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1. Review of curves: good L-factors

Let X be a smooth projective geometrically connected curve over Q
of genus g , with good reduction outside a finite set of primes S .

Then for p 6∈ S , one can count points, to get |X (Fp)|, |X (Fp2)|, . . .

The first g counts determine the others via

|X (Fpk )| = pk −
(
αk
1 + · · ·+ αk

2g

)
+ 1,

the αj being algebraic integers with |αj | =
√
p.

For these good p, define

Fp(x) =

2g∏
j=1

(1− αjx) = 1− apx + · · ·+ pgx2g .

Then the partial L-function is

LS(X , s) =
∏
p 6∈S

1

Fp(p−s)
.



Review of curves: Galois reps and bad L-factors

Let M = H1(X (C),Z) and let 〈·, ·〉 be the symplectic form on M .
Let M` = M ⊗ Z`. Via étale cohomology, Gal(Q/Q) acts on each
M`, respecting 〈·, ·〉 up to specified scalars.

Always require ` 6= p. For p 6∈ S , the inertia group Ip ⊂ Gal(Q/Q)
acts trivially on M`. For a Frobenius element Frp, one has

Fp(x) = det(1− Frpx |M`).

For general p, we can define Fp(x) = det(1− Frpx |M Ip
` ), the right

side being again independent of `. Similarly, the character of the
action of wild inertia Pp on M` is rational-valued and independent of
`, allowing a well-defined Swan conductor wp ≥ 0. The conductor of
L(X , s) is

N =
∏
p

ptp+wp

where tp = 2g − degree(Fp(x)).



2. Mod ` Galois representations

Gal(Q/Q) acts on each M/`. A polynomial describing this action is
called an `-division polynomial for M .

The good news: even just one of these `-division polynomials
contains a lot of information. In particular, it gives lower bounds on
the Sato-Tate group of X and it identifies the Swan conductors wp

for p 6= `.

Example with ` = 2. Let X be given by y 2 = f (x) with f (x) of
degree 2g + 1 ≥ 5. Then f (x) is a 2-division polynomial.

• The image of Gal(Q/Q) on M/2 is Gal(f ) ⊆ S2g+1 ⊂ Sp2g (F2). If
it is all of S2g+1, then the Sato-Tate group must be all of Sp2g .

• At common good primes p, one has Fp(x)
2≡ F ∗p (x). Here

L∗(s) = ζ(K , s)/ζ(s) with K = Q[x ]/f (x). If 2g + 1 = pj and p is
totally ramified, then ordp(N) = ordp(Disc(K )).



Mod ` Galois representations

There are a few more situations where `-division polynomials are
readily accessible. For elliptic curves, the situation is ideal via classical
division polynomials. For plane quartics, the 28 bitangents give a
2-division polynomial with generic Galois group Sp6(F2) ⊂ S28.

The bad news: there is no systematic way to pass from a variety X
and a prime ` to an `-division polynomial for X .

Example at the limit of computation: Let X be given by
y 2 = x5 + ax3 + bx2 + cx + d . Then a 3-division polynomial is

f80(a, b, c , d ; x) = x80 + 15120ax76 + 2620800bx74 + 1670 terms,

with generic Galois group GSp4(F3) ⊂ S80.

To say the bad news again, now with reference to two examples:
5-division polynomials for a generic genus two curve
(PGSp4(F5) ⊂ S156) or 3-division polynomials for a generic genus 3
curve (PGSp6(F3) ⊂ S364) seem presently out of reach.



3. Mod ` Galois representations for motives

Now let X be a general smooth projective variety and
M ⊆ Hw (X (C),Z) a motive with a Z-structure. Then, as before,
Gal(Q/Q) acts on M/`. The situation is very similar to the situation
for curves, modulo some caveats:

• For general X , independence of ` of the actions on Hw (X (C),Z`)
is known at good p, but only expected at bad p (and if this fails all
hell breaks loose in our vision of the world).

• For M cut out by non-algebraic projectors, independence of ` is not
even known at good places.

HGMs are cut out by algebraic projectors. I’ll proceed assuming
independence of ` at the bad places too.

So far, we have been using integrality as a crutch. It suffices to start
with just a motive M ⊆ Hw (X (C),Q). Then we interpret “M/`” as
a semisimple representation, well-defined up to isomorphism.



The `-p principle

Let M and M∗ be motives. We write

M
`≡ M∗

if Fp(x)
`≡ F ∗p (x) for all common good primes p. Equivalently,

M
`≡ M∗ if the semisimplified representations M/` and M∗/` are

isomorphic. We write
M ∼p M∗

if Pp acts the same way on M and M∗. In general:

The `-p principle. If M
`≡ M∗, then M ∼p M∗ for all primes p

different from `.

The proof is that the characteristic 0 character theory of a p-group
agrees with the characteristic ` character theory if ` 6= p.



4. HGMs: allowing degenerate defining data

Let

α = {α1, . . . , αd}, β = {β1, . . . , βd},

be multisets of elements of Q/Z. Impose the rationality condition
that the multiplicity of r ∈ Q/Z in either α or β depends only on
denom(r). Then the monodromy matrices mα and mβ are in GLd(Z).

If α ∩ β = ∅, one has an irreducible family of motives H(α, β, t)
indexed by Q− {0, 1}. We normalize these motives to have weight
w = mult0(α) + mult0(β)− 1. The formula for good traces
Tr(Frkp|H(α, β, t)) then makes sense even when α ∩ β = γ, giving
motives

H(α, β, t) = H(α− γ, β − γ, t)⊕ J(α, β, γ, t).

Here J(α, β, γ, t) has lower weight and is a simpler motive, a sum of
Kummer twists of Jacobi motives.



5. `-p formalism for HGMs

In Q/Z =
∏

p Qp/Zp, let

α 7→ αp be the projection onto Qp/Zp,
α 7→ αp be the projection away from Qp/Zp.

(Thus α = αp + αp as in 23
30

= 1
2

+ 4
15

for p = 2.) Applying these
operators to all indices has nice interpretations:

Theorem `. H(α, β, t)
`≡ H(α`, β`, t).

One would expect something like this because the monodromy
matrices underlying the left and right sides are exactly the same
matrices modulo `. The proof is that Tr(Frkp|·) yields exactly the
same numbers when applied to the two sides, by the trace formula.

Corollary p. H(α, β, t) ∼p H(αp, βp, t).
The proof is to use Theorem ` to remove one ` at a time until (α, β)
becomes (αp, βp), applying the `-p principle at every step.



Magma Demonstration

H := HypergeometricData;

H1 := H([1/4,1/4,3/4,3/4],[0,0,0,0]);

H2 := H([1/4,1/4,3/4,3/4],[1/5,2/5,3/5,4/5]);

L1 := LSeries(H1,-1: BadPrimes:=[<2,13,1>]);

L2 := LSeries(H2,-1: Precision := 5, Weight01:=-1,

BadPrimes := [<2,13,1>], Identify:=false);

E1 := EulerFactor(L1,17); E1;

24137569*x^4 + 58956*x^3 - 442*x^2 + 12*x + 1

E2 := EulerFactor(L2,17); E2;

1/289*y^4 - 1/289*y^3 + 22/289*y^2 - 1/17*y + 1

ChangeRing(E1-E2,FiniteField(5)); 0 (Illustrating Thm `)
CFENew(L1); 0.000000000000000000000000000000 (8 seconds)
Factorization(Conductor(L1)); [<2,13>]

CFENew(L2); 0.00000 (12 seconds)
Factorization(Conductor(L2)); [<2,13>,<5,5>] (Cor p)



`-degeneracy is common for HGMs

A common behavior of say symplectic motives is that Gal(Q/Q) has
image very close to all of GSpd(Z`) for all ` (in fact universally
surjective for elliptic curves 37.a1, 43.a1, . . . ). For hypergeometric
motives, severe degeneracies are common. They are also
group-theoretically intelligible in terms of mα and mβ failing to
generate Spd(F`). Examples:

• If α` ∩ β` = γ, then the main part of the mod ` image is typically
Spd−|γ|(F`).

• If there is a part of the form 1/2j , then the mod 2 image is inside
one of the subgroups O±d (F2) ⊂ Spd(F2).

Example. H(1
3
, 2
3
, 1
5
, 2
5
, 3
5
, 4
5
; 0, 0, 0, 0, 0, 0; t) have typical images

involving O−6 (F2), Sp4(F3), and Sp2(F5), before stabilizing to images
involving Sp6(F7), Sp6(F11), . . . .



6. Explicit `-division polynomials for HGMs

We have 2-division polynomials for all HGMs in degree ≤ 7. E.g. a
2-division polynomial for

H

(
1

3
,

1

3
,

1

3
,

2

3
,

2

3
,

2

3
; 0, 0, 0, 0, 0, 0; t

)
2≡ · · ·

is
t24x3(x2 − 3)12 − 39(x − 2)(x − 1)8(x2 − 2x − 1)8

with Galois group the “27 lines” group SO−6 (F2). Similarly, a
2-division polynomial for

H

(
1

9
,

2

9
,

4

9
,

5

9
,

7

9
,

8

9
;

1

3
,

1

3
,

1

3
,

2

3
,

2

3
,

2

3
; t

)
2≡ · · ·

is
t218(x3 + 3x2 − 3)9 − 36x3(3x + 4)(x2 + 6x + 6)12

with Galois group the “28 bitangents” group Sp6(F2).



Explicit `-division polynomials for HGMs

We also have 3-division polynomials of almost all HGMs in degree
≤ 5. E.g. a 3-division polynomial for

H(
1

4
,

1

4
,

3

4
,

3

4
; 0, 0, 0, 0; t)

3≡ · · ·

is f80(6t, 16t, 9t2, 0; x). Similarly, a 3-division polynomial for

H

(
1

4
,

1

4
,

3

4
,

3

4
;

1

5
,

2

5
,

3

5
,

4

5
; t

)
3≡ · · ·

is f80(−10t, 0, 25t2, 162; x).

All these division polynomials are more than enough to identify wild
ramification in low degree HGMs, because there is a lot of
redundancy. For example, the last two families are ∼2.
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