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1. The problem of identifying NF (G,D).
Let G ⊆ Sn a transitive permutation group and
D be a positive integer.

Definition. NF (G,D) is the set of isomor-
phism classes of degree n number fields with
Galois group G and absolute discriminant D.

Guiding problem. Identify all NF (G,D).

The problem is solved for abelian G, but seems
unfeasible for any other G. Various subprob-
lems for fixed nonabelian G are of interest:

• For easier G, identify as many NF (G,D) as
possible (§2).

• For harder G, find small or otherwise inter-
esting D with NF (G,D) nonempty (§3-7).

• Determine the average of |NF (G,D)| as
D →∞ (Bhargava; Malle)
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2. Databases identifying some NF (G,D).

The Klueners-Malle database gives many fields

for almost all G in degree n ≤ 19, often iden-

tifying fields which have minimal discriminant

for their G and signature.

The Jones-Roberts database covers fewer groups

and is also less comprehensive on signatures.

However it identifies many NF (G,D) completely.

Examples:

There are 1353 fields with G = S5 and D =

2∗3∗5∗7∗.

There are 5568 fields with G = C2 o C2 o C2 =

8T35 and D = 2∗3∗5∗.

Extending a large computation of Malle, there

are 15184 totally real A5 fields with discrimi-

nant ≤ 238.
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Root discriminants. It is often good to renor-

malize to root discriminants δ = D1/n. Let

Ω = 8πeγ ≈ 44.76

be the Odlyzko-Serre constant. Then under

GRH a field with δ < Ω has finite Hilbert class

field tower. In contrast, Hoelscher recently

proved that Q(e2πi/81) with d = 33.5 ≈ 47.77

has infinite Hilbert class field tower.

Galois Root Discriminants. For a field K with

Galois closure Kgal, the respective root dis-

criminants satisfy δleq∆, with equality if and

only if Kgal/K is unramified. Computing ∆ re-

quires a thorough understanding of p-adic ram-

ification.

Example: there are five twin pairs of sextic

fields with ∆ < Ω. The minimum is ∆1 =

213/6313/9 ≈ 31.66.
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Non-solvable fields in the database with ∆ =
2α3β (left) and ∆ = 2α5β right, each com-
pared with their line 2αpβ = Ω:

1 2 3 4
Α0

1

2

3

Β

1 2 3 4
Α0

1

2

Β

There are currently 386 known minimal non-
solvable fields with ∆ < Ω:

# |H| G = H # G = H.Q #
1 60 A5 78 S5 192
2 168 SL3(2) 18 PGL2(7) 23
3 360 A6 5 S6, PGL2(9), M10, PΓL2(9) 13, 6 , 0 , 15
4 504 SL2(8) 15 ΣL2(8) 15
5 660 PSL2(11) 1 PGL2(11) 0
8 2520 A7 1 S7 1

12 3600 A2
5 A2

5.2, A
2
5.V, A

2
5.C4, A2

5.D4 1 , 1 , 0 , 0
10 4080 SL2(16) 1 SL2(16).2, SL2(16).4 0 , 0
12 6048 G2(2)′ 0 G2(2) 1
19 20160 A8 0 S8 1

Ω serves as a clarifying reference point in the
study of ramification of larger degree fields.
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3. NFs from classical modular forms. There

are many connections between number fields

on the database and classical modular forms.

Example: All 15 known fields with G = 9T26 =

SL2(8) and ∆ < Ω were found by working

backwards from modular forms, five of weight

one (Wiese) and ten of weight two.

Example: Bosman has very efficient techniques

for working backwards from modular forms,

getting many spectacular explicit polynomials.

One, with G = SL2(16) gives a field with ∆ <

Ω, namely ∆ = 215/81371/2 ≈ 42.93.

Example: Malle has a remarkable polynomial

ft(x) ∈ Z[t, x] with generic Galois group M22.2

and discriminant −248411253(t− 1)7t15. At

τ =
74

263
= 1 +

472

263
there is a group drop from M22.2 to PGL2(11).
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The splitting field at τ is also given by

x12 − 4x11 − 4x10 + 16x9 + 24x8 − 30x7 − 78x6

−18x5 + 72x4 + 86x3 + 52x2 + 16x+ 2.

The Galois root discriminant is

∆ = 27/6310/11119/10 ≈ 52.7475.

A lift to a Galois representation into SL±2 (11)

has conductor 24. By Khare-Wintenberger, it

corresponds to a modular form of level 24. Be-

cause ramification at 11 is tame, Gross’s the-

ory of companion forms applies. The corre-

sponding modular forms in S4(24) and S8(24)

are expressible in closed form in terms of theta

functions.

Classical modular forms have the potential to

prove explicit completeness results not currently

present on the database.
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4. NFs related to Hilbert modular forms
In work with Dembélé and Diamond, I have
been finding polynomials with varied nonsolv-
able Galois groups and small field discriminants
which numerically match Hilbert modular forms
modulo p. As an example with p = 2,

x17 − 8x16 + 28x15 − 48x14 + 8x13 + 160x12 − 376x11

+312x10 + 316x9 − 1184x8 + 1240x7 + 352x6

−2272x5 + 1600x4 + 1152x3 − 1712x2 + 12x+ 608

has G = PGL2(16).4 and ∆ = 2161/6033/453/4 ≈
48.96. Similarly for p = 3,

x28 − 4x27 + 12x26 − 33x25 + 63x24 − 156x23 + 345x22

−402x21 + 1521x20 + 1695x19 + 5403x18 + 17787x17

+19860x16 + 73674x15 + 61638x14 + 182679x13

+121506x12 + 261114x11 + 114639x10 + 195027x9

+57960x8 + 77151x7 + 17946x6 − 4257x5 − 10716x4

+2163x3 + 9771x2 + 1471x− 577

has Galois group G = PGL2(27).3 and ∆ =
26/7325/1878/9 ≈ 46.98. An interesting aspect
of these matches is that subtle details of ram-
ification at the residual prime p correspond to
patterns of Serre weights of associated modu-
lar forms.
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An earlier example: Dembélé, Greenberg, and
Voight computed with Hilbert modular forms
over the C5 field

F = Q[π]/(π5 + 5π4 − 25π2 − 25π − 5)

of discriminant 58. They proved the existence
of an S5 extension ramified only at the unique
prime π over 5. We found that this extension
is given by specializing x5 +5x4 +40x3−1728j
at

j =
−1

263351711

(
16863524372777476π4

+88540369937983588π3 − 11247914660553215π2

−464399360515483572π − 353505866738383680) .

Removing π gives a field defined by

x25 − 25x22 + 25x21 + 110x20 − 625x19 + 1250x18

−3625x17 + 21750x16 − 57200x15 + 112500x14

−240625x13 + 448125x12 − 1126250x11 + 1744825x10

−1006875x9 − 705000x8 + 4269125x7 − 3551000x6

+949625x5 − 792500x4 + 1303750x3

−899750x2 + 291625x− 36535,

with Galois group A5
5.10 and ∆ = 53−1/12500 ≈

124.98.
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5. NFs related to hypergeometric motives.

Let q∞(x) and q0(x) be products of cyclotomic

polynomials. Suppose q∞(x) and q0(x) are rel-

atively prime and have the same degree d.

Then (q∞(x), q0(x)) determines a rank d mo-

tivic local system Mt over Q(t) with coefficients

in Q, degenerating only at t ∈ {0,1,∞}. These

motives have classical dFd−1(t) as period inte-

grals.

Example: (q∞(x), q0(x)) = ((x−1)2, x2+x+1)

yields the elliptic curve H1(Et, x), where the

elliptic curve Et : y2 = 4(t− 1)x3 − 3tx+ t has

j-invariant j = 1728t.

In general, these motives are highly analyzable

(. . . , Katz, . . . ), all the way to complete mo-

tivic L-functions L(Mt, s) which via Magma’s

CheckFunctionalEquation seem to have the ex-

pected analytic properties.
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Sample explicit polynomials. On the Beukers-

Heckman list of HGMs with finite monodromy,

five have monodromy group W (E7) ≈ Sp6(2).

Remarkably, polynomials can be obtained from

Shioda’s universal W (E7) polynomial

S(a1, b6, c8, d10, e12, f14, g18;x)

by setting all but two parameters equal to zero:

BH q∞ q0 Kept Bad Primes
58 Φ2Φ18 Φ1Φ3Φ12 a2 g18 {2,3}
59 Φ1Φ3Φ5 d10 g18 {2,3,5}
60 Φ1Φ7 f14 g18 {2,3,5,7}
61 Φ2Φ14 Φ1Φ3Φ12 e12 f14 {2,3,7}
62 Φ1Φ3Φ5 d10 f14 {2,3,5,7}

Remarkably, all cases are genus zero and can
be given by f0(x) + tf∞(x) = 0:

BH f∞(x) f0(x)

58 −218
(
x3 + 3x2 − 3

)9
36x3(3x+ 4)

(
x2 + 6x+ 6

)12

59 55(x− 1)
(
x3 + 9x2 + 15x− 1

)9
214312x3

(
x2 + 7x+ 1

)5

60 77
(

8x3 + 36x2 + 12x+ 1
)9

214315x7
(
x3 − 20x2 − 9x− 1

)7

61 21839
(
x3 − 7x+ 7

)7
77(x− 1)(x+ 3)3

(
x2 − 3

)12

62 3355(x+ 1)7
(
x3 − x2 − 9x+ 1

)7
21477x3

(
x2 + 3x+ 1

)5
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6. NFs related to other rigid local systems.

The one-parameter hypergeometric families sit

in an extreme position in Katz’s theory of rigid

local systems. So does the multiparameter

Pochhammer family.

An example of the Pochhammer family comes

from genus two curves

Xa,b,c,d : y2 = x5 + ax3 + bx2 + cx+ d.

From the family H1(Xa,b,c,d,Q), one has degree

40 polynomials f(a, b, c, d;x) with f(a, b, c, d;x2)

having Galois group G = 2.PSp4(F3).2. The

family is universal subject to the restriction

that the .2 corresponds to
√
−3.

Specializing this 3-parameter family gives about

1000 NFs with G = 2.PSp4(F3).2 and D =

2∗3∗. Minimal ∆ found in this family is slightly

above Ω ≈ 44.7632.
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It is harder to work out equations for other
families. Two 2-parameter families and dis-
criminants D = 2a3b of specialized fields:

Type J6, Monodromy W (E6), Degree 27:

0 20 40 60 80 100
a0

20

40

60

b

Type u6, Monodromy W (E7)+, Degree 28:

20 40 60 80 100
a

20

40

60

b

All full-group specializations (•) have ∆ > Ω.
Some specializations with group-drop (·) have
∆ < Ω.
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7. NFs with Galois Group G2(2) = U3(3).2.
The twelfth smallest simple group is G2(2)′ =
U3(3) of order 6048 = 25337. The extension
G2(2) = U3(3).2 embeds into W (E7)+.

A genus zero three-point cover with monodromy
group G2(2) is in Malle-Matzat. This cover is
a specialization of the Shioda family:

S(0,−3t2,−34t2,35t3,35t3,−36t4,36t5) = 0.

A two-parameter specialization with Galois group
G2(2) and .2 corresponding to Q(i) is

S(1, s+ t,−3st,0,−st(+t),−st(s+ t),−s2t2;x).

Its discriminant is

D(s, t) = 23263156s42(s−1)24t42(t−1)24(s−t)84

times a square not contributing to field dis-
criminants. Let

M0,5 = Spec(Z[s, t,
1

st(s− 1)(t− 1)(s− t)
]).

The resulting cover X →M0,5 can be descended
to X/S3 →M0,5/S3.
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Let S = M0,5/S3 be the base scheme, so that
S(R) is the complement of the drawn heavy
discriminant locus.

�2 �1 0 1 2 3
�2

�1

0

1

2

3

�1 0 1

�2

�1

0

1

2

Inside S(R), lines serve as bases of 3-point cov-
ers and points in S(Z[1/6]) keep ramification
within {2,3}. One specialization point yields

x28 − 4x27 + 18x26 − 60x25 + 165x24 − 420x23

+798x22 − 1440x21 + 2040x20 − 2292x19

+2478x18 − 756x17 − 657x16 + 1464x15

−4920x14 + 3072x13 − 1068x12 + 3768x11

+1752x10 − 4680x9 − 1116x8 + 672x7 + 1800x6

−240x5 − 216x4 − 192x3 + 24x2 + 32x+ 4.

Here GRD = ∆ = 243/163125/72 ≈ 43.39 < Ω.
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8. NFs far (?!) from automorphic forms.

One can also seek lightly ramified number fields

for groups like Sn which do not admit low de-

gree linear representations. An example involv-

ing the exceptional group M12:

Let u =
√
−11. A three-point cover defined

over Q(u) with monodromy group M12 is

f(t, x) =

−112u
(
1188ux3 + 198ux2 − 1346ux− 27u

+594x4 − 7920x2 − 1474x+ 135
)3

−28313(253u− 67)tx.

The coordinate x has been carefully chosen so

that f(t, x2) has monodromy group the double

cover 2.M12. Its dessin:

16



Specializing f(t, x2)f(t, x2) ∈ Q[x] at carefully

chosen t gives at least 394 different 2.M12.2

fields with discriminant 2∗3∗11∗.

One of these specialization points is

τ =
9090072503

10101630528
=

20873

2631511
= 1−

318052

2631511
.

It yields an 2.M12.2 field with discriminant 1188

and GRD = ∆ = 11219/110 ≈ 118.39.

Writing e = 11, a polynomial defining this field

with just fifteen terms is

x48 + 2e3x42 + 69e5x36

+868e7x30 − 4174e7x26 + 11287e9x24

−4174e10x20 + 5340e12x18 + 131481e12x14

+17599e14x12 + 530098e14x8 + 3910e16x6

+4355569e14x4 + 20870e16x2 + 729e18.

Remark of Gross: perhaps this field can be

related to an automorphic form via M12 ⊂ E7.
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