The Inverse Galois Problem
 David P. Roberts University of Minnesota, Morris

1. Polynomials, fields, and their invariants: A degree n number field K has a discriminant $D \in \mathbb{Z}$ and a Galois group $G \subseteq S_{n}$.
2. The inverse Galois problem: given (D, G), find all corresponding K.

3. Two relevant databases

4. Various major themes
5. Some more fields with interesting (D, G)

Goal: A broad survey, with at most tiny indications of proofs

1. Polynomials, fields, and their invariants. Factoring a monic irreducible polynomial $f(x) \in \mathbb{Z}[x]$ modulo primes p gives intriguing data:

Let $\alpha_{1}, \ldots, \alpha_{n}$ be the complex roots of $f(x)$. Define the polynomial discriminant

$$
\Delta=\prod\left(\alpha_{i}-\alpha_{j}\right)^{2} \in \mathbb{Z}
$$

Define the Galois group

$$
G=\operatorname{Aut}\left(\mathbb{Q}\left(\alpha_{1}, \ldots, \alpha_{n}\right)\right) \subseteq S_{n} .
$$

For $x^{7}-7 x-3$,

$$
\begin{aligned}
\Delta & =3^{8} 7^{8} \\
G & =G L_{3}(2)
\end{aligned}
$$

(Δ, G) governs factorization patterns.

Let $K=\mathbb{Q}[x] / f(x)$. Then G depends only on $K . \Delta$ depends on f, but the field discriminant $D=\Delta / c^{2}$ depends only on K. For $x^{7}-7 x-3$,

$$
D=3^{6} 7^{8}
$$

2. The inverse Galois problem. Consider the problem of listing out all number fields with Galois group a given $G \subseteq S_{n}$.

- $G=S_{1}$. \mathbb{Q} is the unique number field with Galois group S_{1}.
- $G=S_{2}$. Fields with $G=S_{2}$ are exactly $\mathbb{Q}(\sqrt{d})$ as d runs over square-free integers different from 1:
$\ldots-10,-7,-6,-5,-3,-2,-1,2,3,5,6,7,10, \ldots$
The discriminant of $\mathbb{Q}(\sqrt{d})$ is

$$
D= \begin{cases}d & \text { if } d \equiv 1(4) \\ 4 d & \text { if } d \equiv 2,3(4) .\end{cases}
$$

- G abelian. The Kronecker-Weber theorem says that K embeds in some cyclotomic field $\mathbb{Q}\left(e^{2 \pi i / m}\right)$ and this yields a classification like that of the case S_{2}.
- A theorem of Hermite says that for any (D, G) there are only finitely many number fields with discriminant D and Galois group G.
- $G=S_{3}$. Calculation shows that the list of absolute discriminants $|D|$ is irregular:
$23,31,44,59,76,83,87, \ldots, 972,972, \ldots$ The Davenport-Heilbronn theorem says that a positive integer is the absolute discriminant for on average $1 / 3 \zeta(3) \approx 0.28$ fields.

A framework for pursuing classification questions is the inverse Galois problem:

Given an integer D and a transitive permutation group $G \subseteq S_{n}$, exhibit a defining polynomial for each number field with discriminant D and Galois group G.

The general expectation is that for each $G \neq S_{1}$ the list of occurring D is infinite.

3. Relevant databases.

Hermite's theorem can be made effective so that all fields with invariants (D, G) can be found by doing an exhaustive search over possible defining polynomials. The Jones-Roberts database specializes in lists that have been proved to be complete. Sample results, from very old to newer:

G	Smallest $\|D\|$	
$5 T 1$	$=C_{5}$	$11^{4}=14,641$
$5 T 2$	$=D_{5}$	$47^{2}=2,209$
$5 T 3$	$=F_{5}$	$2^{2} 13^{3}=35,152$
$5 T 4$	$=A_{5}$	$2^{6} 17^{2}=18,496$
$5 T 5$	$=S_{5}$	1609

- There are exactly 11814 quintic fields with discriminant $\pm 2^{a} 3^{b} 5^{c} 7^{d}$.
- There are exactly 18 septic fields with discriminant $\pm 3^{b} 5^{c}$.

The Klueners-Malle database comes close to presenting at least one field for every group and signature up through degree 19. They aim to include the smallest $|D|$ in each case. Some particularly interesting (G, D) exhibited:

G	D	
$11 T 6=M_{11}$	$2^{183^{8} 5^{11}}$	From M_{12} family
$11 T 6=M_{11}$	661^{8}	
$17 T 6=S L_{2}(16)$	$2^{30} 137^{8}$	Bosman, from modular forms
$17 T 7=S L_{2}(16) .2$	None so far!	

4. Various major themes

- Lower bounds on field discriminants (..., Odlyzko,...)
- Nilpotent groups (..., Markshaitis, Koch, ...) Completely explicit results for some arbitrarily large G
- Solvable groups (..., Shafarevich, ...) Each solvable G has infinitely many occurring D.
- Relation to modular forms (..., Khare, Wintenberger, ...) If G is embeddable in some $G L_{2}\left(\mathbb{F}_{q}\right)$ then all fields come from modular forms.
- Relation to algebraic geometry
(..., Grothendieck, ...) $H^{w}\left(X, \mathbb{F}_{\ell}\right)$ gives rise to Lie-type G with controlled D.
- Relation to dessins d'enfants (. . . , Matzat, ...) Each sporadic G except for perhaps M_{23} has infinitely many occurring D.
- Asymptotic mass formulas (..., Bhargava, Malle, ...) Local-global heuristics give expected numbers of fields with given (D, G), sometimes proved correct asymptotically, e.g. $G=S_{5}$.

5A. A nonsolvable field ramified at five only. In the 1990s, Gross observed no field was known with G nonsolvable and $|D|$ a power of a single prime $p \in\{2,3,5,7\}$. Such fields were proved to exist around 2010 by Dembélé, Greenberg, Voight, and Dieulefait. A polynomial for one of these fields and its invariants:

$$
\begin{aligned}
& x^{25}-25 x^{22}+25 x^{21}+110 x^{20}-625 x^{19}+1250 x^{18} \\
& -3625 x^{17}+21750 x^{16}-57200 x^{15}+112500 x^{14} \\
& -240625 x^{13}+448125 x^{12}-1126250 x^{11} \\
& +1744825 x^{10}-1006875 x^{9}-705000 x^{8} \\
& +4269125 x^{7}-3551000 x^{6}+949625 x^{5} \\
& -792500 x^{4}+1303750 x^{3}-899750 x^{2}+291625 x \\
& -36535
\end{aligned}
$$

$$
\begin{aligned}
& \Delta=5^{69}(87 \text {-digit integer })^{2} \quad G=A_{5}^{5} \cdot 10 \\
& D=5^{69}
\end{aligned}
$$

It is obtained from the five torsion points of the elliptic curve with j-invariant

$$
\begin{aligned}
j= & \frac{-1}{2^{6} 3^{351} 7^{11}}\left(16863524372777476 \pi^{4}\right. \\
& +88540369937983588 \pi^{3}-11247914660553215 \pi^{2} \\
& -464399360515483572 \pi-353505866738383680)
\end{aligned}
$$

in the cyclic field $F=\mathbb{Q}[\pi] /\left(\pi^{5}+5 \pi^{4}-\right.$ $\left.25 \pi^{2}-25 \pi-5\right)$.

5B. A field with G involving a sporadic group ramified at one prime only. There are now several ways to construct fields with G involving M_{11}, M_{12}, M_{22}, and M_{24}. For M_{11} and M_{24} it is hard to keep D small at all, but for M_{12} and M_{22} there are some fields with quite light ramification. Specializing a Belyi map again at carefully chosen large height point gives
$f(x)=$

$$
\begin{aligned}
& x^{48}+2 e^{3} x^{42}+69 e^{5} x^{36}+868 e^{7} x^{30}-4174 e^{7} x^{26} \\
& +11287 e^{9} x^{24}-4174 e^{10} x^{20}+5340 e^{12} x^{18} \\
& +131481 e^{12} x^{14}+1759 e^{14} x^{12}+530098 e^{14} x^{8} \\
& +3910 e^{16} x^{6}+4355569 e^{14} x^{4}+20870 e^{16} x^{2}+729 e^{18} .
\end{aligned}
$$

Its invariants are

$$
\begin{aligned}
\Delta & =11^{842}(159 \text {-digit integer })^{2} \\
D & =11^{88} \\
G & =2 . M_{12} .2
\end{aligned}
$$

An interesting problem is to find a corresponding unramified automorphic form for which this is a mod 11 representation.

5C. A polynomial with $\Delta=-2^{130729}{ }_{5}^{63437}$ and Galois group S_{15875}.

Let $T_{w}(x), U_{w}(x) \in \mathbb{Z}[x, \sqrt{x+2}, \sqrt{x-2}]$ be the classical Chebyshev "polynomials" indexed by $w \in\{1 / 2,1,3 / 2,2, \ldots\}$. Form

$$
\begin{aligned}
& T_{m, n}(s, x)=T_{m / 2}(x)^{n}-t T_{n / 2}(x)^{m} \\
& U_{m, n}(s, x)=U_{m / 2}(x)^{n}-s U_{n / 2}(x)^{m}
\end{aligned}
$$

Then, like $T_{w}(x)$, the $T_{m, n}(s, x)$ and $U_{m, n}(s, x)$ have highly factoring discriminants. Unlike the $T_{w}(x)$, Galois groups now tend to be the full symmetric group on the degree.

Example: The mass heuristic suggests there should be no fields with $D= \pm 2^{a} 5^{c}$ past degree $n=40$. However
$U_{125,128}(5, x)=$

$$
(x-2)^{3} u_{62.5}(x)^{256}-5(x+2)^{125} u_{64}(x)^{250}
$$

has $\Delta=-2^{130729} 5^{63437}$ and $G=S_{15875}$.

