at s = 0.
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6.4 A coincidence formula

Here we assume that (N*,N~) is even. We repeat the definition of coin-
cidence number given in the introduction, now taking elliptic points into
account:

Definition 6.4.1 Let zq and z, be two points on Xn+ n-. Let X; denote
the component of X' containing z; and let 4n/w; denote its volume. Then

_ Wo 1f (Yo = ‘1}1
(20,7) = { 0 fXo#A.
By linearity the coincidence pairing is defined on arbitrary divisors.
Theorem 6.4.2
(CDoirosCym) = 2. Latin+,a~/n-(0).

nd<Dy by
ngrgry (IN)

Here (A%, A7) is by definition the type of Sp,n.p,-

Proof. The quantity (Cp,,,Cp,,,) in question is the cardinality of a
set @ which we define as follows. @Q is the set of isomorphism classes of
quadruples (R, f, uo, u,) where (R, f) is an oriented order of type (N*, N -)
and u; € R with f'(u;) = r; € Ay -

To determine the cardinality of Q we first consider an integral invariant
of its elements, namely the function

1:Q — 1
(R, fiug,u1) — (uouy + ujug)/2.
Let n be in the image of . Then
1. n? < DyD,; because R is definite.
2. n=rer (2N).
Thus we have

Q= ]_[ Q.

n? <Dg Dy
nZrgrp (2N)
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The final step is to determine #(Q,). Consider the order Sp,n.p,
of §6.2. It comes equipped with preferred elements e; and a preferred
map f! : Sp,ap, — AN+ n- characterized by fi(e;) = ri. A complete
set of representatives for Q, consists of all quadruples (R, f, e, €1} where
Spempy C R C Bpynp, and f extends f.. We must simply count the
number of such orders R as the extension from f, to f exists and is
unique. But if p|A*/N* then S, has exactly

Lpoplep‘l(O) =ap, — ep -+ 1
overorders R, of type (p%,1). Similarly if p| N~ then S, has exactly

1 ifa, =¢e,(2)
0 ifa,#ep(2)

overorders R, of type (1,p°). Thus #(Q.) = L g+ /n+,4-/n-(0) giving the
formula. O

LI ,p°PI°p(0) = {

6.5 The intersection formula

Here we assume that (N*, N-) is odd. We assume the conjectures of §5.1
if N- is not squarefree. We repeat the definition of intersection number
given in the introduction, now paying attention to elliptic points.

Definition 6.5.1 Let zo and z, be two distinct scheme-theoretic points
on X with closures 2, and z, on X'. Suppose that oMz, is disjoint from
the singular locus of X'. Then

(zo, 21 ) := log #(A)

where A is the ring of functions on the scheme-theoretic intersection go N
Zy.

Again by linearity (-,-) is defined on arbitrary divisors with disjoint sup-
port and missing the singular locus. Here by singular locus we mean the
set of scheme-theoretic points having Zariski tangent space of dimension
> 3, i.e. the non-regular locus. We remark that there is a reasonable

way to define (z¢,z;) even when zo N z, intersects the singular locus; see
[Mu 60].
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Before proceeding we describe the singular locus of X’. Under the
assumptions made in Sections 4 and 5 the singular locus is empty. In the
general case a point z in characteristic p is singular iff z is an isolated
ramification point for some cover Xiy+ y- — X', ¢ # p. These occur
precisely in the following situations.

1. p°||N*. Here singularities can occur both at supersingular points
and at ordinary points. The supersingular point zj is singular iff

R*/T* contains 3-torsion and p® # 3

or
R*/T* contains 2-torsion and p® £ 2.

An ordinary point z; 0., is singular f O* /Z* has torsion and i #

+e. Thus singularities can occur at ordinary points only if e > 2.

2. p°||N~. All singularities of X7 , occur at crossing points, i.e. points
of the form z; 4, i € {—e+1,—€+3,...,e—-3,e—1}. The point za
is singular iff

R*/Z* contains 3-torsion and p° # 3

or
R*/Z* contains 2-torsion and p° # 2.

In particular all non-crossings points on the components C_. and C. are
regular. As will be clear in the proof of the next theorem, our assumptions
imply that all the pointsin ¢p, 4, Ncp, 1., are regular and so the definition
applies.

Theorem 6.5.2
(oo trorCytn) = 2. Lhejnt a-n-(0).

ﬂ2<Do ‘Dl
n=trgr; (2N)

Here (A1, A™) is by definition the type of Spyn.p, -
Proof. The condition that (Do, D,) = 1 ensures that cp, +,, and cp, ir,

are disjoint so that (cp, 1,0 €p, +r,) is Well-defined. The equality to be
proved is of the form ¥ e, = 3 b,, the sums being over the set of primes
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with all but finitely many addends being zero. Namely on the left side we
have

(gDo.ﬂ:ro 1ED; 41y ) == Z:(QDo.iro ] -c-Dl Er )P
)

(D 470D, e, )p DeIng the intersection number on X7,. On the right side
we have

Y. Lisnta-in-(0) =

n? <Dy Dy
n=krory (2N}

Z Z LA'*/N“-A'/N'p(O)(l + ord,(A™/N7))/2log p.

n2<DoD1
natrgry (2N)
plA—[N=

We will prove ¥ a, = ¥ b, by proving a, = b, for all p.
Fix a prime p for the rest of the proof. By our relative primality
assumption at least one of the Dy and D, is prime to p. By relabeling if

necessary we assume that Dp is prime to p. Write Dy = d, C? and define
¢ by p||Cy.

piN
There are six possibilities to consider,

((22).(2)) = 0,000,221, (1,0 (1,0

all of which can certainly occur. In the case (1,1), ¢p, -, and gp, +r,
reduce to ordinary points zpy4r, and zp, /pee i, fpc Tespectively. However
since we are assuming (Do, D;) = 1 we must have zpg +r, N 2D, fp2¢,4r, fp2e =
0 and so certainly (Cp, £ry»Cpy4r)p = 0 here. In the next three cases
(1,0),(1, —1),(—1,1) one of ¢p, +r, and cp, 4, reduces to ordinary points
and the other reduces to supersingular points. Thus (€p, +res €D, &r )p = 0
here as well.

It is the last cases (—1,0) and (—1,—1) which are non-trivial. We
will compute the local intersection number (¢p, +ro, D, £r, )p2 OB the base-
changed curve X, " and divide the final result by two. We have

£p; ke, = E Lo, 7
(oi'R)
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Here the summation runs over pairs (O;, R) with R = (R, f ) an oriented
Eichler order of type (N*,pN~) and O; a quadratic suborder containing
one of discriminant D and such that f(£/D;) = £r;. Thus we have ex-
pressed ¢p, 1., as a sum of canonical lifts and £p,,+r, as a sum of canonical
and quasi-canonical lifts. It is convenient to rewrite the latter sum as a

double sum .
LD, xry = Z (Z %?.H)
(ol ,ﬁ) a=0

Here (Ol,ﬁ) is as above except that @) is restricted to be maximal at

p. Of then denotes the suborder ©; N Of,. Thus we are grouping all

quasi-canonical lifts which may occur with their associated canonical lifts.
Now we have the formula

(Eoo.ﬁ’ (Z EO“.R))P: = 6R0.R1(1 + IBVEI(SOQ.Ol ))/2 lOg p2

a=0

Together with the computation of the previous section, this gives the de-
sired relation.

pINvt
Here we must have (%ﬂ) =1 as otherwise ¢p, 4., is empty. Moreover

we must have ¢ = 0 by the Heegner condition (Cy, N) = 1. Thus there are
only two possibilities,

(2)2))-eo0o

the latter being actually possible only when p{|N*. In the first case €D, tro
and ¢p, 4,, reduce to collections of ordinary points, but these collections
are disjoint again by our relative primality assumption (Dj, D)=0.In
the second case ¢p, 4., reduces to ordinary points while €p, +r, Teduces to
supersingular points. Thus in both cases (¢cp, 1+, Cp, £r,)p = 0.

p|N"-
Here we must have (ng) = —1 as otherwise ¢p, .,, is empty. Moreover

we must have ¢ = 0 by the Heegner condition (Cy, N) = 1. Thus there are
only two possibilities,

() &)
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the former being actually possible only when p||[N~. In the first case
Cpo.ir, Teduces to non-crossing points while cp, s, reduces to crossing
points. Thus (€p, 1ryrED,,2r, )p = 0-

The second case is the non-trivial one. However, given the intersection
formulae 4.4.3, 5.1.1, and 5.1.2, this is exactly like the case p /N save for
the fact that one doesn't have to contend with quasicanonical lifts. O3
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7 Examples of uniformizations

In this section we give a sequence of examples which illustrate

1. The description given in Sections 4 and 5 of the bad reduction of
X n+ n- at primes p|N.

2. The fact, Corollary 3.3.2, that Ji" ._ is isogenous to Jo(N)"".

We make extensive use of the tables [SD 75].

7.1 Computation of reductions

We consider all pairs (Xy+ y-,W) where N < 60 and W is a mini-
mal subgroup of the Atkin-Lehner group such that Xy+ y-/W has genus

one and has Jacobian in J33“y_ (not just in Jy+ ny-). There are ex-

actly 72 such pairs, 30 with #(W) = 1, 39 with #(W) = 2 and 3
with #(W) = 4. Our aim is to compute the Kodaira symbol (see e.g.
[Ta 75]) of the reduction of Jac(Xn+n-/W) at primes p dividing N.
While it is often not true that Xy+ ny—/W = Jac(Xy+ n-/W), it is al-
ways true that (X;\pf,]s,r—/W’)Qp2 = (Jac(Xm»,N-/W))QP,. Thus for the
purposes of computing Kodaira symbols we can work directly on the curve
(Xn+ n-/W)z,,.

Of course the basic procedure is to take our description of the bad
reduction of Xy+ y-, mod out by W if necessary, and see where the re-
sulting curve configuration fits into the Kodaira-Neron classification. The
computations are complicated — i.e. made interesting! — by the presence
of singularities. Singularities can arise at three stages of the computation:

1. Of course if p?| N~ then we begin our computation by replacing the
singular scheme X; , by the less-singular scheme X} a2 We simply
assume that the descriptions given in §5.1 are correct.

2. 1f l'l,: has elliptic singularities then we must resolve them to obtain
a regular scheme X7 ”~ The singularity types (except in a few wild
cases in which we will simply stop our computation) are given as
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follows:

Tame 2-elliptic: A)-singularity

( iff ord,(N) is odd
and the 3-elliptic
point is a crossing
point

Ag-singularity
Tame 3-elliptic: .

| Aj;-singularity otherwise

Wild 2-elliptic: D,-singularity if 22||N

A,-singularity if 2||N
77 if 22N

As-singularity if 3?||N
77 if 33|V

A,-singularity if 3||V
Wild 3-elliptic:

Wild 6- or 12-elliptic: ?7.

The resolutions of these singularities are given as follows:

A \ A x As, _A
D, m As )95(

All components have genus zero and all self-intersection numbers are
—2 except the one indicated to be —3. Here we do not know direct
local proofs of our assertions in the wild cases.

3. The fixed point set of w,, in general consists of both divisors and
isolated fixed points. The singularities of the divisors and the iso-
lated fixed points each contribute to singularities on (X3 )/wm. If
p # 2 then these new singularities do not pose a serious problem. If
p = 2 then things can be quite a mess and so we just stop.



7.2 Comparison with Swinnerton-Dyer’s table

Altogether we compute 108 reductions. We then compare our results with
Table 1 of [SD 75] which was constructed by Swinnerton-Dyer and others.
It is here where things become particularly interesting. This table gives
a Weierstrass equation for every elliptic curve which up to isogeny is a
factor of Jo(N)™* for N < 200. Conveniently for us this table also lists
the Kodaira symbol for the reductions of all these elliptic curves. By way
of comparison, these Kodaira symbols were computed there not by using
the geometry of X,(N), but rather by applying Tate’s algorithm directly
to the Weierstrass equation.

The fact that J§3 - is isogenous to Jo(N)*** implies that the Jaco-
bians of all 72 curves we consider appear in [SD 75]. We verify that in
each of the 72 cases there is indeed a curve in [SD 75] having the same
reduction as our curve at all the places at which the computation went
through. In 59 of these 72 cases this curve is unique and we thus obtain a
Weierstrass equation for the Jacobian of our curve.

7.3 Four explicit examples

In the following four computations we use the formula in Theorem 2.1.9,
and its term-by-term interpretation, repeatedly. Also we use Table 5 of
[SD 75] to determine the eigenvalues of W(N); here one must also take
twisting into account as in Theorem 2.2.1.

All components which appear have multiplicity one or two. We indicate
the distinction by using thin lines for the former and thick lines for the
latter. When a scheme is regular we indicate the self-intersection number
of each of the components; the lack of a label means that the component
in question has self-intersection number one. The symbol Zy+ a- means

1. The connected curve (Xp+ u-Jr, if (M*, M) is odd.

2. A copy of Xar+ m-, genus zero curves over C having been replaced
by genus zero curves over Fa, if (M™*, M) is even.

Similarly zps+ pr- means a copy of A+ ar-, components having been re-
placed by copies of Spec Fp2. If (M*, M ™) is even we define mass( Zps+ p-)
= mass(zM+.M-) = area(XM+ M- )/471’.
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X1'34 (genus 1)
We begin with an example that presents no problems at either prime.
Many of the 72 curves we treat share this property.

Mod 2: The symbolic dual graph is

2,17
Zl.l‘? A Zl,l?-

Z, 17 consists of two components, one with mass one, the other with mass
3. T2a7 consists of four points, all with mass 1.

Blow down
—l =|2

Mod 17: The symbolic dual graph is
Zi2 & 2.
Z; , consists of a single curve of mass ﬁ 7372 consists of two points, one

with mass 1, the other with mass ;. The A;-singularity is at the point

with mass .

A

blow up

T4



There are four a prior: possibilities for J) 34, namely

2 17
344 I6 I
34B I3 I2
34C I2 I3
34D I1 I6

Hence each computation alone shows that J, 34 = 34C.

X140 (genus 1)

Here are mod 2 computation begins with our conjectural description
for p*||N-. The mod 5 computation is completely straightforward.
Mod 2: The symbolic dual graph is

£1,20 22,5 21,20
Zyoo —— 22,5 «— 2215 « Zy 3.

Zy 20 consists of two components, each with mass % Z,5 consists of a
1

single component, also with mass 3. Finally, z;5 is a single point with

mass one.

=[*]

Mod 5: The symbolic dual graph is

5,8

ZI.B — Z]lg.

Z, g consists of a single component of mass % 255 consists of two points,
each of mass one.
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L
N

The four a priori possibilities for J; 4 are

2 5
40A IIT I
40B I'1 I2
40C III" I4
40D III" Il

Hence each computation alone shows that J; 46 = 40B.

.Xa,m (genus 1)

Here our mod 2 computation begins with our conjectural description of
bad reduction for p*||N~. The mod 3 computation is completely straight-
forward.

Mod 2: The symbolic dual graph is

Zis &5 2y, T Zha &4 2
18 12 T 412 18

Z3,.-

Zs3, is a genus zero curve. Z); has mass ﬁ Z, g has mass ;—5



..3 _3
' -1 -1 \
A3‘| A3.1 =|*2

Az -3

-1

Mod 3 (wild): The symbolic dual graph is
Zi16 & Z16.

Zy 16 1s a genus zero curve with two supersingular points. One of the two
supersingular points in z3,¢ has mass one, the other %

[}



The six a priori possibilities for J; 16 are

2 3
484 II Il
48B I0 I2
48C I*2 I4
48D I"2 Il
48E I3 I8
48F I3 I2

Hence the mod 2 computation alone shows that J3,6 = 48C or 48D while
the mod 3 computation alone shows that J3,6 = 48C.

X157 — Xi/s7/ws7 (genus 3 — genus 1)

Finally we give an example where the group W is non-trivial. This
example will be developed in more detail in the next section.

On X, 57, wsy has four fixed points, namely the four CM points with
discriminant D = =228 (h_z = 4).
Mod 3: The symbolic dual graph is

£3,19
Zl.]9 = 21.19-

Z1 19 has two components, one with mass one, the other with mass % z3,19
has four points, all of mass one.
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Mod 19:

Biow down

__’ =1

The only possibility for Jac(X, s7/wsr) is STE which has reduction I2 at 3
and I1 at 19. Each of the two computations simply confirms this fact.

7.4 Table of reductions

There are 45 isogeny classes of modular elliptic curves with conductor
< 60. For each of these 45 classes our table has a block of rows.

To explain how to read the table we consider the typical case of 24A-F.
—+ means that ws acts as —1 and w, acts as +1 on the corresponding
factor H'(Xp(24),C)"24-F. In general this information can be deduced
from the fixed point formula for wy, T}y, or — more easily! — read off
from Table 5 of [SD 75). Here it isn’t useful because both A24, and &) 24
have genus one. The entries I°1. and I2 on the first row means that we
compute the reduction at 2 to be I*1 and at 3 to be I2; the ‘.’ after I*1
means that only one of 24 A-F has this type of reduction at 2 and hence
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this computation alone suffices to determine X 24. In fact the table is

2 3
24A IIT Il
24B I"1 I2
24C III* I4
24D III" I
24E II" I8
24F II" I2
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The last entry is the answer: X5, = 24B.

Isogeny class e, Shimura curve Red,, Red,, Red,, Curve
11A - F - X111 I5. 11B
14A-F +— [ X141 16.  I3. 14C
X114 I3. 16, 14D
15A-H +- Xisa1 I4 I4. 15C
X1as Id I4. 15C
TTA-D = Xt Tt 7
194A-C — X190 13. 1958
204 - D —< X201 Ive 12, 208
Xs4 v Is. 20D
214 - F -4 X2 14, I2 218
X121 I2 I4. 21D
24A_F -+ | X241 Ir'i. I2 24B
X124 7 4 24C
264 - C + - X25'1/W2 77 I3. 268
X1,25/w13 77 I3. 268
26D — E -4 .3(25'1/1.013 77 I. 260D
X]gzs/iﬂz 7 I7. 26 F
27TA— D = Xor1 77 77
304 - H + -+ X30,1/w5 KA I3 I 304
X2'15/IU3 27 Il I3 aoC
X310 12, Ié. 12, 308
Xse 16. I2. Ié. 30F
324 -D - Xaz1 77 7
334-D +- (Xaa1)
X133 I6. I2. 338
4A-D -+ X34'1/w17 77 Il. 344
X1.34/ID2 ?? 13. 34C
354 -C +—- X35‘1/'P.U5 I3. 13. 35B
X1_35/ID7 I3. I3. 358
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Isogeny class ¢p, Shimura curve Red,, Red,, Red,, Curve
364 - D -+ Xas,1 v Ir 364
X9 Ive I 368
Xo4 Iv ir 36C
X138 F A% Iir 36D
374 + Xar,1 [war I1. 374
37B-D - (Xaz1)
3834 - B -+ Xss'llwlg 77 Il. 384
X138/ wa 7 15, 388
8C-F +- (X381)
Xi138/w10 7 I3. 38D
394 - D +- Xag,1 /w3 12, I2. 398
X1|39/w13 I2. I2. 398
40A-D +— | (X401)
X140 1. I 40B
424 - F -+ 4+ .’(42,1/{103, w-;} 7 I2 Il 424 or 42D
Xon /w21 77 12 I2 424 or 42D
X3'14/UJ2 77 18, I4. 42C
X6 I2 I8. I4. 42C
43A + Xaaa/was Il. 434
444 - B -+ X44’1/‘wll 77 I1. 434
Xu,q/wu 7 13. 44B
454 - H -+ Xys,a/ws "1 I1 45A or 45D
Xsg I2 12 45B
464 - B + - (X461}
X146 I5. I2. 468
484 - F +— X43,1
X316 12 Id. 48C
494 - D - KXo I 494 or 498
X1'49 Iir 49A or 498
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Isogeny class ¢, | Shimura curve Red,, Red,, Red,, Curve

504 -D -+ Xso'l/‘w% ” II 50A or 50B
X2’25/’w25 7?7 II 50A or 508

S0F - H +— XsoJ/tUg 77 IV 50F or 50F
Xoo25/we 7? v 50F or 50F

51A - B -+ Xs].]/wlf I3. Il. 514
X1'51/w3 Il. I3. 518

524 — B —+ [ (Xs2,1)
Xia.4 7 12 528

534 + Xs3,1/wsa I, 534

544 - C —+ | (Xs4q,1)
X] .54/102 7 77 7

54_D - F +- -X5=l,l/w2 17 Iv=, 54F
X1.54/‘UJ27 7 77 7

554 -D -+ | Xss1 /w“ 12, I2. 558
X1.55/1.U5 12, I2. 558

564 — B —+ [ (Xs6,1)
(X1,56)

56C - F -+ X5s,1/‘w? 7% Il 56F or 56F
.’(1.56/11.!2 7 14, 56 F

574 - D -+ | (Xs7,1)
(X1.57) _

57E ++ | Xs7,1/{ws, w19} 12, Il. 57TF
Xis7/wsy I2. I1. 5TF

5T7F -G -+ (.X57'1)
(X1,57)

584 +4+ | Xssa /{wg, ‘I.ng} 77 Il. 584
X|'53/W53 7? I1. 584

588 -C -+ | (Xs81)
Xl.salw: ?? 15, 58C

It is clear that all but a very few of the ?? can be filled in by working
backwards. Thus for example we know Jac(X 4,) is 24C so its reduction
at 2 must be ITI*. Similarly we are obstructed by singularities from
determining X,7, and X3;,. However by other methods one knows that
Xa71 = 27B and Xj;,; = 32B [SD 75]; hence X;7,; has bad reduction IV*
and X3;, and bad reduction I*3 again by [SD 75]. It would be interesting
to treat all these very wild cases directly.
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7.5 Relations to the Birch-Swinnerton-Dyer conjec-
ture

Let E be a modular elliptic curve over Q with conductor N. For each rela-
tively prime factorization N = N* N~ we define an invariant ix+ n-(E)} €
Z51/1%,. Here Z5,/%, is the group of positive integers under multiplica-
tion modulo squares; we will usually identify an element of Z5,/ Z>, with
its unique square-free representative in Z5,.

The bad reduction of E figures into our invariants. There is a small
subtlety here and to make it clear we introduce more notation than we
need. Let F, be an algebraic closure of F2. Consider the group of multi-
plicity one components C= E’“‘”“‘ /Eg Eomooth0 Tt A(C) denote the group
of automorphisms of C whlch come fronl; automorphisms of the entire sin-
gular fiber Eg . Gal(F,/F,) acts naturally on C through A(C). We put
my, = #(C) and for n € Z, we put my» = #(C/Gal(F,/Fps)). Thus the
possibilities are

Type C A(C) mp mp 1y,

I Z/1 1 1 1 1

I Z/2 1 2 2 2

I, n=2k-1 Z/n +1 korn n n
I, n=2k-2 Z/n +1 korn n n
I3 Z/201/2 GLy(Z/2) 2,3, 0or4 20r4 4

I:, nodd Z/4 +1 3or4 4 4
I  neven |Z/281]/2 +1 Jor4 4 4
IIor II* N 1 1 1 1
Il or IIT" /2 1 2 2 2
IV or IV" Z/3 +1 20r3 3 3

Here we care only about m;. The point to be made is that, with the
exception of I*0, mz = m, and hence m, can be read off from the tables
of [SD 75]. The exceptional case certainly can occur as indeed 32C and
32D each have I"0 reduction at 2 with my = 2 and m; = 4. However
conveniently it will not occur for us.
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To define our invariant for an odd factorization N = N* N~ we need
one more preliminary. Let dy+ y- be the degree of any parametrization
Tn+ N- ¢ Xn+N- — E, considered as an element of Z5,/7%,. dy+ n- is
well-defined (because we are over Q and so any complex multiplications
E may have over some larger field don’t figure in}).

To define our invariant for an even factorization N = N* N~ we need
the corresponding preliminary. Consider the one-dimensional subspace
H%Xn+ n-,C)YE C H%Xn+n-,C). This vector space naturally comes
from a rank one Z-module, namely H%(Xy+ n-,2)/& := HXyn+ n-,Z) N
H%Xn+ n-,C)%. Let € be one of the two bases and put dy+ y- equal to
the coincidence number (e, e) defined as in §4. Again we consider dy+ x-
as an element of 7,/73,.

Definition 7.5.1

in+ N- = AN+ N- H mp2 € Zal/zgl.
pIN=

One reason that iy+ y- is a convenient invariant is that it behaves simply
under isogeny.

Proposition 7.5.2 Let E — E’ be an isogeny of degree d. Then
in+ N-(E) =din+ n-(E') € 221/1";1.

Proof. In fact we have the stronger statement mp(E) = d*¥(Mm_;(E')
for all p. In the odd case there are an even number of p with ord,(N) odd
and also dy+ n-(E) = ddy+ y-(E’). In the even case there are an odd
number of such p but now dy+ y-(E) = dy+ Ny-(E') as eg = egr. O

In the following table we calculate i+ y-(E) for one curve in each
isogeny class of modular elliptic curves witn N < 37. The curve we use is
the elliptic curve with a strong parametrization Xo(N) — E.

The way our computations are presented in the table is best explained
by an example. So consider 26D which has my: = 7 and m;3: = 1. Look
at the second row which contains the even curve X3, and the odd curve
X5,

The even curve has three components, say C;, C,, and Cy with areas
47 /3, 4r/3, and 47 /2 respectively. This fact follows from the term-by-
term interpretation of 2.1.9. es6p as a function on {Cy, C,C3} is (1,1, —2)
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as more generally

3 Xz 3
€Eis = (2, 2,3)
u"g—";ﬂ’a ez = (1,—1, 0)
3 : 3 €D = (1a 1, "—2)
2

In the range of the table it is necessary to consider only Atkin-Lehner
operators to determine eg; [SD 75,Table 5] is extremely helpful. In general
one would have to consider Hecke operators as well. d32(26D) is thus
3.1243-12+2.2? = 14 as recorded. 1;32(26D) is thus 14-7 = 2 as
recorded.

From the table in §7.4 we have X, q5/w,; ~ 26E. From the isogeny
diagram in [SD 75,Table 1] we know that there is a degree seven isogeny
26E — 26D as indicated. Thus d; 26(26D) is 2- 7 = 14. 1,36(26D) is thus
14 .7 = 2 as recorded.
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87

E ™M Even curves d i| 0Odd curves d i
118 5 Xl,ll 1(3) —1(2) 51 Xll.l = llB 1 1
14C 6,3 |X72 1(3) —1(3) 6 1|X14) = 14C 1 1
Xoz 1 =1(2) 3 1|Xja~1uD214c 2 1

15C 4,4 |Xs3 1(2) —1(2) 4 1|X35, = 15C 1 1
Xas 1 =1(3) 4 1|(Xy15 ~15C 11

].TC 4 X1|17 1 —1(3) 4 1 X]'jr'l = ITC 1 1
198 3 Xi1s 1 —1(2) 3 1|X19; = 19B 1 1
208 3,2 [Xa5s 1 -1 2 1| X301 = 208 1 1
X120 1(3) -1(3) 6 1|X54=20D 2208 31

218 4,2 |X37 1 -1 2 1|Xan,1 =218 1 1
X3 1 -1(3) 4 1|Xym~21D221B 2 1

248 4,2 Xs.g 1 -1 21 X'Z‘l,l =24B 1 1
Xag 1 -1(3) 4 1|X124~24C 3 24B 2 1

268 3,3 |X213 1 1 -2 6 2|Xg61/w; = 268 2 2
X]_g'g 1(3) —1(3) 0(2) 6 2 X1,26/w13~263 2 2

26D 7,1 |Xau3 1 -1 0 2 2| Xo6,/wi3 = 26D 2 2
X132 1(3) 1(3) -2(2) 14 2| Xy 26/ws ~26E 5 26D 14 2

278 3 X2 1 -1(2) 3 1|Xq7, =278 11
304 4,3,1| X330 1(3) —1(3) 6 2 X30.1/‘ID5 = 304 2 2
S s Ol 2 2{Xp15/ws~30C 2304 6 2

X0 1 1 =1(2) =1(2) 6 2{X310~308 2304 2 2

Xes 0 0 1 -1 2 2|Xss~30F3 304 6 2

328 4 X132 1 —1(3) 4 1|Xaz; = 32B 1 1
338 6,2 [Xan -1 1 1 -1(3) 6 3|Xs5; — 338 77 77
: Xia 1 -1 2 3{X133~33B 1 3
344 3,1 X2'17 1 -1 0 0 2 2 X34,1/w17=34A 2 2
Xizz2 1 -1(2) 3 2 X1'34 ~ 34C 2 344 3 2

358 3,3 |Xsz 1 1 —1(2) —1(2) 6 2|Xass,/ws =358 2 2
X?5 0 0 1(3) -1(3) 6 2|X,;33/wr~ 358 2 2

364 3,2 X361 = 364 11
X409 ~368 2 364 2 1

Xoa =36C 2 364 31

X136~36D2364 6 1

374 1 .’(1.37 0 1 -1 2 2 X37.1/W37=37A 2 2
37C 3 X3z 2 -1 -1 6 2|X371 —37C 2 2



The point to be made is that for E in the above tables, iy+ y-(E) is in-
dependent of (N*,N~). In fact this independence result is implied by
a generalization of the Gross-Zagier theorem together with the Birch-
Swinnerton-Dyer conjecture. We will not describe this implication save
to say that a crucial point is that the order of the Shafarevich-Tate group
is a square.
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8 A detailed example

In this section we consider the behavior of some of the CM points on X, 57
under a suitably normalized isomorphism X, s7/wsy — 57E. There are
exactly 13 CM points on X 57/ws7 with residue field Q and in §1 we use
Theorem 6.5.2 to calculate the intersections of their closures on X, 57 /wss.
On the other hand the elliptic curve E:=57E : y* +y =2 -z -2z + 2
has an infinite cyclic Mordell-Weil group E(Q) with generator P = (2,1)
and in §2 we explicitly calculate (mP - nP) for |m — n| small. Finally in
83 we compare our two calculations to determine where the 13 CM points
sit in the Mordell-Weil group.

8.1 Xisr/wst

The CM points corresponding to the 13 discriminants with class number
one are distributed among the four Riemann surfaces X+ y- with N = 57
as follows:

Asza | Xes | Abae Ay 57
3(=3) | 2(=3) |4(~11)| 4(-4)
4(-8) | 2(-12) 4(=7)
2(~12) | 2(-19) 4(—16)
4(—27) | 4(-67) 2(-19)
4(—28)
4(-43)
4(-163)

We are interested in the case (N*,N~)} = (1,57). To ease notation we
upt @ := i3 € Zx2 and b = 119 € Z,¢: so that a® = —1 and b* = —1 by the
conventions of §1.1. Thus the four CM points with D = —4 are z_4,, 2,
T_4:0,~2bs T=d,—a,2by a0d T_4;_4 —25. The 26 points on &) 57 correspond to 13
scheme-theoretic points Zp;+(e;,e1p) ON Xi1,57. There are only two possibil-
ities for e3, namely a and —a; we will notationally take advantage of this
fact by abbreviating Tp.e,; := Tpix(ase19)-

The residue field Q(zp,.,,) is of course imaginary quadratic with dis-
criminant D. wsy fixes each of these 13 points but acts non-trivially on the
residue field. Thus on the quotient curve X, s7/ws; the 13 points remain
distinct and now have residue field Q.

On the following table we use Theorem 6.5.2 to compute ¢_;63.76 €Dy,
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on X;s7. In the second column we list n satisfying n? < —-163D, n =
—163D (2), n = 1 (3), n = Tbeyg (19). Thus here we are essentially follow-
ing the suggestion made in §6.5 and not bothering to list the remaining
allowable n, namely the negatives of those listed. However here we do not
have to correspondingly multiply the result by two at the end because we

are working on X s7/wsy rather than X 57 itself.

Divisor n  Typeof S_jg3.p eintorsection number
Coqzop —13 (1,2-3-5)
C_28;16b 2 (1,2%.5) 5
cores  —28 (1,2%) 22
Co4;2b
C_7:8b
c_19;0 -19 (1,22 3) 3
C_7:-8b =5 (1,5) 5
Cogim2b 14 (1,2) 2
ety —10 (1,11) 11
PR 71 (1,13) 13
Coqzmi6 —25 (1,22.7) 7
Corenms 125 (1,2¢.3) 3
11 (1,2%-29) 29
~103  (1,2-5-7)

Note that on the last row we have included the case (D, e19) = (—163, —7b),
despite the fact that Dy = —163 and D, = —163 are not relatively prime.
Theorem 6.5.2 actually applies here as well because all the S_163,,p ap-
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pearing here are in fact Eichler orders. Proceeding similarly, and remem-
bering

C_28ie1p = T-2Bje9 + T_7ie10/2

C_o16iep = 3-16;619+§$-4‘.e19/2’

we obtain the entire (entry-wise exponentiated) intersection matrix.

-163 —43 =28 —16 -4 —7 —19 =7 -4 -16 =28 —43 -163
b 10b 166 4b 2b 86 © —8b —2b —4b —16b —10b —7b

T_163;7h * 2 3 5 2011 13 7 3-29
T_43;106 * 2 3 5 2 7
T ..28;16b * 2° 3 5 13
T_16;4b 2 * 2 3 11
T_4:2b * 2 22
T_7.8b * 2 5
T_19;0 3 2 * 2 3
I_7;—-8b 5 2" *
Toq;—2b 22 2 *
To16;—4b 11 3 2 * 2
T .28:~-16b 13 3 3 2° *
T_43;=10b 7 22 5 3 2 *
T_163;~76 |3 - 29 7 13 11 225 3 2 *

Here the starred entries correspond to an intersection at an ordinary point.
We note that at this juncture we have no right to expect any symmetry
in the intersection matrix other than the four-fold symmetry

TDy,ro * TDyyry = TDg,=rg " TDy,~ry = TDy,ry " TDoyro = TDy—vy * TDg,—-r0-

Our matrix does have more symmetry and we have presented things (i.e.
labeled the 13 points, ordered the 13 points, and included the gaps between
rows/columns 1-2 and 12-13) to make this extra symmetry apparent.
Similarly we compute that the seven sections z_,.104, Z_19,0» £_28, 216
and Z_ 43,47 all reduce to one of the two components at 3 and the remain-
ing six sections T_7 485y Z_16,245» L-43,4100 T€duce to the other component.
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8.2 57E

Now we temporarily forget what we've done in §8.1 and consider the el-
liptic curve S7TE : y? +y =33 =22 =22+ 2. P = (z1,1) = (2,1) is clearly
a solution and we apply the addition formula to obtain others:

P (2,1) . A »
2P (1,0) *
3P (-1,1)
4P (0,-2)
5P (5,-3)
6P (4,—7)
7P (11,34)
8P (§,-%) —
9P (&,
10P (-%, -2
up (&£,
12P (%1, 288
13P (22,-¥
14p (2, 412

8780 80647
15P 7396 636056)

1876 750007
16P (_7569’ 658503)

If nP = (2n,yn) then —nP = (z2,,—1 — y,) giving us yet more solutions.
We have drawn {nP}_s<n<s C E(R).

One can prove by descent that in fact E(Q) is cyclic with generator
(2,1). As for computing the intersection numbers (nP - mP), the group
law simplifies things considerably:

(mE-nP)=((m —n)P - Origin) = log dn_.
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Here d2,_ is the denominator of z,,_, (or equivalently &% _ is the denom-
inator of ym_n). We have d; = d_;. On the table below we list those d;,

1 < |il €18, for which d; # 1.

it 2 3 4 5 6 T 8
d; 2 3

: |9 10 11 12 13 14 15 16
d;|5 22 11 13 7 23 2-43 3.29

8.3 Comparison

We now compare our two approaches. On X, s7/ws7 the involutions w3 and
wyg coincide. w3 = wye has four fixed points in (X s7/ws7)(Q), one being
T_190 and the other three forming one Galois orbit, namely T_760(Q). We
turn the genus one curve X 57/ws7 into an elliptic curve by taking z_,0,
as the origin; w3 = wyg then acts as —1. We are still left with the choice of
one of the two isomorphisms X, 57/ws7 — E; to eliminate this ambiguity
we arbitrarily require that z_,¢37 be identified with nP for some n > 0.

Proposition 8.3.1 Assume that all 19 of the CM points we are consid-
ering are in {nP}_g<ncs. Then

T_ig0 = 0

T_teas = EP
T_gee = 2P
T_igx4s = X3P

T_sgtiee = 4P
T_43,4100 = E5P
T 16376 = 8P

Proof. Comparing the matrix in §8.1 with the table in §8.2 one imme-
diately finds that the given identification is the only possibility. Indeed
there is a lot of redundant information all-of which is consistent with the
conclusion. O

There is a lot of flexibility in the hypothesis of Proposition 8.3.1. For
example, one could weaken it by replacing “—-8 <n < 8” by “~20<n <
20” say. Alternatively one could replace it by the much stronger but more
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natural sounding hypothesis “Assume that there are no points in E(Q)
with integral coordinates other than nP for |n| € {1,2,3,4,6,7}"; with
a good effective version of Siegel’s theorem (see e.g. [Si 86]) one might
be able to establish this stronger hypothesis but for now it’s not even
clear that it’s true. In any case it follows from a generalization of the
Gross-Zagier theorem to be proved in a later paper.

We summarize our situation by a picture. From e.g. Table 3 of [SD 75]

we have
p |2 35 7 11 13

#(E(F,)) |5 8 9 13 11 12

Conveniently for the purposes of drawing the picture, (2, 1) is a generator
for E(F,) for these first six primes.

® -43,10b
-28,6b

-16,4b

-4,2b

-7,8b

-19,0

-7.-8b

-4,-2b

2 &\ -16,~4b
\ / -28,16b
I -163.7b

S ’ -43,-10b
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The picture shows

1. the 13 horizontal divisors discussed above;

]

. the 7 vertical divisors Fz, Fa;_], F3;1, Fs, F7, Fu, and F13;
3. the 46 points with residue field a prime field F,, p < 13.

Note that all but three of these points lie on one of the 13 horizontal
divisors. If z is one of these 43 points with z € F, and z € zp,,,, then we

can immediately determine the type of z: if (—5—) = 1, then z is ordinary

while if (%) = 0or — 1, then z is supersingular. The three remaining
points are also supersingular. We have drawn the supersingular points
slightly larger on the figure.
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