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Abstract. We tabulate polynomials in Z[t] with a given factorization parti-

tion, bad reduction entirely within a given set of primes, and satisfying aux-
iliary conditions associated to 0, 1, and ∞. We explain how these sets of

polynomials are of particular interest because of their role in the construction

of nonsolvable number fields of arbitrarily large degree and bounded ramifica-
tion. Finally we discuss the similar but technically more complicated tabula-

tion problem corresponding to removing the auxiliary conditions.

1. Introduction

1.1. Overview. For P = {p1, . . . , pr} a finite set of primes, let P ∗ be the set of
integers of the form ±pe11 · · · perr . We say that a polynomial in Z[t] is normalized
if its leading coefficient s(∞) is positive and the greatest common divisor of its
coefficients is 1.

Definition 1.1. For κ a partition, Polysκ(P ) is the set of normalized polynomials
s(t) ∈ Z[t] satisfying

1: The degrees of the irreducible factors of s(t) form the partition κ;
2: The discriminant Disc(s) and the values s(0), s(1), s(∞) are all in P ∗.

The results of this paper identify many Polysκ(P ) completely and show that others
are large.

A sample theoretical result and some computational results within it give a
first sense of the content of this paper. The theoretical result is an algorithm to
determine Polys3c2b1a(P ) given the set of all j-invariants of elliptic curves with bad
reduction within P∪{2, 3}. The computational result uses Coghlan’s determination
[4] of the eighty-one j-invariants for P = {2, 3} as input. Carrying out the algorithm
gives Polys3c2b1a({2, 3}) for all (a, b, c) ∈ Z3

≥0. The largest cardinality arising is

|Polys341({2, 3})| = 180, 822. The largest degree 3c+2b+a coming from a nonempty
set of polynomials is 35, arising uniquely from |Polys3112({2, 3})| = 2. One of the
two elements of Polys3112({2, 3}) is

s(t) =
(
t3 − 2

) (
t3 + 3t2 − 3t+ 1

) (
2t3 − 6t2 + 6t− 1

)
·(

t3 − 3t+ 4
) (

2t3 + 3t− 1
) (

4t3 − 9t2 + 6t− 2
)
·(1.1) (

t3 − 3t2 + 6t− 2
) (

2t3 − 3t+ 2
) (

2t3 − 3t2 − 1
)
·(

t3 − 3t+ 1
)
·
(
t3 − 3t2 + 1

)
·
(
t2 − t+ 1

)
.

The other one is t35s(1/t), and both polynomials have discriminant 21053533.
Our primary motivation is external, as polynomials in Polysκ(P ) are used in the

construction of two types of nonsolvable number fields of arbitrarily large degree and
bounded ramification. Katz number fields [12], [15] have Lie-type Galois groups and
the least ramified examples tend to have two ramifying primes. Hurwitz number
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fields [14, 16] typically have alternating or symmetric Galois groups and the least
ramified examples tend to have three ramifying primes.

The natural problem corresponding to our title involves suitably tabulating poly-
nomials when the conditions s(0), s(1), s(∞) ∈ P ∗ are removed. The special case
we pursue here is more elementary but has much of the character of the general
problem. The full problem is briefly discussed at the end of this paper.

1.2. Three steps and three regimes. Constructing all elements of Polysκ(P )
in general is naturally a three-step process. Step 1 is to identify the set NFd(P )
of isomorphism classes of degree d number fields ramified within P , for each d
appearing in κ. For many (d, P ) this complete list is available at [7]. Step 2 is to

get the contribution PolysKd (P ) of each K ∈ NFd(P ) to Polysd(P ) by inspecting
the finite set of exceptional P -units in K. We expect an algorithm finding these
units to appear in standard software shortly, generalizing the implementation in
Magma [3] for the case P = ∅. Step 3 is to extract those products of the irreducible
polynomials which are in Polysκ(P ). This last step is essentially bookkeeping, but
nonetheless presents difficulties as Polysκ(P ) can be very large even when all the
relevant Polysd(P ) are relatively small.

One can informally distinguish three regimes as follows. For suitably small
(κ, P ), one can ask for the provably complete list of all elements in Polysκ(P ).
For intermediate (κ, P ), one can seek lists which seem likely to be complete. For
large (κ, P ), one can seek systematic methods of constructing interesting elements
of Polysκ(P ). We present results here in all three regimes.

1.3. Content of the sections. Section 2 consist of preliminaries, with a focus
on carrying out Step 3 by interpreting polynomials in Polysκ(P ) as cliques in a
graph Γ(P ). Sections 3, 4, and 5 are in the first regime and are similar to each
other in structure. They present general results corresponding to partitions κ of the
form 1a, 2b1a, and 3c2b1a respectively. In these results, Steps 1 and 2 are carried
out together by techniques particular to d ≤ 3 involving ABC triples. As illustra-
tions of the generalities, these sections completely identify all Polys1a({2, 3, 5, 7}),
Polys2b1a({2, 3, 5}), and the above-discussed Polys3c2b1a({2, 3}).

Section 6 is in the second regime and follows the three-step approach. To illus-
trate the general method, this section takes P = {2} so that NFd({2}) is known
to be empty for d ∈ {3, 5, 6, 7}. It identifies all Polys4d2b1a({2}), assuming the
identification of Polys4({2}) is correct. Because of the increase in allowed κ in
Sections 3-6, our considerations become conceptually more complicated. Because
of the simultaneous decrease in P , our computational examples remain at approx-
imately the same level of complexity. Section 7 is in the third regime. It shows
that some Polysκ(P ) are large because of products of cyclotomic polynomials while
others are large because of polynomials related to fractals.

Section 8 sketches the applications to number field construction. Our presenta-
tion gives a feel for how the Polysκ(P ) enter by presenting one family of examples
from the Katz setting and one family from the Hurwitz setting. Section 9 concludes
the paper by discussing promising directions for future work, with a focus on mov-
ing into the more general setting where the auxiliary conditions on s(0), s(1), and
s(∞) are removed.
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2. Preliminaries

2.1. Sets related to Polysκ(P ). It is convenient to consider disjoint unions of
Polysκ(P ) over varying κ as follows:

Full sets Finite subsets

Polys(P ) =
∐
κ

Polysκ(P ), Polys(P )f =
∐

max(κ)≤f

Polysκ(P ),

Polys(P )` =
∐

length(κ)=`

Polysκ(P ), Polys(P )f` = Polys(P )f ∩ Polys(P )`.

Thus Polys(P ) is the set of all polynomials under study for a given P . It and the
subsets Polys(P )` are always infinite for any P 6= ∅ and ` ≥ 1, as discussed further
in Section 7.

We say that a polynomial is f -split if all its irreducible factors have degree at
most f . From more general theorems cited in Section 9, the sets Polys(P )f and

thus Polys(P )f` of f -split polynomials are always finite. To focus just on degree
and suppress reference to the factorization partition, another convenient finite set
is Polys[k](P ) =

∐
κ`k Polysκ(P ).

2.2. Compatibility. The study of Polys(P ) reduces to a great extent to the study
of Polys(P )1 as follows. Let s1, . . . , s` be in Polys(P )1, thus irreducible normalized
polynomials in Z[t], with discriminants Di and values si(0), si(1), si(∞) all in P ∗.
The product s(t) = s1(t) · · · s`(t) certainly satisfies s(0), s(1), s(∞) ∈ P ∗. Its
discriminant is given by the product formula

D =

(∏̀
i=1

Di

)∏
i<j

R2
ij

 ,

where Rij is the resultant Res(si, sj) ∈ Z. In general, we say that two polynomials
u and v in Polys(P ) are compatible if Res(u, v) ∈ P ∗. Thus s ∈ Polys(P )` if and
only if its ` irreducible factors are pairwise compatible.

2.3. Graph-theoretic interpretation. To exploit the notion of compatibility, we
think in terms of a graph Γ(P ) as follows. The vertex set of Γ(P ) is Polys(P )1. If a
vertex corresponds to a degree d polynomial, we say it has degree d. The edge-set
of Γ(P ) is Polys(P )2, with an edge s1s2 having endpoints s1 and s2. Thus edges
are placed between compatible irreducible polynomials. In general, a polynomial in
Polys(P )` is identified with a clique in Γ(P ) of size `, meaning a complete subgraph
on ` vertices. For similar use of graph-theoretic language in contexts like ours, see
e.g. [10].

When restricting attention to f -split polynomials, we likewise think in terms of

the corresponding graph Γ(P )f . This graph is now finite, with vertex set Polys(P )f1 ,

edge set Polys(P )f2 , and cliques of size ` corresponding to elements of Polys(P )f` .
Figure 2.1, discussed in more detail in §2.6 below, draws Γ({2})2.
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2.4. Packing points into the projective line. Our problem of identifying
Polysκ(P ) can be understood in geometric language as follows. For each prime
p, let Fp be an algebraic closure of Fp. For any prime power pf , let Fpf be the

subfield of Fp having pf elements. For any field F , let P1(F ) = F ∪ {∞} be the
corresponding projective line.

Let s(t) ∈ Polys(P ) have degree k. Denote its set of complex roots by Z, so that

|Z| = k. Let Ẑ = Z ∪ {0, 1,∞} ⊂ P1(C). For any prime p, similarly let Zp be the

root-set of s(t) in Fp and Ẑp = Z ∪ {0, 1,∞} ⊂ P1(Fp).
Let Q ⊂ C be the field of algebraic numbers. Via roots, our Polys(P ) is in

bijection with the set of finite subsets Ẑ ⊂ P1(Q) which are Gal(Q/Q)-stable,
contain {0, 1,∞}, and have good reduction outside of P in the sense that the

reduced sets Ẑp have the same size as Ẑ for p a prime not in P .

If s(t) ∈ Polys(P )f then the set Ẑp lies in the finite set ∪d≤fP1(Fpd). The order

of this set for f = 1, 2, 3, and 4 is respectively p + 1, p2 + 1, p3 + p2 − p + 1,
p4 + p3− p+ 1. One has the following trivial bound, which we highlight because of
its importance:

Reduction Bound 2.1. A polynomial s(t) ∈ Polys(P )f has degree at most

N(p, f) = |
⋃
d≤f

P1(Fpd)| − 3,

where p is the smallest prime not in P .

The room available for packing points increases polynomially with the first good
prime p and exponentially with the degree cutoff f :

N(p, f) 1 2 3 4
2 0 2 8 20
3 1 7 31 103
5 3 23 143 743
7 5 47 383 2735

11 9 119 1439 15959.

The italicized entries are relevant to Figure 2.1 where both upper bounds are
achieved. The boldface entries ascending to the right correspond to Sections 3,
4, 5, 6 respectively, with the bound being obtained only in the first case.

2.5. S3-symmetry. If s(t) ∈ Polysκ(P ) has degree k, then its properly signed
transforms

s(01)(t) = ±s(1− t),
s(0∞)(t) = ±tks(1/t),

are also elements in Polysκ(P ). The two displayed transformations generate a six-
element group S3 which acts on each Polysκ(P ). Our notation captures that these
transformations arise from permuting the special points 0, 1, and ∞ arbitrarily.

2.6. The graph Γ({2})2. Figure 2.1 gives a simple example illustrating many
of our considerations so far. The three white vertices are the polynomials in
Polys1({2}) and the subgraph Γ({2})1 consists of three isolated points. The fifteen
black vertices are the elements of Polys2({2}). That the drawn graph is indeed all
of Γ({2})2 is a special case of the completeness results cited in Section 4.
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t2 − 8t+ 8, t2 + 4t− 4

t− 2

t2 − 2t+ 2

t2 − 2, t2 − 4t+ 2

Figure 2.1. The graph Γ({2})2. The polynomials represented
by the vertices in the lower third of the graph are indicated.

The sets Polys2b1a({2}) can all be read off of Figure 2.1, and have sizes

(2.1)

b a = 0 a = 1
0 1 3
1 15 21
2 9 9
3 3 3.

For example, the clique formed by the four lowest vertices gives the element

s(t) = (t2 − 2t+ 2)(t2 − 2)(t2 − 4t+ 2)(t− 2)

of Polys231({2}). The polynomial s(t) and its transforms by S3 give the bottom
right 3 of (2.1). The graph-theoretic deductions in Sections 3-6 are conceptually no
different from the visual inspection of Figure 2.1 needed to produce (2.1). However
the graphs involved are much larger and the passage from graphs to cliques is
incorporated into our programs as described next.

2.7. Step 3 of the process. To compute a graph Γ(P )f and all associated sets

Polysκ(P ), the first two steps as described in §1.2 yield the vertex set Polys(P )f1 .
Step 3, passing from the vertex set to the entire graph, is then done as follows. For

each vertex s1(t) ∈ Polys(P )f1 we compute resultants and determine its set Ns1(t)
of lesser neighbors with respect to some ordering. The edge set Polys(P )f2 is then

all s1(t)s2(t) with s2(t) ∈ Ns1(t). One continues inductively, with Polys(P )f` being

the set of s1(t) · · · s`(t) with s`(t) ∈ ∩`−1i=1Nsi(t).

2.8. Monic variants. If s(t) ∈ Z[t] is a normalized polynomial then s(t)/s(∞) ∈
Q[x] is a monic polynomial. It is often technically more convenient to work with
monic rather than normalized polynomials. Accordingly, we let MPolys(P ) be
the set of monic polynomials s(t)/s(∞) with s(t) ∈ Polys(P ). So elements of
MPolys(P ) lie in ZP [t], where ZP is the ring of rational numbers with denominators
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in P ∗. As a general rule, we keep the focus on Polys(P ), switching temporarily to
the very mild variant MPolys(P ) only when it is truly preferable.

3. 1-split polynomials

This section describes how one determines the sets Polys1a(P ), We illustrate the
procedure by determining Polys1a({2, 3, 5, 7}) for all a ∈ Z≥0.

3.1. Vertices via ABC triples. Step 1 from the introduction is trivial, since the
only degree one number field is Q. Step 2 is to determine the polynomials which
lie in the vertex set Polys1(P ) of the graph Γ(P )1. To make the S3-symmetry of
§2.5 completely evident it is convenient to work with ABC triples.

Definition 3.1. For a rational number u 6= 0, 1, let A, B, and C be the unique
pairwise relatively prime integers with u = −A/C, A+B + C = 0, and ABC < 0.
For a set of primes P , the set T∞,∞,∞(ZP ) is the set of u such that A, B, and C
are in P ∗.

The notation T∞,∞,∞(ZP ) is a specialization of the general notation Tp,q,r(ZP ) of
[12], and we will use other special cases in the next two sections. The action of S3

on ABC triples by permutations corresponds to an action of S3 on the projective
u-line by fractional linear transformations, with (AB) corresponding to u 7→ 1− u
and (AC) to u 7→ 1/u. Using the alternative monic language of §2.8, one has

MPolys1(P ) = {t− u}u∈T∞,∞,∞(ZP ).

This very simple parametrization is a prototype for the more complicated
parametrizations given in Theorems 4.1 and 5.1.

The set T∞,∞,∞(ZP ) is empty if 2 6∈ P by Reduction Bound 2.1. Otherwise
{−1, 1/2, 2} is a three-element S3-orbit and all other S3-orbits have size six. El-
ements of T∞,∞,∞(ZP ) can be found by computer searches: to get all those with
height(u) := max(|A|, |C|) less than a certain cutoff, one searches over candidate
(A,C) and selects those for which B = −A− C is also in P ∗.

In the case P = {2, 3, 5, 7}, a search up to height 109 took ten seconds and
yielded 375 = 3 + 6 · 62 elements. The eighteen of largest height come from the
ABC triples

(1, 4374,−4375) = (1, 2137,−547),

(1, 2400,−2401) = (1, 253152,−74),

(5, 1024,−1029) = (5, 210,−3173).

All the other elements have height at most 625. The completeness of this list is
a special case of a result of de Weger [17, Theorem 5.4]. This result also gives
|Polys1({2, 3, 5, 7, 11})| = 1137 and |Polys1({2, 3, 5, 7, 11, 13})| = 3267, with largest
heights 18255 and 1771561 respectively.

3.2. The sets Polys1a({2, 3, 5, 7}). Tabulating cliques as described in §2.7 has a
run-time of about two minutes and gives the following result.

Proposition 3.1. The nonempty sets Polys1a({2, 3, 5, 7}) have size as follows:

a 0 1 2 3 4 5 6 7 8 9
Size 1 375 9900 73000 232260 383712 356916 190620 55935 7425

The sets involved in the next case {2, 3, 5, 7, 11} are already much larger, both be-
cause of the larger vertex set and from the relaxation of the compatibility condition.



POLYNOMIALS WITH PRESCRIBED BAD PRIMES 7

3.3. Extremal polynomials. One of the 7425 elements of Polys19({2, 3, 5, 7}) is

s(t) =
∏10
u=2(t− u). Similarly, suppose P consists of all primes strictly less than a

fixed prime p. Then s(t) =
∏p−1
u=2(t− u) realizes Reduction Bound 2.1.

The 7425 polynomials in Polys19({2, 3, 5, 7}) are structured into packets as fol-

lows. Let
∏9
i=1(t − ui) be a polynomial in Polys19({2, 3, 5, 7}) and consider the

twelve element set {u1, . . . , u9, 0, 1,∞}. For any triple of distinct elements there
is a unique fractional linear transformation in PGL2(Q) which takes these ele-
ments in order to 0, 1, and ∞. A given element of Polys19({2, 3, 5, 7}) determines
12 · 11 · 10/|A| elements of Polys19({2, 3, 5, 7}) in this way, with A its stabilizer
subgroup. There are in fact thirteen such packets, eight with stabilizer subgroup
C2 and one each with stabilizer C1, V , S3, D4 and D6. The product

∏10
u=2(t− u)

is in one of the eight packets with stabilizer C2, its nontrivial automorphism being
t 7→ 11− t. As another example, the element

s(t) = (t+ 14)(t+ 8)(t+ 5)(t+ 4)(t+ 2)(t− 2)(t− 4)(t− 10)(t− 16)

represents the packet with trivial stabilizer C1. The numbers presented are consis-
tent via the mass-check

7425

12 · 11 · 10
= 5.875 = 1 + 8 · 1

2
+

1

4
+

1

6
+

1

8
+

1

12
.

The two minute run-time cited above corresponds to a simple program which does
not exploit this type of symmetry.

4. 2-split polynomials

This section describes how one determines sets Polys2b1a(P ). Without loss
of generality we restrict to P containing 2 throughout this section. Assuming
Polys1(P ) as known from the previous section, to complete Steps 1 and 2 one needs
to determine Polys2(P ) and Theorem 4.1 gives our method. We illustrate the full
procedure by determining all Polys2b1a({2, 3, 5}).

4.1. Vertices via ABC triples. Let T∞,2,∞(ZP ) be the set of rational numbers
w = −A/C exactly as in Definition 3.1 except that B = −A−C is only required to
have the form by2 with b ∈ P ∗. For an element w ∈ T∞,2,∞(ZP ), its discriminant
class by definition is δ = w(1−w) ∈ Q×/Q×2. This invariant gives a decomposition

T∞,2,∞(ZP ) =
∐
δ

T∞,2,∞(ZP )δ.

This decomposition is used in Theorem 4.1 below as one of two aspects of compat-
ibility.

To find all w in T∞,2,∞(ZP ) up to a height bound of H, one searches over the
exact same set of (A,C) as in the search for elements of T∞,∞,∞(ZP ). However
now one keeps those (A,C) where the square-free part of B = −A−C is in P ∗. For
our example, we need the set T∞,2,∞(Z{2,3,5}). A one-second search up to cutoff
H = 109 found 183 elements. The list consists of −1 and then 92 reciprocal pairs.
The three pairs of largest height come from the triples

(1,−25921, 25920) = (1, 1612, 26345),

(9,−64009, 64000) = (32,−2532, 2953),

(15625,−17161, 1536) = (56,−1312, 293).
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All the other elements have height at most 6561. The completeness of this list
follows from [5], where the larger set T3,2,∞(Z{2,3,5}) is calculated to have 440
elements. The distribution according to discriminant class δ is quite uneven, and
given after the proof of Theorem 4.1 below.

4.2. From the set T∞,2,∞(ZP ) of ABC triples to the set Polys2(P ) of degree
two vertices in Γ(P ). A general quadratic polynomial in Q[x] can be written
uniquely in the form

(4.1) s(u0, u1, u∞; t) = u∞t
2 + (u1 − u0 − u∞)t+ u0

with (u0, u1, u∞) ∈ Q3. Its discriminant is

∆(u0, u1, u∞) = (u1 − u0 − u∞)2 − 4u0u∞(4.2)

=
(
u20 + u21 + u2∞

)
− 2 (u0u1 + u0u∞ + u1u∞) .

To complete an identification of the new part Polys2(P ) of the vertex set, we use
the following result, which naturally gives Polys[2](P ) = Polys2(P )

∐
Polys12(P ).

Theorem 4.1. Let P be a finite set of primes containing 2. Let (δ;w0, w1, w∞) run
over triples where δ ∈ P ∗ is a square-free integer and the wi are in T∞,2,∞(ZP )δ ∪
{1} satisfying

(4.3) ∆(w0, w1, w∞) = −4w0w1w∞.

Then the polynomials

(4.4) S(w0, w1, w∞) =
1

w∞
s(w0, w1, w∞; t)

have discriminant class δ and run over MPolys[2](P )

Proof. Just using that w0, w1, w∞ are all in ZP× one immediately gets that S(0),
S(1), S(∞) are all in ZP×. Assuming further that (w0, w1, w∞) satisfies (4.3),
then the discriminant ∆(w0, w1, w∞) is also in ZP×. Thus quadratic polynomials
as in the theorem are indeed in MPolys[2](P ). The issue which remains is that

these polynomials form all of MPolys[2](P ). To prove this converse direction we

start with the hypothesis that s(u0, u1, u∞; t)/u∞ ∈ MPolys[2](P ) and deduce that

(u0, u1, u∞) is proportional to a triple (w0, w1, w∞) as in the theorem.
In general, suppose given an ordered triple of disjoint divisors (D2, D1a, D1b) on

the projective line P1 over Q, of degrees 2, 1, and 1 respectively. After applying
a fractional linear transformation, one can partially normalize so that D1a = {0},
D1b = {∞}, and D2 consists of the roots of t2 + bt+ c with b, c ∈ Q. To continue
with the normalization, suppose b 6= 0. Then one can uniquely scale so that still
D1a = {0} and D1b = {∞} but now D2 consists of the roots of t2−t+v for v = c/b2

in Q. Writing v = 1/4(1 − w), one gets that PGL2(Q)-orbits of the initial tuple
(D2, D1a, D1b) yielding b 6= 0 are in bijection with w ∈ Q − {0, 1}. Moreover, the
discriminant class in Q×/Q×2 of the divisor D2 is w(1−w). Moreover, the orbit has
a representative with good reduction outside of P if and only if w ∈ T∞,2,∞(ZP ).
There are infinitely many different orbits yielding b = 0 and we associate all of
them to w = 1.

Let Z be the roots of (4.1). Then the invariants associated to (Z, {1}, {∞}),
(Z, {∞}, 0), and (Z, {0}, {1}) work out respectively to

(w0, w1, w∞) =
−∆(u0, u1, u∞)

4u0u1u∞
(u0, u1, u∞).
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Thus any element of MPolys[2](P ) is indeed of the special form (4.4). �

Let Polysδ[2](P ) be the subset of Polys[2](P ) consisting of polynomials of discrim-

inant class δ. Applying Theorem 4.1 for P = {2, 3, 5} to the known set T∞,2,∞(ZP )
gives sizes as follows:

δ −30 −15 −10 −6 −5 −3 −2 −1 1 2 3 5 6 10 15 30
|T∞,2,∞(ZP )δ| 3 6 24 25 11 8 6 49 12 9 2 9 6 0 13 0

|Polysδ[2](ZP )| 12 48 456 504 138 84 48 1020 171 108 10 96 48 0 204 0

Define the height of a normalized polynomial (4.1) to be max(|u0|, |u1|, |u∞|). With
this definition, the height of a polynomial (4.1) depends only on its S3 orbit. The
three S3-orbits with largest height all have height 3125 = 55. They are represented
by the following elements:

(w0, w1, w∞) =
(−37, 27, 55)

53
, s(t) = 3125t2 − 810t− 2187

(w0, w1, w∞) =
(−33, 211, 55)

253·5
, s(t) = (25t− 9)(125t+ 3),

(w0, w1, w∞) =
(−3, 2103, 55)

26325
, s(t) = (25t− 1)(125t+ 3).

4.3. The sets Polys2b1a({2, 3, 5}). Inductively tabulating cliques in Γ({2, 3, 5})2
gives the following statement

Proposition 4.1. The nonempty sets Polys2b1a({2, 3, 5}) have size as in Table 4.1.

The computation required to carry out Step 3 and thereby prove Proposition 4.1
took about two hours. The fact that all a’s appearing in Table 4.1 are at most five is

b a = 0 a = 1 a = 2 a = 3 a = 4 a = 5
0 1 99 1020 3100 3570 1386
1 1927 18225 60240 90640 64470 18018
2 44967 227751 477540 511200 279930 64176
3 238255 862029 1347060 1125940 502530 99960
4 551944 1567746 1913760 1269160 463470 83034
5 745824 1740246 1683180 867600 246120 40698
6 692476 1364910 1050150 409570 81690 12768
7 480862 812520 493440 146800 20370 3360
8 259974 376650 170850 38550 3990 756
9 112016 138096 39660 6020 420 84

10 39404 42216 5520 380
11 11520 11436 360
12 2751 2709
13 495 495
14 57 57
15 3 3

Table 4.1. Size of the nonempty sets Polys2b1a({2, 3, 5}).

known by Reduction Bound 2.1, because P1(F7) has only five elements besides 0, 1,
and ∞. In contrast, P1(F49)− {0, 1,∞} has N(7, 2) = 47 elements, corresponding
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to the bound 2b+a ≤ 47. Thus our computation identifies many Polys2b1a({2, 3, 5})
as empty even though the reduction bound allows them to be non-empty.

4.4. Extremal Polynomials. One of the three elements in Polys2151({2, 3, 5}) is

s(t) =
(
t2 + 6t+ 3

) (
3t2 + 6t+ 1

) (
t2 − 6t+ 3

) (
3t2 − 6t+ 1

)
·(

t2 − 2t− 5
) (

5t2 + 2t− 1
) (
t2 + 2t− 5

) (
5t2 − 2t− 1

)
·(

t2 − 2t− 1
) (
t2 + 2t− 1

)
·
(
t2 − 6t− 1

) (
t2 + 6t− 1

)
·(4.5) (

3t2 − 2t− 3
) (

3t2 + 2t− 3
)
·
(
t2 + 1

)
· (t+ 1).

Its discriminant is 210463805104. Its roots, together with 1, are visibly invariant
under the four-element group generated by negation and inversion, with minimal
invariant factors separated by ·’s. The other two elements of Polys2151({2, 3, 5})
are obtained from the given one by applying the transformations t 7→ 1 − t and
t 7→ t/(t− 1).

5. 3-split polynomials

This section describes how one determines sets Polys3c2b1a(P ). Without loss of
generality we restrict to P containing 2 and 3 throughout this section. Assum-
ing that Polys1(P ) and Polys2(P ) are known from the previous two sections, to
complete Step 1 and 2 of the introduction, one needs to determine Polys3(P ) and
Theorem 5.1 gives our method. We illustrate the full procedure by determining all
Polys3c2b1a({2, 3}).

5.1. Compatible ABC triples and vertices. Let T3,2,∞(ZP ) be the set of ratio-
nal numbers j = −A/C exactly as in Definition 3.1 except that A and B = −A−C
are only required to have the respective forms ax3 and by2 with a, b ∈ P ∗. For an
element j ∈ T3,2,∞(ZP ) the polynomial

S(j, t) = 4(j − 1)t3 − 27jt− 27j(5.1)

has discriminant 39j2/24(j − 1)3. Let c be the isomorphism class of the algebra
Q[t]/S(j, t). This invariant gives a decomposition

(5.2) T3,2,∞(ZP ) =
∐
c

T3,2,∞(ZP )c.

This decomposition is used in Theorem 5.1 below as one of two aspects of compat-
ibility.

To find all j in T3,2,∞(ZP ) up to a height bound of H, one searches as before over
(A,C). Now, however, the search is substantially larger as one only has A = ax3

with a ∈ P ∗. For our example, we need the set T3,2,∞(Z{2,3}). A three minute
search up to cutoff 1011 found 81 elements. Of these, the factorization partition
of (5.1) is 3, 21, and 13 respectively 54, 24, and 3 times. The four j’s with (5.1)
irreducible of largest height come from the triples

(−73085409, 73085401, 8) = (−35673, 84662, 23),

(128787625,−531440809, 402653184) = (5053,−250532, 2273),

(7022735875,−7022744067, 8192) = (19153, 31483832, 213),

(67867385039,−67867385042, 3) = (40793,−211842112, 3).

All the other elements have height at most 3,501,153. The completeness of
this 81-element list dates back to [4]; it is also a subset of the 440-element set
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T3,2,∞(Z{2,3,5}) from [5] cited in the previous section. The distribution of the 54
irreducible j-invariants according to isomorphism class c is quite uneven, and given
in Table 5.1 below.

5.2. From the set T3,2,∞(ZP ) of ABC triples to the set Polys3(P ) of degree
three vertices in Γ(P ). The current situation is similar to the passage from
T∞,2,∞(ZP ) to Polys2(P ) but more complicated. The discriminant of a monic
cubic polynomial s(t) = t3 + bt2 + ct+ d is

∆(b, c, d) = −4b3d+ b2c2 + 18bcd− 4c3 − 27d2.

If s(t) is separable, so that ∆(b, c, d) is nonzero, the j-invariant is then

j =
4(b2 − 3c)3

27∆(b, c, d)
.

If one changes s(t) to m−3s(mt+b) the j-invariant does not change. One can expect
j-invariants to play a central role in our situation because for j 6= 0, 1, polynomials
in s(t) ∈ Q[t] with a given j-invariant are all transforms of each other by fractional
linear transformations in PGL2(Q).

Let

F (j, k, y) = k
(
j2y3 − 2jy3 + 3jy2 − 3jy + 1

)2 − j (jy2 − 2y + 1
)3

= j2
(
j2k − j2 − 4jk + 4k

)
y6 + (terms of lower order in y).

We say that∞ is a root of F (j, k, y) if the coefficient of y6 is zero. This polynomial
is important for us because for j, k ∈ Q − {0, 1}, roots of F (j, k) in Q ∪ {∞} are
in natural Gal(Q/Q)-equivariant bijection with bijections from roots of S(j, t) to
roots of S(k, t). Note that

discy(F (j, k, y)) = 22236j10(j − 1)15k4(k − 1)3.

Thus there indeed always six roots when j, k ∈ Q− {0, 1}.

Theorem 5.1. Let P be a finite set of primes containing 2 and 3. Let c be the
isomorphism class of a cubic field in NF3(P ) and let j ∈ T3,2,∞(ZP )c. The poly-
nomials in MPolys3(P )c with j-invariant j are among the polynomials

sm,nj0,j1,j
(t) =

(j − 1)(t(n−m)− n)3 + (j − 1)jm3n3 − j(mn−mt+ nt− n)3

(m− n)3

with j0, j1 ∈ (T3,2,∞(ZP ))c ∪ {0}. Here m and n run over solutions in Q∪ {∞} of
F (j, j0, y) = 0 and F (j, j1, y) = 0 respectively.

If m and/or n is∞, one needs to understand the definition of sm,nj0,j1,j
(t) in a limiting

sense. For example, s∞,nj0,j1,j
(t) = t3 − 3jnt2 + 3jn2t+ j(j − 2)n3

Proof. Let s(t) = s∞(t) = t3 + bt2 + ct+ d be a polynomial in MPolys3(P )c. Then
one has not only its usual j-invariant j, but also the j-invariants j0 and j1 of the
transformed polynomials

s0(t) =
t3

d
s

(
1

t

)
and s1(t) =

(t− 1)3

1 + b+ c+ d
s

(
t

t− 1

)
.

These two new j-invariants lie in (T3,2,∞(ZP ))c ∪ {0}, with 0 only possible only if
disc(s) is −3 times a square.
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Recovering all possibilities for s(t) from the three invariants (j0, j1, j) is compli-
cated, because thirty-six different polynomials x3 + bx2 + cx+ d ∈ Q[x] give rise to

a given generic (j0, j1, j) ∈ Q3
. Note that

disct(s
m,n
j0,j1,j

(t)) =
2233j2(j − 1)2m6n6

(m− n)6
.

For generic (j0, j1, j) the thirty-six polynomials are just the thirty-six sm,nj0,j1,j
(t)

as (m,n) varies over solutions to F (j, j0,m) = F (j, j1, n) = 0. The coordinate
relations

m = − 9∆(b, c, d)

2 (b2 − 3c) (b2c+ 9bd− 6c2)
,(5.3)

n = − 9∆(b, c, d)

2 (b2 − 3c) (2b3 + b2c− 9bc+ 9bd− 6c2 + 27d)
(5.4)

let one verify this statement algebraically.
There remains the concern that for nongeneric (j0, j1, j), there may be cubics

in MPolys3(P )c which are not among the sm,nj0,j1,j
(t). This indeed happens in the

excluded case j = 0, as discussed just after this proof. The case j = 1 is not
relevant for the theorem because S(1, t) = −27(1 + t) is not an irreducible cubic.
The cases m = 0, n = 0, and m = n arise only when j = j0, j = j1, and j0 = j1.
Corresponding polynomials in MPolys3(P )c would have to be stable under t 7→ 1/t,
t 7→ t/(t − 1), or t 7→ 1 − t respectively. But there are no such stable polynomi-
als because the commutator of the possible Galois groups A3 and S3 in S3 does
not contain an element of order two. Thus, despite the occasional inseparability
of sm,nj0,j1,j

(t), all polynomials in MPolys3(P )c with nonzero j-invariant are indeed

among the sm,nj0,j1,j
(t). �

To get the complete determination of MPolys3(P ) we need to complement the
polynomials coming directly from Theorem 5.1 with the list of polynomials with
j = 0. A calculation shows that there are no separable polynomials at all with
(j0, j1, j) = (0, 0, 0). So if j is zero, at least one of j0 and j1 is nonzero. So the
remaining polynomials are in fact just S3-translates of polynomials already found.

Some further comments clarify Theorem 5.1 and how it is used in the construction
of MPolys3(P ). Since j 6= 0 and the ji belong to the same cubic field, there is a
common Galois group, G ∈ {A3, S3}. The polynomials F (j, ji, y) can factor into
irreducibles in three different ways:

F (j, ji, y) =


(cubic)(quadratic)(linear) (G = S3, ji 6= 0),
(cubic)(linear)(linear)(linear) (G = A3),
−(s2 − 1)4(y − 1

1−s )3(y − 1
1+s )3 (G = S3, ji = 0, j = 1− s2).

In the A3 case, always 32 = 9 of the thirty-six sm,nj0,j1,j
(t) are in Q[x]. In the S3 case

with w zeros among {j0, j1} there are 2w rational polynomials. Of course it is trivial
to see whether a candidate sm,nj0,j1,j

(t) from the theorem is actually in MPolys3(P ).
Namely, if m and n are both finite then the quantities

sm,nj0,j1,j∞
(0) =

n3
(
j2m3 − 2jm3 + 3jm2 − 3jm+ 1

)
(m− n)3

,

sm,nj0,j1,j∞
(1) =

m3
(
j2n3 − 2jn3 + 3jn2 − 3jn+ 1

)
(m− n)3

,
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disct(s
m,n
j0,j1,j∞

(t)) =
108(j − 1)3j2m6n6

(m− n)6

need to all be in ZP×. When m and/or n is ∞, one just uses the limiting forms of
these expressions.

Table 5.1 summarizes the determination of Polys3({2, 3}). The last block of

d D f(t) T3,2,∞(Z{2,3})c |Polys3({2, 3})c|
−6 −216 t3 + 3t− 2 10 6(66) = 396
−3 −972 t3 − 12 1 6( 1) = 6
−3 −972 t3 − 6 1 6( 1) = 6
−3 −243 t3 − 3 6 6(13 +13 +4) = 180
−3 −108 t3 − 2 4 6(4 +9 +3) = 96
−2 −648 t3 − 3t− 10 9 6(17) = 102
−1 −324 t3 − 3t− 4 9 6(44) = 264

1 81 t3 − 3t− 1 3 6(6 +10) +2(2) = 100
6 1944 t3 − 9t− 6 11 6(58) = 348

54 1498

Table 5.1. The nine cubic fields Q[t]/f(t) with discriminant
±2a3b and associated integers.

columns illustrates how a general decomposition of Polys3(P )c into S3-orbits ap-
pears in the case P = {2, 3}. Let d be the square-free integer agreeing with the
field discriminant D modulo squares. If d 6= 1 then all orbits have size six. Or-
bits are usually indexed by triples of distinct j-invariants. However for d = −3,
an unordered triple (j0, j1, 0) can index up to two orbits and an unordered triple
(0, 0, j) can index up to one orbit. The contributions from each possibility in the
case P = {2, 3} are listed in order. For d = 1, an unordered triple (j0, j1, j∞) can
index up to 9, 6, or 1 orbits, depending on whether it contains 3, 2, or 1 distinct
j-invariants. All orbits again have size six, except for the ones indexed by (j, j, j),
which have size two. The contributions from each possibility in the case P = {2, 3}
are again listed in order.

As an example of the complications associated to d = −3, let c be the iso-
morphism class of Q[t]/(t3 − 12). Then T3,2,∞(Z{2,3})c = {−24}. Consider
(j0, j1, j) = (0, 0,−24). Theorem 5.1 formally yields four candidates.

m \ n −1/4 1/6
−1/4 [1] t3 + 6t2 − 6t+ 2
1/6 t3 − 9t2 + 9t− 3 [1]

As always for (0, 0, j), only the two candidates coming from m 6= n are separable
and these are S3-transforms of one another. In this case, both are in Polys3({2, 3})c.
The remaining S3-transforms are 2t3−3, 2t3−6t2+6t+1, 3t3−2, and 3t3−9t2+9t−1,
accounting for all of Polys3({2, 3})c.

As an example of complications associated to d = 1, let c come from A3 field
Q[t]/(t3 − t − 1). Then T3,2,∞(Z{2,3})c = {1372/3, 4, 4/3}. The ordered tuple
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c a b = 0 b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7

0 0 1 169 981 1723 1390 630 150 12
0 1 21 675 2175 2559 1416 486 108 12
0 2 60 840 1710 1200 270
0 3 40 340 570 340 70

1 0 1498 6364 10854 8788 3958 1116 162
1 1 4584 13632 18024 11280 3600 792 96
1 2 4260 9900 10020 4800 720
1 3 1120 2440 2040 1000 160

2 0 21282 37374 34008 16866 4560 798 72
2 1 41184 62208 49872 21000 3900 564 48
2 2 24720 33180 23160 8940 900
2 3 3960 6000 3720 1680 240

3 0 81850 95578 54942 17398 2704 216
3 1 117288 133632 71712 19800 1992 120
3 2 49140 54660 27240 7380 540
3 3 4520 6200 2760 1000 160

4 0 156924 144000 55692 11434 1132 48
4 1 180822 174564 64074 11004 684 24
4 2 56910 56940 19050 2760 120
4 3 3030 4020 1230 220 40

5 0 173110 137530 38094 4848 282
5 1 167448 144552 39048 3936 144
5 2 42000 37260 8880 420
5 3 1240 1600 360

6 0 116552 85214 18186 1392 42
6 1 95388 76440 16572 1044 24
6 2 19800 15360 2820
6 3 560 620 60

7 0 49364 33650 5622 246
7 1 33576 25440 4392 192
7 2 5820 4140 600
7 3 160 160

8 0 12998 7916 954 24
8 1 6870 4914 534 18
8 2 960 720 60
8 3 20 20

9 0 1948 952 54
9 1 648 456
9 2 60 60

10 0 162 54
10 1 24 24

11 0 8 2

Table 5.2. Size of the nonempty sets Polys3c2b1a({2, 3})

(j0, j1, j) = (1372/3, 4, 4/3) gives nine candidates. They are

m \ n 1 1/2 ∞
3 8t3 − 36t2 + 30t+ 1 [125t3 − 225t2 + 75t+ 1] t3 + 9t2 + 15t− 1

3/8 [125t3 − 300t2 + 180t− 8] t3 − 6t2 + 9t− 1 64t3 − 96t2 + 36t− 1
9/10 t3 + 6t2 − 96t+ 8 64t3 − 48t2 − 96t− 1 [125t3 + 75t2 − 120t+ 1]
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The three in brackets are rejected and the other six are members of Polys3({2, 3})c.

5.3. The sets Polys3c2b1a({2, 3}). Inductively tabulating cliques in the graph
Γ({2, 3})3 takes about 15 minutes and yields the following statement.

Proposition 5.1. The nonempty sets Polys3c2b1a({2, 3}) have size as in Table 5.2.

The largest a in Table 5.2 being 3 agrees with Reduction Bound 2.1, as there are
only 3 points in P1(F5) beyond those already used by {0, 1,∞}.

5.4. Extreme polynomials. One of the two polynomials in Polys3111({2, 3}) has
already been given in (1.1). It is stable under the group A3 of even permutations
of the cusps {0, 1,∞}. The minimal A3-stable factors are given between adjacent
·’s in (1.1).

6. f-split polynomials with f ≥ 4

In the previous two sections we have used w-invariants in T∞,2,∞(ZP ) to con-
struct sets Polys2(P ) and j-invariants in T3,2,∞(ZP ) to construct sets Polys3(P ).
For degrees d ≥ 4, we follow the three-step approach of §1.2 to determining
Polysd(P ).

6.1. Excellent P -units and Polysd(P ). Let K1,. . . , Km be a list of degree d
number fields unramified outside P such that every isomorphism class of such fields
appears once. Let Ui be the P -unit group of Ki. The finitely generated group Ui
is well-understood and there are algorithms to produce generators. A P -unit u is
called an exceptional P -unit if 1− u is also a unit. Exceptional P -units have been
the subject of many studies, e.g. [11].

Let su(t) be the characteristic polynomial of a P -unit u. So su(t) is a monic
polynomial of degree d in ZP [t] with constant term su(0) in ZP×. The unit u is
exceptional if and only if also su(1) ∈ ZP×. We say it is an excellent P -unit if
furthermore disc(su(t)) ∈ ZP×. All elements of MPolysd(P ) arise in this way as
characteristic polynomials of excellent units.

As the example of this section, we take P = {2}. The relevant set NFd({2})
of number fields is known in degrees d ≤ 15 [6, 7]. In fact, for d = 1, 2, 4, 8
one has |NFd({2})| = 1, 3, 7, 36 and otherwise NFd({2}) = 0. The fields in
question are all totally ramified at 2. This implies that an S3-orbit of polynomials in
Polysd({2}) takes one of the following forms. First, the orbit may contain just three
polynomials, one of which is palindromic. In this case the palindromic polynomial
s(t) is the unique member of the orbit with 2|s(1). Second, the orbit may contain
six polynomials, none palindromic. In this case, exactly two of the polynomials
si(t) satisfy 2|si(1). They are related by tds1(1/t) = ±s2(t).

Table 6.1 describes the sets Polysd({2}) for d ∈ {1, 2, 4} by listing polynomials
representing S3-orbits. The fields defined by t2 + 2, t4 + 4t2 + 2, and t4 + 2 yield no
polynomials at all. Their 3-adic factorization partitions λ3 are respectively 12, 4,
and 212. Thus, in the case of t2+2 and t4+2, the nonexistence of polynomials follows
from Reduction Bound 2.1. The column λ∞ gives the splitting over R. The rank of
Ui is the number of parts of λ∞, and, as expected, more parts are correlated with
more polynomials. Palindromic polynomials contributing three and nonpalindromic
polynomials contributing six, one gets |Polys1({2})| = 3, |Polys2({2})| = 15, and
|Polys4({2})| ≥ 108. We have taken the computation far enough that it seems
unlikely that Polys4({2}) contains polynomials beyond those we have found. The
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G d λ∞ λ3 s(t) Pal s(1) c N1 N2 N4

C1 1 1 1 t+ 1 • 2 1 0 7 36

C2 8 11 2 t2 + 6t+ 1 • 8 2 1 0 7
t2 − 6t+ 1 • −4 2 1 0 7
t2 − 2t− 1 −2 1 2 2 13

C2 −4 2 2 t2 + 1 • 2 1 1 2 14

C2 −8 2 11

V 256 2 22 t4 + 1 • 2 1 1 1 4
t4 + 6t2 + 1 8 8 1 1 2

C4 2048 1111 4 t4 − 4t3 − 26t2 − 4t+ 1 • −32 64 1 2 2
t4 + 4t3 − 26t2 + 4t+ 1 • −16 64 1 2 2
t4 + 28t3 + 70t2 + 28t+ 1 • 128 512 1 1 0
t4 − 28t3 + 70t2 − 28t+ 1 • 16 512 1 1 0
t4 − 4t3 − 6t2 + 4t+ 1 −4 8 1 3 3
t4 − 4t3 − 2t2 + 12t+ 1 8 8 2 1 4
t4 + 4t3 − 2t2 − 12t+ 1 8 8 1 1 4
t4 − 4t3 − 2t2 + 4t− 1 −2 1 2 2 7
t4 + 4t3 − 2t2 − 4t− 1 −2 1 1 1 5
t4 − 148t3 + 102t2 − 20t+ 1 −64 512 0 0 1
t4 − 20t3 + 34t2 − 12t+ 1 4 32 0 2 0

C4 2048 22 4

D4 −2048 211 22 t4 + 12t3 + 6t2 + 12t+ 1 • 32 64 1 2 2
t4 − 12t3 + 6t2 − 12t+ 1 • −16 64 1 2 2
t4 − 4t3 + 6t2 − 4t− 1 −2 1 1 2 5

D4 −2048 211 4 t4 − 4t3 − 2t2 − 4t+ 1 • −8 8 1 2 6
t4 + 4t3 − 2t2 + 4t+ 1 • 8 8 1 2 6
t4 + 20t3 − 26t2 + 20t+ 1 • 16 512 1 1 0
t4 − 20t3 − 26t2 − 20t+ 1 • −64 512 1 1 2
t4 − 2t2 − 1 −2 1 1 2 8
t4 − 12t3 + 10t2 − 4t+ 1 −4 8 1 2 2

D4 2048 22 211

D4 512 22 4 t4 − 4t3 + 22t2 − 4t+ 1 • 16 64 1 1 2
t4 + 4t3 + 22t2 + 4t+ 1 • 32 64 1 1 2
t4 + 4t2 − 4t+ 1 2 1 1 1 4

Table 6.1. Information on the sets Polysd({2}) for d ∈ {1, 2, 4}

polynomial discriminants are Dc2, and the largest magnitude 229 arises in five
orbits.

6.2. The sets Polys4d2b1a({2}). The last three columns of Table 6.1 indicate the
nature of the known part of the graph Γ({2})4 = Γ({2})7. For each polynomial,
the number of neighbors of a given degree d is given as Nd. As one would expect
in general, the number of neighbors tends to decrease as the largest coefficient of
the polynomial increases. Carrying out Step 3 as in §2.7 takes less than a second
and yields the following result.
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|Polys4d2b({2})|
b d : 0 1 2 3 4
0 1 108 177 144 42
1 15 162 93 30
2 9 30 21 6
3 3 6 3

|Polys4d2b1({2})|
b d : 0 1 2 3 4
0 3 108 129 90 24
1 21 156 63 18
2 9 18 9
3 3 6 3

Table 6.2. Size of the nonempty sets Polys4d2b1a({2}), assuming
|Polys4({2})| = 108.

Proposition 6.1. The sets Polys4d2b1a({2}) are at least as large as indicated in
Table 6.2, with equality if |Polys4({2})| = 108.

6.3. Extremal polynomials. As an extreme example, the palindromic polyno-
mial

s(t) = (t+ 1)
(
t2 + 1

) (
t2 − 2t− 1

) (
t2 + 2t− 1

)(
t4 − 4t3 − 6t2 + 4t+ 1

) (
t4 + 4t3 − 6t2 − 4t+ 1

)
has discriminant is −2184. Its S3 orbit in Polys42231({2}) corresponds to the bottom
right 3 in Table 6.2.

7. Large degree polynomials

In this section, we enter the third regime of §1.2: the systematic construction of
polynomials in Polysκ(P ) in settings where complete determination of Polysκ(P ) is
well out of reach. Each subsection focuses on degree k polynomials, without pursu-
ing details about their factorization, thus on the sets Polys[k](P ) =

∐
κ`k Polysκ(P ).

7.1. Cyclotomic polynomials. The following simple result supports the main
conjecture of [16].

Proposition 7.1. Let P be a finite set of primes containing 2 and at least one

odd prime. Let Polyscyclo[k] (P ) be the subset of Polys[k](P ) consisting of products of

cyclotomic polynomials. Then limk→∞ |Polyscyclo[k] (P )| =∞.

Proof. Let P ? denotes the set of all integers greater than one which are divisible only
by primes of P . For i ∈ P ?, let Φi(t) be the corresponding cyclotomic polynomial,
of degree φ(i). Then

(7.1)

∞∑
k=0

|Polyscyclo[k] (P )|xk =
∏
i∈P?

(1 + xφ(i)).

To treat the sets P appearing in the proposition, we first consider the case P =
{2}. One has {2}? = {2, 4, . . . , 2j , . . . } and φ(2j) = 2j−1. Expanding the product
(1 + x)(1 + x2)(1 + x4) · · · , Equation (7.1) becomes

(7.2)

∞∑
k=0

|Polyscyclo[k] ({2})|xk = 1 + x+ x2 + x3 + · · ·

For P as in the theorem,
∑
|Polyscyclo[k] (P )|xk is an infinite sum of xjf(x) with f(x)

as in (7.2). Thus in fact |Polyscyclo[k] (P )| grows monotonically to ∞. �
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A numerical example of particular relevance to Hurwitz number fields is P =
{2, 3, 5}. Then

∞∑
ρ=0

|Polyscyclo[k] ({2, 3, 5})|xk

= (1 + x)(1 + x2)3(1 + x4)4(1 + x6)2 · · ·(7.3)

= 1 + x+ 3x2 + 3x3 + 7x4 + · · ·+ 3361607445659519x1000 + · · ·

We will return to this generating function in §8.8.

7.2. Fractal polynomials. A recursive three-point cover is a rational function
F (t) ∈ Q(t) with all critical values in {0, 1,∞} and F ({0, 1,∞}) ⊆ {0, 1,∞}. It
has bad reduction within P if one can write F (t) = uf(t)/g(t) with f(t) and g(t)
compatible polynomials in Polys(P ) and u ∈ ZP×. Recursive three-point covers
with bad reduction within P are closed under composition.

The degree 1 recursive three-point covers form the group S3 = 〈1 − t, 1/t〉 and
have bad reduction set P = {}. Other simple examples are F (t) = tp for a prime p
with bad reduction set {p}. Combining just these via composition one already has a
large collection of recursive three-point covers with solvable monodromy group [13].
One can easily extract many other recursive three-point covers from the literature.
As an example coming from trinomials, Fm(t) = tm/(mt+ 1−m) has monodromy
group Sm and bad reduction exactly at the primes dividing m(m − 1). From the
definitions, one has the following fact:

Pullback Construction 7.1. Let F (t) = uf(t)/g(t) be a recursive three-point
cover of degree m and bad reduction within P . Let s(t) ∈ Polys[k](P ). Then the

pullback s(F (t))g(t)k is a scalar multiple of a polynomial in Polys[mk](P ).

We use the word “fractal” because when one constructs polynomials by iterative
pullback, their roots tend to have a fractal appearance, as in Figure 7.1.

To explain the source of Figure 7.1, and also as an example of using the pullback
construction iteratively, we prove the following complement to Proposition 7.1.

Proposition 7.2. The sets Polys[k]({2}) can be arbitrarily large.

Proof. Consider quartic recursive three-point cover

F (t) =
−(t− 1)2(t+ 1)2

4t2
=
−(t2 + 1)2

4t2
+ 1 = −

(
t2 − 2t− 1

) (
t2 + 2t− 1

)
4t2

− 1.

Its bad reduction set is {2}. Some preimages are as follows, with Galois orbits
separated by semi-colons:

F−1(0) = {−1; 1}, F−1(1) = {i,−i},

F−1(∞) = {0; ∞}, F−1(−1) = {−1−
√

2,−1 +
√

2; 1−
√

2, 1 +
√

2}.

Let

R1,−1 = {−1±
√

2}, R1,0 = {±i}, R1,1 = {1±
√

2}, and Ri,j = F 1−i(R1,j).
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Figure 7.1. The set R8,1 consisting of the 215 = 32768 roots of
the specialization polynomial s8,1(t) with bad reduction only at 2.

The situation is summarized by the following diagrammatic description of the action
of F on the entire iterated preimage of ∞:

...
...

...
↓ ↓ ↓

R2,1 R2,−1 R2,0

↓ ↓ ↓
{1±

√
2} {−1±

√
2} {±i}

↘ ↙ ↓
{−1} {1}

↘ ↙
{0}
↓
{∞}
	

Note that the critical values 0, 1, and ∞ have two preimages each while all other
values have four preimages.

For i ∈ Z≥1 and j ∈ {−1, 0, 1}, let si,j(t) ∈ Polys[22i−1]({2}) be the polynomial

with roots Ri,j . Products of the form s1,j1(t) · · · sw,jw(t) give 3w distinct polyno-
mials in Polys[k](2) of the same degree k = 2(4w − 1)/3. �
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8. Specialization sets and number field construction

In this section, we sketch how the sets Polysκ(P ) are useful in constructing
interesting number fields, focusing on two representative families of examples.

8.1. Sets Uν(R). Let ν = (ν1, . . . , νr) be a list of positive integers. In this section,
we assume νr−2 = νr−1 = νr = 1 and these indices play a completely passive role.
In the next section, we remove this assumption and the last three indices then
take on an active role on the same footing with the other indices. Without loss of
generality, we generally focus on the case where the νi are weakly decreasing, and
use abbreviations such as 213 = (2, 1, 1, 1).

For any commutative ring R, define Uν(R) to be the set of tuples
(s1(t), . . . , sr−3(t)) where si(t) is a monic degree νi polynomial in R[t] and the
discriminant of

s1(t) · · · sr−3(t)t(t− 1)

is in the group of invertible elements R×. To be more explicit, write k =
∑r−3
i=1 νi

and
si(t) = tνi + ui,1t

νi−1 + · · ·+ ui,νi−1t+ ui,νi .

Then the lexicographically-ordered coordinates u1,1, . . . , ur−3,νr−3
realize Uν(R) as

a subset of Rk.
The sets Uν(ZP ) can be built in a straightforward fashion from the sets

MPolysκ(P ) with κ running over refinements of the partition (ν1, . . . , νr−3). For ex-
ample, U1k+3(ZP ) consists of tuples (s1(t), . . . , sk(t)) having product s1(t) · · · sk(t)
in MPolys1k(P ). It is thus trivially built from MPolys1k(P ), but k! times as big.
As another example, Uk13(ZP ) = MPolys[k](P ) =

∐
κ`k MPolysκ(P ). In general,

the construction of Uν(ZP ) from MPolysκ(P ) is similar, but combinatorially more
complicated than the two simple extreme cases just presented.

8.2. The scheme Uν . The object Uν itself is an affine scheme, smooth and of
relative dimension k over Spec(Z). We have a focused in Sections 1-7 on the sets
Polysκ(P ) because of their relatively small size and their direct connection to graph
theory. However the close variants Uν(ZP ) should be understood as the sets of true
interest in the application.

The sets Uν(ZP ) fit into standard geometrical considerations much better than
the Polysκ(P ) do. For example, Uν(ZP ) lies in the k-dimensional real manifold
Uν(R), while similar oversets are not as natural for Polysκ(P ). Figure 8.1 draws
examples, directly related to Sections 3 and 4. In each case, Uν(R) is the comple-
ment in R2 of the drawn curves.

8.3. Covers. The fundamental groups of the complex manifolds Uν(C) are braid
groups. Katz’s theory [9] of rigid local systems gives a whole hierarchy of covers
of Uν [12, 15]. The theory of Hurwitz varieties as presented in [1] likewise gives a
another whole hierarchy of covers [16, 14]. In both cases, the covers have a topo-
logical description over C, and this description forms the starting point of a more
arithmetic description over Z. In each case, the datum defining a cover determines
a finite set W of primes. The cover is then unramified except in characteristics
p ∈W . For these bad characteristics, the cover is typically wildly ramified.

Rather than enter theoretically into these two theories, we discuss next two
representative examples, both with ν = 213 for uniformity. As coordinates, we
work with (u1,1, u1,2) = ((1− v − u)/u, v/u) so that the right half of Figure 8.1 is
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Figure 8.1. U15(Z{2,3,5,7}) ⊂ U15(R) and U213(Z{2,3,5}) ⊂ U213(R).

the u-v plane. Our current coordinates are related to the quantities of Section 4 by
u = u0/u1 and v = u∞/u1.

8.4. A Katz cover. The last half of [15] considers two Katz covers with bad
reduction set W = {2, 3}. The smaller of the two is captured by the explicit
polynomial

f27(u, v, x) =(
x3 − 3dx+ 2ed

) (
x6 − 15dx4 + 40edx3 − 45d2x2 + 24ed2x− 32e2d2 + 27d3

)4
−432vd

(
x4 − 6dx2 + 8edx− 3d2

)6
,

with abbreviations d = u2+v2−2uv−2u−2v+1 and e = u+v−1. The polynomial
discriminant factors,

D27(u, v) = 28403270u102v126d234.

The Galois group of f27(u, v, x) ∈ Z[u, v][x] is the orthogonal group O−6 (F2) ⊂ S27 of

order 51, 840 = 27 34 5. The specialization set U213(Z{2,3}) has order 60+169 = 229
from Table 5.2. This specialization process produces 193 number fields with Galois
group O−6 (F2), 15 with Galois group the index two simple group O−6 (F2)+, and
other number fields with various smaller Galois groups [15].

Covers in the Katz hierarchy typically yield Lie-type Galois groups, like in this
example, with bad reduction set W containing at least two primes. By varying the
Katz cover, a single fixed specialization point u ∈ Uν(ZW ) with |W | ≥ 2 can be
expected to yield infinitely many different fields ramified within W .

8.5. A Hurwitz cover. Many Hurwitz covers of U213 with bad reduction set W =
{2, 3, 5} are studied in [14]. One such cover has degree 36 and can be given via
equations as follows. The cover X can be given coordinates x and y so that the
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map to U213 takes the form

u = −
32
(
x2 − 2y

)5
27y(x− y)4 (8x3 − x2 − 18xy + 27y2 + 2y)

,

v = −
(
4x3 − x2 + 18xy + 27y2 − 4y

)2 (
2x4 − 5x2y + 6xy2 − y3 + 2y2

)
27y(x− y)4 (8x3 − x2 − 18xy + 27y2 + 2y)

.

Eliminating y gives f36(u, v, x) ∈ Z[u, v][x] with x-degree 36 and 1125 terms. Its
discriminant is

D36(u, v) = −233735135750u53v13d22C(u, v)2,

with the complicated polynomial C(u, v) ∈ Z[u, v] not contributing to field discrim-
inants of specializations. The specialization set U213(Z{2,3,5}), drawn as the right
half of Figure 8.1, has order 1927 + 1020 = 2947 from Table 4.1. The specializa-
tion process produces 2652 number fields with Galois group S36, 42 number fields
with Galois group A36, and others with various smaller Galois groups, all with bad
reduction set exactly {2, 3, 5}.

Covers in the Hurwitz hierarchy typically yield alternating or symmetric groups,
like in this example, with bad reduction set W containing all primes dividing the
order of some nonabelian finite simple group, thus at least three primes. Here again,
by varying the cover, a single fixed specialization point u ∈ Uν(ZW ) can give many
different fields ramified within W .

8.6. Constraining wild ramification. Let Ku be an algebra obtained by spe-
cializing a cover with bad reduction set W at a point u with bad reduction set P .
Then the typical behavior of p-adic ramification in Ku is as follows:

p ∈ P p 6∈ P
p ∈W very wild slightly wild
p 6∈W tame none

To illustrate the distinction between “very wild” and “slightly wild”, we specialize
the Katz cover f27(u, v, x) and the Hurwitz cover f36(u, v, x) at the 15-element set
U213(Z{2}) appearing as black vertices in Figure 2.1:

u0 u1 u∞ d27(u, v) d36(u, v)
8 1 1 288332 298336 •286334 −2127339530 −2127343530 −2118339530

−4 1 1 280336 284336 280336 2114339530 2112339530 •−2100325528

2 1 1 288336 288330 282330 −2115339530 −2121339530 −2118339530

−2 −1 1 298336 2102334 296332 −2137327530 2137339530 2134339530

2 −1 1 298336 2102336 296336 2137335530 −2137327530 2134339530

On a given row starting with (u0, u1, u∞), the (u, v) in the second and third blocks
are, in order, (u0, u∞)/u1, (u1, u0)/u∞, and (u∞, u1)/u0.

Field discriminants of the specializations are as indicated by the table. As (u, v)
runs over all of U213(Z{2,3}) one gets discriminants d27(u, v) = 2a3b with a ∈
[24, 102] and b ∈ [26, 60]. Restricting to U213(Z{2}), the maximum a appearing is
not reduced at all, while the maximum b is reduced from 60 to 36. Similarly, as
(u, v) runs over all of U213(Z{2,3,5}), one gets discriminants d36(u, v) = ±2a3b5c

with a ∈ [40, 137], b ∈ [7, 72], and c ∈ [18, 61]. Restricting to U213(Z{2}), amax is
not reduced at all, while bmax is reduced from 72 to 39 and cmax is reduced from 61
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to 30. This distinction between “very wild” and “slightly wild” makes all the sets
Polysκ(P ) of interest in the applications, not just the ones where P is large enough
to contain the bad reduction set W of a cover.

8.7. Explicit examples. To give completely explicit examples of number fields
constructed using the specialization points, we continue the previous subsection.
The fifteen specializations of f27(u, v, x) in the table all have Galois group O−6 (F2)
except the bulleted one, which has Galois group the simple index two subgroup. A
presentation for this field K27,1/8,1/8 is Q[x]/g27(x) with

g27(x) = x27 − 9x26 + 21x25 + 53x24 − 288x23 + 1628x21 − 1164x20 − 5409x19

+5681x18 + 12159x17 − 14793x16 − 20548x15 + 25764x14 + 30324x13

−36220x12 − 42249x11 + 48465x10 + 50819x9 − 61773x8 − 44220x7

+64172x6 + 23712x5 − 48024x4 − 5725x3 + 22509x2 + 147x− 5045.

Similarly, the fifteen specializations of f36(u, v, x) in the table all have Galois group
S36 except the bulleted one, for which the Galois group is intransitive. A presenta-
tion for this algebra K36,−1/4,−1/4 is Q[x]/(g10(x)g13(x2)) with

g10(x) = x10 − 4x9 + 2x8 + 8x7 − 8x6 + 8x5 − 20x4 − 10x2 + 80x− 60,

g13(x) = x13 − 44x12 + 728x11 − 5256x10 + 15240x9 − 5320x8 − 41620x7

+72280x6 − 33940x5 − 4320x4 − 8760x3 + 20480x2 − 6140x+ 480.

The field Q[x]/g10(x) has Galois group S10 and discriminant 2253655 while for
Q[x]/g13(x) these invariants are S13 and 23339511. Despite the small exponents,
these fields are wildly ramified not only at 2, but also at 3 and 5.

8.8. Larger degrees. In larger degrees, the numerics of the sets Uν(ZP ) are re-
flected more clearly in the number fields constructed. For example, in a degree
202 example of [14], the specializations at u ∈ U213(Z{2,3,5}) produce 2947 dis-
tinct fields, all full in the sense of having Galois group all of A202 or S202, all
wildly ramified at 2, 3, and 5, and unramified elsewhere. We similarly expect
U213(Z{2,3,5}) to be likewise responsible for exactly 2947 distinct full fields in many
degrees m > 202. It seems possible that the Hurwitz construction accounts for all
full fields in NFm({2, 3, 5}) for most of these degrees m.

As another example which gives a numerical sense of the asymptotics of this
situation, consider the specialization set U32768,13(Z{2,3,5}) = Polys[32768]({2, 3, 5}),
chosen because it contains s8,1 from Figure 7.1. From the generating function
(7.3), this specialization set contains more than 7.46 × 1043 elements. One of
the smallest degree covers of U32678,13 , in the language of [14, 16], comes from
the Hurwitz parameter (S5, (213, 32, 221, 5), (32768, 1, 1, 1)). This cover has degree
exactly (1032768 · 20 · 15 · 24)/(60 · 120) = 1032768. As u ranges over the large
set U32768,13(Z{2,3,5}) the specialized algebras Ku are all ramified within {2, 3, 5}.
Other Hurwitz parameters give this same degree and we expect that there are many
full fields in NF1032768({2, 3, 5}). The point for this paper is that polynomials with
bad reduction within {2, 3, 5} are an ingredient in the construction of these Ku. By
way of contrast, it seems possible that NF1032678+1({2, 3, 5}) is empty.
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9. Future directions

9.1. Specialization sets Uν [ZP ] for general ν. Let ν = (ν1, . . . , νr) be a se-
quence of positive integers. For F a field, let Confν(F ) be the set of tuples of
disjoint divisors (D1, . . . , Dr) on the projective line over F , with Di consisting of
νi distinct geometric points. The group PGL2(F ) acts on Confν(F ) by fractional
linear transformations. The object Confν itself is a scheme which is smooth and of
relative dimension

∑
νi over Spec(Z).

There is a natural quotient scheme Uν = Confν/PGL2. The map εν : Confν →
Uν induces a bijection Confν(F )/PGL2(F )→ Uν(F ) whenever F is an algebraically
closed field. In the case that νr−2 = νr−1 = νr = 1, the action of PGL2(F ) on
Confν(F ) is free for all fields F , and the maps Confν(F )/PGL2(F ) → Uν(F )
are always bijective. The general case is more complicated because there may be
points in Confν(F ) for which the stablizer in PGL2(F ) is nontrivial. The proofs of
Theorems 4.1 and 5.1 involved the maps εν for ν = 212 and ν = 31 without using
this notation. Via the coordinates w and j respectively, one has U212(F ) = F× and
U31(F ) = F for F of characteristic > 2 and > 3 respectively. The complications
with fixed points are above w = 1 and j = 0, 1.

For P a finite set of primes, let Uν [ZP ] be the image of Confν(ZP ) in Uν(Q).
The set Uν [ZP ] may be strictly smaller than the set Uν(ZP ) of scheme-theoretical
P -integral points, as illustrated by the equalities U212 [ZP ] = T∞,2,∞(ZP ) ∪ {1}
and U31[ZP ] = T3,2,∞(ZP )∪ {0, 1}, which hold respectively under the assumptions
{2} ⊆ P and {2, 3} ⊆ P .

In this paper, we have focused on tabulating Polysκ(P ) to keep sets small and
have a clear graph-theoretic interpretation. However from the point of view of
Section 8, our actual problem has been the identification of Uν(ZP ) whenever
νr−2 = νr−1 = νr = 1. The natural generalization is to identify Uν [ZP ] for general
(ν, P ). The Katz and Hurwitz theories of the previous section naturally give covers
of general Uν for general ν.

The general problem of identifying Uν [ZP ] has the same character as the spe-
cial case that we treat, but is technically more complicated because elements of
Confν(ZP ) can no longer be canonically normalized by applying a fractional linear
transformation. In the extreme case ν = (n) the complications become quite severe:
describing the scheme Un is a goal of classical invariant theory, and explicit results
become rapidly more complicated as n increases.

The group Sn acts naturally on the scheme U1n . Despite the normalization of
three points to 0, 1, and∞ in previous sections, the influence of this automorphism
group has been visible. For example, the natural automorphism group of the left
half of Figure 8.1 is S5, and it acts transitively on the twelve components of U15(R).
An alternative viewpoint on Uν for general ν = (ν1, . . . , νr) is via the equation

(9.1) Uν = U1n/(Sν1 × · · · × Sνr ).

For example, the left half of Figure 8.1 covers the right half via U15 → U213 ,
(s, t) 7→ (u, v) = (s+ t, (1− s)(1− t)). The map is not surjective even on R-points
or Qp-points. The map is very far from far from surjective on the ZP -points of
interest to us, and so the new Uν present genuinely new arithmetic sets Uν [ZP ]
to be identified, despite the tight relation (9.1). Birch and Merriman [2] proved,
as part of a considerably larger theory, that the sets Uν [ZP ] are all finite. Their
finiteness theorem was made effective by Evertse and Győry [8].
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9.2. Descriptions of Uν [ZP ]. The most straightforward continuation of this pa-
per would be to completely identify more Uν [ZP ]. Staying first in the context
νr−2 = νr−1 = νr = 1, the direction needing most attention is general completeness
results for the excellent P -units introduced in Section 6. Magma [3] already has the
efficient command ExceptionalUnits giving complete lists of exceptional units.
An extension of its functionality to P -units would immediately move many Uν(ZP )
currently in the second regime of expected completeness into the first regime of
proved completeness. Leaving the context of νr−2 = νr−1 = νr = 1, there are many
more (ν, P ) for which complete identification of Uν [ZP ] is within reach, as it is only
required that the normalization problem be resolved in some different way.

In the third regime of the introduction, where complete tabulation is impossible,
there are still many questions to pursue. One would first like heuristic estimates
on |Uν [ZP ]|; the study of exceptional units in [11] looks to be a useful guide. The
“vertical” direction of P fixed and ν varying is interesting from the point of view
of constructing number fields with larger degree and bounded ramification. In this
direction it seems that close attention to constructional techniques like those of
Section 7 may yield good lower bounds. In the “horizontal” direction of ν fixed
and P increasing, the Reduction Bound 2.1 becomes particularly important and
upper bounds on |Uν [ZP ]| may be available. Finally, the Uν [ZP ] are not just bare
sets to be tabulated or counted, one should also pay attention to their natural
structures. Figure 8.1 suggests that in the horizontal direction the asymptotic
distribution of Uν [ZP ] in Uν(R) may be governed by interesting densities. The
asymptotic distribution of Uν [ZP ] in Uν(Qp) is important for understanding the
p-adic ramification of number fields constructed via covers, and may likewise be
governed by densities.
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