
Hurwitz Belyi maps
David P. Roberts

University of Minnesota, Morris

1. Background on Belyi maps via a very
unusual example

2. A conjecture on the existence of certain
Belyi maps in arbitrarily large degree

3. Hurwitz Belyi maps: numerical exam-
ples and how we expect they possibly can
be used to prove the conjecture

Parts 2 and 3 are analogs for Belyi maps of
work with Akshay Venkatesh on number fields.

The Belyi map case is similar to the number
field case but more geometric.
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1A. Generic vs. Belyi maps. Any degree n
function F : Y → P1 has

2n+ 2 genus(Y )− 2

critical points in Y, counting multiplicity.

Generically, the critical points yi ∈ Y are dis-
tinct; also the critical values F (yi) ∈ P1 are
distinct.

Class of examples. Consider F : P1
y → P1

t
given by F (y) = f(y)/g(y). Then

F ′(y) =
f ′(y)g(y)− f(y)g′(y)

g(y)2
.

If f(y), g(y) are “random” degree n polynomials
in C[y], then the yi are the 2n−2 distinct roots
of the numerator.

Definition. F is called a Belyi map if its criti-
cal values are within {0,1,∞}.

So Belyi maps are as far from generic as possi-
ble, and moreover their critical values are nor-
malized.
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1B. A sample Belyi map. Define β : P1
y → P1

t

by

β(y) =
(y + 2)9y18(y2 − 2)18(y − 2)

(y + 1)16(y3 − 3y + 1)16
.

so that F (∞) = 1. Where are the

2n+ 2g − 2 = 2 · 64 + 2 · 0− 2 = 126

critical points?

0: From numerator, 8 + 3 · 17 = 59 points
with crit value 0.

∞: From denominator, 4·15 = 60 points with
crit value ∞.

1: From degree(numerator − denominator) =

56, ∞ is a crit point with multiplicity 7 .

Since 59 + 60 + 7 = 126, β is indeed a Belyi
map.
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1C. A real-variable visualization of β (fun
but not so useful):
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Clearly visible:

0: Zeros with multiplicity 9, 18, 18, 18, 1.

1: Horizontal asymptote at level t = 1 with
multiplicity 8.

∞: Poles with multiplicity 16, 16, 16, 16.

Also there are 56 non-critical non-real preim-
ages of 1. This makes the ramification triple

(λ0, λ1, λ∞) = (183 9 1, 8 156,164)
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1D. A complex-variable visualization of β
(extremely useful):

-2 -1 0 1 2

The dessin β−1([−∞,0]) ⊂ P1
y .

Monodromy operators on the set of edges can
be read off:

g∞ = rotate counterclockwise minimally about •

g0 = rotate counterclockwise minimally about •

g1 = g0
−1g∞−1 so that g0g1g∞ = 1.

Each gi has cycle type λi and 〈g0, g1, g∞〉 = S64.
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1E. Computation of β. To obtain β, first
consider

(y + 2)9
(
y3 + ay2 + by + c

)18
(y − 2)(

y4 + dy3 + ey2 + fy + g
)16

such that Degree(Num−Denom)=56. There
are seven equations in the seven unknowns a,
b, c, d, e, f , g.

There are 35 solutions (a, b, c, d, e, f, g) corre-
sponding to 35 Belyi maps. The a-values are
the roots of

a
(
8096790625a34 − 1360260825000a33 + · · ·

−1294013295935875774244929393586601984000a2

+1444543635586477445099159157466988544000a
−633054568549175937272241607139131392000) .

The first factor a gives our β via the solution
(a, b, c, d, e, f, g) = (0,−2,0,1,−3,−2,1). The
second factor has Galois group S34 and field
discriminant

27134452772711231319191523102911318374473.
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1F. Three invariants of a general degree n

Belyi map illustrated by our β with com-
ments:

• The monodromy group Γ ⊆ Sn. For β, it’s
S64 . It’s very easy to make Γ full, meaning

Γ ∈ {An, Sn}.

• The field of definition F ⊂ C. For our β, it’s
Q , despite

degree(183 9 1, 8 156,164) = 35.

When degree(λ0, λ1, λ∞) is large, very com-
monly all of the corresponding Belyi maps are
conjugate.

• The bad reduction set P, consisting of cer-
tain primes ≤ n. For β, it’s just {2,3} (be-
cause for other p the numerator and denom-
inator are coprime in Fp[y]). Typically, P is
close to being all primes ≤ n.
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2. Two expectations. Call a finite set of
primes P anabelian if it contains the set of
primes dividing the order of a finite nonabelian
simple group, and abelian otherwise.

Examples. The set P = {2,3, p} is anabelian
for p ∈ {5,7,13,17}. All other P with |P| ≤ 3

are abelian.

Conjecture. Let P be an anabelian set of
primes. Then there exist full Belyi maps,
defined over Q , and ramified within P , of ar-
bitrarily large degree n. (Reason for believing:
the existence of Hurwitz Belyi maps)

Personal guess. Let P be an abelian set
of primes. Then there exist full Belyi maps,
defined over Q , and ramified within P , only
for finitely many degrees n. (Reason for be-
lieving: all examples with n large for a given
P, like β from before, seem "accidental")
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3A. Hurwitz parameters. Consider again a
general degree n map F : Y → P1

t . Three in-
variants are:

• Its global monodromy group G ⊆ Sn

• The list C = (C1, . . . , Cs) of distinct con-
jugacy classes arising as non-identity local
monodromy operators.

• The corresponding list (D1, . . . , Ds) of dis-
joint finite subsets Di ⊂ P1

t over which these
classes arise.

To obtain a single discrete invariant, we write
ν = (ν1, . . . , νs) with νi = |Di|. We then form
the Hurwitz parameter h = (G,C, ν).

In our computational examples, we will typi-
cally take G closely related to one of the twenty
smallest simple groups, and r :=

∑
|νi| ∈ {4,5}.
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3B. Hurwitz maps. An r-point Hurwitz pa-
rameter h = (G,C, ν) determines a cover of
r-dimensional complex varieties:

πh : Hurh → Confν.

A point x ∈ Hurh indexes an isomorphism class
of covers

Yx → P1
t (1)

of type h. The base Confν is the space of pos-
sible branch loci

(D1, . . . , Ds). (2)

The map πh sends a cover (1) to its branch
locus (2).

When G is simple and C contains sufficiently
many classes,

degree(πh) =
1

|G|2
s∏

i=1

|Ci|νi.
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3C. Known facts about Hurwitz maps

A new group-theoretic fact: With Venkatesh,
we have necessary and sufficient conditions on
a pair (G,C) for πh : Hurh → Confν to have
full monodromy for sufficiently large mini νi.
Every simple G gives rise to infinitely many
full Hurwitz maps.

Older arithmetic facts: If all Ci are ratio-
nal, then πh : Hurh → Confν is defined over Q .
Moreover, πh then has all its bad reduction
within the set PG of primes dividing G.
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3D. Belyi pencils. A Belyi pencil of type ν is
an embedding u : P1 − {0,1,∞} → Confν.

Examples (with k = j − 1):

u4 : P1
j − {0,1,∞} → Conf3,1,

j 7→ ((t3 − 3jt+ 2j), {∞}),

u5 : P1
j − {0,1,∞} → Conf4,1,

j 7→ k2t4 − 6jkt2 − 8jkt− 3j2.

Polynomial discriminants are

D4(j) = 2233j2(j − 1),

D5(j) = −21233j4(j − 1)6.

So the bad reduction sets are Pu4 = Pu5 =

{2,3}.

It is easy to get Belyi pencils into infinitely
many Confν defined over Q, all with bad reduc-
tion set in any given non-empty P.
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3E. Hurwitz Belyi maps. Suppose given

• A Hurwitz parameter h = (G,C, ν).

• A Belyi pencil u : P1 − {0,1,∞} → Confν.

Definition. The Hurwitz Belyi map βh,u is ob-
tained by by pulling back and canonically com-
pleting:

X ⊃ X0 → Hurh
βh,u ↓ ↓ ↓ πh

P1 ⊃ P1 − {0,1,∞} u→ Confν.

If h and u are defined over Q, then βh,u is like-
wise rational .

The bad reduction set of Ph,u is contained in
PG ∪ Pu .

If πh is full then one would generally expect
βh,u to be full too. However it’s possible that
the monodromy group becomes smaller.
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3F. Four full examples. All examples are
presented by giving f(j, x), where f(j, x) = 0
describes βh,u : P1

x → P1
j ,

Example 1. h = (S5, (41,2111), (3,1)) and
u = u4 giving degree n = 32 and P = {2,3,5}.

f(j, x) =(
x10 − 38x9 + 591x8 − 4920x7+

24050x6 − 71236x5 + 125638x4

−124536x3 + 40365x2 + 85050x

−91125)3
(
x2 − 14x− 5

)
+22033jx6(x− 5)5

(
x2 − 4x+ 5

)4
(x− 9)3,

discx(f(j, x)) =

−2103232615289j20(j − 1)16.

One of ≈ 16 full Belyi maps with ramification
triple (310 12, 216,10 6 5 42 3).
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Example 2. h = (A6, (3111,2211), (4,1)) and
u = u5 giving degree n = 192 and P =
{2,3,5}.

f(j, x) =(
14659268544x64 − 1012884030720x63

· · · − 1245316608x4 + 28200960x3

−569088x2 + 11008x− 64
)3

−2436j
[
−3x3 + 7x2 − 11x+ 1

]15(
−6x5 + 36x4 − 72x3 + 64x2 − 23x+ 4

)12 ·[
−3x3 + 9x2 − 3x− 1

]9 ·(
9x8 − 72x7 + 240x6 − 444x5 + 474x4

−280x3 + 72x2 − 12x+ 1
)6 ·

[3− x]5 [x]4 [1− x]3,

discx(f(j, x)) =
−2602839585510525j128(j − 1)84.

This Belyi map is one of about
1,900,000,000,000,000,000,000,000,000,000,000

full Belyi maps with ramification triple

(364, 284 124,153 125 93 68 5 4 3).
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Example 3. h = (G2(2), (2B,4D), (3,1)) and
u = u4 giving degree n = 40 and P = {2,3,7}.

f(j, x) =(
64x12 − 576x11 + 2400x10 − 5696x9

+7344x8 − 3168x7 − 4080x6

+8640x5 − 7380x4 − 1508x3

+8982x2 − 7644x+ 2401
)3
·(

4x4 − 20x3 + 78x2 − 92x+ 49
)

−28312j
(
2x2 − 4x+ 3

)8
x7(x− 2)3(x+ 1)2,

discx(f(j, x)) =

−21148 3906 791 j24 (j − 1)20.

One of ≈ 10,000 full Belyi maps with ramifi-
cation triple (312 4, 220,12 82 7 3 2).
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Example 4. h = (GL3(2), (22111,331), (4,1))
and u = u5 giving degree n = 96 and P =
{2,3,7}.
f96(j, x) =(

7411887x32 − 316240512x31 + 5718682592x30

· · ·+ 123834728448x− 3869835264)3

−220j
(
7x2 − 14x+ 6

)21 (
2x3 − 15x2 + 18x− 6

)9 ·

x6
(
x2 + 2x− 2

)6
(3x− 2)2.

The dessin β−1([0,1]) in P1
x:

21 21666

9

9

7 9

One of ≈ 3,100,000,000,000,000 full Belyi
maps with triple (332, 240 116,212 93 7 63 2).
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3G. Towards proving the monodromy con-
jecture. (Unlike the parallel assertion about
number fields) the conjecture may be prov-
able by braid monodromy arguments. Equa-
tions, like those of Examples 1-4, are not at
all needed.

Verifications in modest degrees are already fea-
sible. E.g., for h = (S5, (41,221), (4,1)) the
degree of πh is 1440. A braid monodromy
calculation shows that βh,u5

still has full mon-
odromy. It seems feasible and would be in-
teresting to take calculations of this sort into
much larger degrees.

What is needed to prove the conjecture is the-
oretical control over the potential drop in mon-
odromy when one passes from πh to βh,u.
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Some References. This talk is in the process of be-
coming Hurwitz Belyi maps.

The initial degree 64 example is U8,9 from Chebyshev
covers and exceptional number fields on my homepage.

The full-monodromy theorem with Venkatesh is Theo-
rem 5.1 in Hurwitz monodromy and full number fields,
to appear in Algebra and Number Theory.

A standard reference on Hurwitz schemes is Bertin and
Romagny, Champs de Hurwitz Mém. Soc. Math. Fr.
125–126 (2011), 219pp.

Example 4 takes as its starting point Theorem 4.2 from
Gunter Malle, Multi-parameter polynomials with given
Galois group, J. Symbolic Comput. 30 (2000) 717–731.

Braid group computations in higher degree should be
feasible using Magaard, Shpectorov, Völklein, A GAP
package for braid orbit computation and applications.
Experiment. Math 12 (2003), no. 4, 385–393.

Braid computations after specialization to Belyi pencils
will involve ideas from Jordan Ellenberg. Galois invari-
ants of dessins d’enfants. 27-42, Proc. Sympos. Pure
Math., 70 (2002).
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