Wild Ramification in moduli fields of three-point covers

David P. Roberts
University of Minnesota, Morris

- 1. Moduli algebras
- 2. Ramification
- 3. Upper bounds on ramification: two old theorems and one new conjecture
- 4. Evidence for the truth and sharpness of the conjecture

1. Moduli algebras. Let $n \geq 1$ and $g \geq 0$ be integers. Let $(\lambda_0, \lambda_1, \lambda_\infty)$ be a triple of partitions of n with all together n+2-2g parts. Then the theory of three-point covers (= dessins d'enfants = Belyi maps) gives an associated moduli algebra $K(\lambda_0, \lambda_1, \lambda_\infty)$. The degree N of $K(\lambda_0, \lambda_1, \lambda_\infty)$ can be computed by diagrammatic or group-theoretic techniques.

Example with (n,g)=(7,0). Let $(\lambda_0,\lambda_1,\lambda_\infty)=(61,421,3211)$. Consider rational functions

$$f(x) = \frac{\kappa x^{6}(x-a)}{(x-1)^{2}(x^{2}+bx+c)}$$

viewed as maps from $\widehat{\mathbb{C}}$ to $\widehat{\mathbb{C}}$. The fibers $f^{-1}(0)$ and $f^{-1}(\infty)$ have types $\lambda_0=61$ and $\lambda_\infty=3211$ respectively. There are N=12 values for (a,b,c,κ) which make the fiber $f^{-1}(1)$ have the desired type 421. The a's are the roots of

$$F(a) = 256a^{12} - 7680a^{11} - 1620a^{10} + 1519268a^{9}$$

$$-457995a^{8} - 197818644a^{7} - 1135592364a^{6}$$

$$+1323901404a^{5} + 29033249406a^{4}$$

$$+88620573860a^{3} + 117954887400a^{2}$$

$$+74118870000a + 18015003125$$

The moduli algebra is $\mathbb{Q}[a]/F(a)$ and depends only on (61,421,3211). Choosing a better generator gives

$$K(61,421,3211) =$$

$$\mathbb{Q}[x]/(x^{12} - 3x^{11} + x^9 + 21x^8 - 12x^7 - 92x^6 + 132x^5 + 24x^4 - 120x^3 - 36x^2 + 180x - 100)$$

In general, the embeddings of $K(\lambda_0, \lambda_1, \lambda_\infty) \to \mathbb{C}$ index three-point covers with ramification type $(\lambda_0, \lambda_1, \lambda_\infty)$ and monodromy group all of A_n or S_n . Experimentally, like in this case, $K(\lambda_0, \lambda_1, \lambda_\infty)$ tends to be a field with Galois group all of S_N . Typically, N >> n.

2. Ramification. Ramification in number algebras is measured by discriminants, e.g.

$$disc(K(61, 421, 3211)) = -2^{19}3^{12}5^{2}7^{5}.$$

On a more refined level, ramification at a given prime p is measured by factoring over $\mathbb{Q}_p^{\mathsf{un}}$. For K(61,421,3211), this yields

p	Factorization	Type of ramification
	8 ₁₆ 2 ₃ 1 ₀ 1 ₀	Wild, top slope = 3
3	3 ₃ 3 ₃ 3 ₃ 3 ₃	Wild, top slope $= 1.5$
5	$7_0 2_1 2_1 1_0$	Tame
7	6 ₅ 6 ₀	Tame
≥ 11	$1_0 \cdots 1_0$	Un

Always m_c is a factor of degree m and discriminant p^c . Factors come in three types:

Unramified: 1_0

Tamely ramified: m_{m-1} $(p \not| m)$

Wildly ramified: m_c $(p|m \text{ and } c \geq m)$

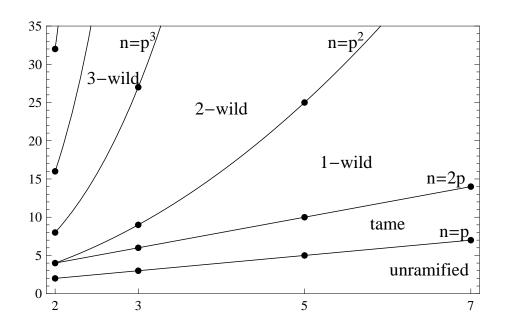
Wild factors can be complicated, and a measure of their wildness is their largest p-adic slope. The simplest example is m=p. Then the possibilities for c are p, . . . , 2p+1, and the largest p-adic slope is s=c/(p-1).

3. Upper bounds on ramification. Let $K = K(\lambda_0, \lambda_1, \lambda_\infty)$ be the moduli algebra of a degree n partition triple.

Theorem (Grothendieck 1961; Beckmann 1989). If $p \in (n, \infty)$, then p is unramified in K.

Theorem (Wewers 2003). If $p \in (n/2, n]$ then p is at most tamely ramified in K.

Conjecture. If $p \in [2, n/2]$, then K's largest p-adic slope s satisfies $s \leq \lfloor \log_p n \rfloor + \frac{1}{p-1}$.



4. Evidence for the truth and sharpness of the conjecture. Thousands of moduli algebras have been computed with $n \leq 12$. Because of computational difficulties, almost all have g=0, and most have degree $N \leq 40$. The conjecture holds for all of them, with the top slope often near or at its conjectural upper bound $\lfloor \log_p n \rfloor + \frac{1}{p-1}$.

A systematic supply of degree N moduli algebras for varying n has been investigated theoretically. Namely for fixed N let a and b be positive integers and put n = N + a + b + 1. Define

$$\lambda_0 = (N+1)1^{n-N}$$

$$\lambda_1 = (a+1)(b+1)1^{n-a-b-1}$$

$$\lambda_\infty = n$$

Then the moduli algebra is given by a Jacobi polynomial $P_N^{a+b-1,-b-N-1}(x)$. Specialize to the case $N=p^j$. Then the conjecture holds and moreover the upper bound is obtained immediately upon entering the j-wild region, for all p and all j.