The Inverse Galois Problem David P. Roberts University of Minnesota, Morris

1. Polynomials, fields, and their invariants: A degree n number field K has a discriminant $D \in \mathbb{Z}$ and a Galois group $G \subseteq S_n$.

2. The inverse Galois problem: given (D,G), find all corresponding K.

3. Two relevant databases

4. Various major themes

5. Some more fields with interesting (D,G)

Goal: A broad survey, with at most tiny indications of proofs

1. Polynomials, fields, and their invariants. Factoring a monic irreducible polynomial $f(x) \in \mathbb{Z}[x]$ modulo primes p gives intriguing data:

p	$x^7 - 7x - 3$ factored in $\mathbb{F}_p[x]$	λ_p
2	$x^7 + x + 1$	7
3	$(x+1)^3(x+2)^3x$	1 ³ 1 ³ 1
5	$x^7 + 3x + 2$	7
7	$(x + 4)^7$	17
11	$x^7 + 4x + 8$	7
13	$(x^4 + 12x^3 + x^2 + 8x + 9)$	421
	$(x^2 + 12x + 2) (x + 2)$	
17	$(x^3 + 14x^2 + 8x + 16)$	331
	$(x^3 + 13x^2 + 12x + 15)$	
	(x + 7)	
:		
79	$(x^2 + 28x + 70)$	22111
	$(x^2 + 21x + 52)$	
	(x+6)(x+28)(x+75)	
:		
1879	(x + 1581)(x + 1797)	1111111
	(x + 996)(x + 1472)	
	(x + 194)(x + 508)(x + 968)	

Let $\alpha_1, \ldots, \alpha_n$ be the complex roots of f(x). Define the *polynomial discriminant*

$$\Delta = \prod (\alpha_i - \alpha_j)^2 \in \mathbb{Z}.$$

Define the Galois group

 $G = \operatorname{Aut}(\mathbb{Q}(\alpha_1, \ldots, \alpha_n)) \subseteq S_n.$

For $x^7 - 7x - 3$,

$$\Delta = 3^8 7^8,$$

$$G = GL_3(2).$$

 (Δ, G) governs factorization patterns.

Let $K = \mathbb{Q}[x]/f(x)$. Then *G* depends only on *K*. Δ depends on *f*, but the *field discriminant* $D = \Delta/c^2$ depends only on *K*. For $x^7 - 7x - 3$,

$$D = 3^6 7^8.$$

2. The inverse Galois problem. Consider the problem of listing out all number fields with Galois group a given $G \subseteq S_n$.

• $G = S_1$. \mathbb{Q} is the unique number field with Galois group S_1 .

• $G = S_2$. Fields with $G = S_2$ are exactly $\mathbb{Q}(\sqrt{d})$ as d runs over square-free integers different from 1:

 $\dots -10, -7, -6, -5, -3, -2, -1, 2, 3, 5, 6, 7, 10, \dots$ The discriminant of $\mathbb{Q}(\sqrt{d})$ is

$$D = \begin{cases} d & \text{if } d \equiv 1 \ (4), \\ 4d & \text{if } d \equiv 2, 3 \ (4). \end{cases}$$

• G abelian. The Kronecker-Weber theorem says that K embeds in some cyclotomic field $\mathbb{Q}(e^{2\pi i/m})$ and this yields a classification like that of the case S_2 . • A theorem of Hermite says that for any (D,G) there are only finitely many number fields with discriminant D and Galois group G.

• $G = S_3$. Calculation shows that the list of absolute discriminants |D| is irregular:

23, 31, 44, 59, 76, 83, 87,..., 972, 972,.... The Davenport-Heilbronn theorem says that a positive integer is the absolute discriminant for on average $1/3\zeta(3) \approx 0.28$ fields.

A framework for pursuing classification questions is the **inverse Galois problem**:

Given an integer D and a transitive permutation group $G \subseteq S_n$, exhibit a defining polynomial for each number field with discriminant D and Galois group G.

The general expectation is that for each $G \neq S_1$ the list of occurring D is infinite.

3. Relevant databases.

Hermite's theorem can be made effective so that all fields with invariants (D,G) can be found by doing an exhaustive search over possible defining polynomials. The *Jones-Roberts database* specializes in lists that have been proved to be complete. Sample results, from very old to newer:

G		Smalle	Smallest $ D $		
5T1	=	C_5	11^{4}	=	14,641
5T2	=	D_5	47 ²	=	2,209
5T3	=	F_5	2 ⁴ 13 ³	=	35, 152
5T4	=	A_5	$2^{6}17^{2}$	=	18,496
5T5	=	S_5	1609	=	1,609

- There are exactly 11814 quintic fields with discriminant $\pm 2^a 3^b 5^c 7^d$.
- There are exactly 18 septic fields with discriminant $\pm 3^b 5^c$.

The Klueners-Malle database comes close to presenting at least one field for every group and signature up through degree 19. They aim to include the smallest |D| in each case. Some particularly interesting (G, D) exhibited:

	G		D	
11T6	=	M ₁₁	2 ¹⁸ 3 ⁸ 5 ¹¹	From M_{12} family
11T6	=	M_{11}	661 ⁸	
17 <i>T</i> 6	=	<i>SL</i> ₂ (16)	2 ³⁰ 137 ⁸	Bosman, from modular forms
17 <i>T</i> 7	=	<i>SL</i> ₂ (16).2		None so far!

4. Various major themes

• Lower bounds on field discriminants (..., Odlyzko, ...)

Nilpotent groups (..., Markshaitis, Koch,
 ...) Completely explicit results for some arbitrarily large G

• Solvable groups (..., Shafarevich, ...) Each solvable G has infinitely many occurring D.

• Relation to modular forms (..., Khare, Wintenberger, ...) If G is embeddable in some $GL_2(\mathbb{F}_q)$ then all fields come from modular forms.

• Relation to algebraic geometry (..., Grothendieck, ...) $H^w(X, \mathbb{F}_{\ell})$ gives rise to Lie-type G with controlled D.

Relation to dessins d'enfants (..., Matzat, ...) Each sporadic G except for perhaps M₂₃ has infinitely many occurring D.

• Asymptotic mass formulas (..., Bhargava, Malle, ...) Local-global heuristics give expected numbers of fields with given (D,G), sometimes proved correct asymptotically, e.g. $G = S_5$. **5A.** A nonsolvable field ramified at five only. In the 1990s, Gross observed no field was known with *G* nonsolvable and |D| a power of a single prime $p \in \{2, 3, 5, 7\}$. Such fields were proved to exist around 2010 by Dembélé, Greenberg, Voight, and Dieulefait. A polynomial for one of these fields and its invariants:

 $\begin{array}{l} x^{25}-25x^{22}+25x^{21}+110x^{20}-625x^{19}+1250x^{18}\\ -3625x^{17}+21750x^{16}-57200x^{15}+112500x^{14}\\ -240625x^{13}+448125x^{12}-1126250x^{11}\\ +1744825x^{10}-1006875x^{9}-705000x^{8}\\ +4269125x^{7}-3551000x^{6}+949625x^{5}\\ -792500x^{4}+1303750x^{3}-899750x^{2}+291625x\\ -36535 \end{array}$

 $\Delta = 5^{69}(87\text{-digit integer})^2$ $G = A_5^5.10$ $D = 5^{69}$

It is obtained from the five torsion points of the elliptic curve with j-invariant

 $\begin{aligned} j &= \frac{-1}{2^{6}3^{3}5^{1}7^{11}} \left(16863524372777476\pi^{4} \right. \\ &\quad +88540369937983588\pi^{3} - 11247914660553215\pi^{2} \\ &\quad -464399360515483572\pi - 353505866738383680) \end{aligned}$ in the cyclic field $F = \mathbb{Q}[\pi]/(\pi^{5} + 5\pi^{4} - 25\pi^{2} - 25\pi - 5). \end{aligned}$ **5B.** A field with *G* involving a sporadic group ramified at one prime only. There are now several ways to construct fields with *G* involving M_{11} , M_{12} , M_{22} , and M_{24} . For M_{11} and M_{24} it is hard to keep *D* small at all, but for M_{12} and M_{22} there are some fields with quite light ramification. Specializing a Belyi map again at carefully chosen large height point gives

$$\begin{split} f(x) &= \\ x^{48} + 2e^3 x^{42} + 69e^5 x^{36} + 868e^7 x^{30} - 4174e^7 x^{26} \\ &+ 11287e^9 x^{24} - 4174e^{10} x^{20} + 5340e^{12} x^{18} \\ &+ 131481e^{12} x^{14} + 17599e^{14} x^{12} + 530098e^{14} x^8 \\ &+ 3910e^{16} x^6 + 4355569e^{14} x^4 + 20870e^{16} x^2 + 729e^{18}. \end{split}$$

Its invariants are

$$\Delta = 11^{842} (159 \text{-digit integer})^2$$

 $D = 11^{88}$
 $G = 2.M_{12}.2$

An interesting problem is to find a corresponding unramified automorphic form for which this is a mod 11 representation.

5C. A polynomial with $\Delta = -2^{130729}5^{63437}$ and Galois group S_{15875} .

Let $T_w(x), U_w(x) \in \mathbb{Z}[x, \sqrt{x+2}, \sqrt{x-2}]$ be the classical Chebyshev "polynomials" indexed by $w \in \{1/2, 1, 3/2, 2, ...\}$. Form

$$T_{m,n}(s,x) = T_{m/2}(x)^n - tT_{n/2}(x)^m$$

$$U_{m,n}(s,x) = U_{m/2}(x)^n - sU_{n/2}(x)^m$$

Then, like $T_w(x)$, the $T_{m,n}(s,x)$ and $U_{m,n}(s,x)$ have highly factoring discriminants. Unlike the $T_w(x)$, Galois groups now tend to be the full symmetric group on the degree.

Example: The mass heuristic suggests there should be no fields with $D = \pm 2^a 5^c$ past degree n = 40. However

 $U_{125,128}(5,x) = (x-2)^3 u_{62.5}(x)^{256} - 5(x+2)^{125} u_{64}(x)^{250}$ has $\Delta = -2^{130729} 5^{63437}$ and $G = S_{15875}$.