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A standard setting

In general, suppose given a smooth projective variety X over Q and a
motive M ⊆ Hw (X (C),Q). One wants to know:

1. The Hodge vector (hw ,0, hw−1,1, . . . , h1,w−1, h0,w ).

2. The Frobenius polynomials Fp(x) and hence the local L-factors
Lp(M , s) = Fp(p−s)−1 for all primes p outside a finite bad set S .

3. The remaining Lp(M , s) = Fp(p−s)−1 and the conductor
N =

∏
p pcp .

4. Analytic properties of Λ(M , s) = N s/2L∞(M , s)
∏

p Lp(M , s)
including the functional equation Λ(M , s) = ±Λ(M ,w + 1− s).

The talk will be about hypergeometric motives M = H(A,B , t) and
the current state of 1-4 for them.



Hypergeometric families: defining data

Families of hypergeometric motives are indexed by ordered pairs
(f (x), g(x)) of relatively prime monic polynomials in Z[x ] sharing a
common degree d and vanishing only on roots of unity.

Given such a pair, we write

f (x) =
∏
i

Φai (x),

g(x) =
∏
i

Φbi (x).

We notationally emphasize A = [a1, . . . ] and B = [b1, . . . ].

Example with d = 5:

f (x) = Φ2(x)Φ4(x)2 = (x + 1)
(
x2 + 1

)2
,

g(x) = Φ1(x)Φ3(x)2 = (x − 1)
(
x2 + x + 1

)2
.

Here A = [2, 4, 4] and B = [1, 3, 3].



Hypergeometric families: monodromy matrices

Given (f (x), g(x)) as before, let mf and mg be their companion
matrices. Define

(m0, m1, m∞) = (mf , m−1f mg , m−1g ).

By construction, m0m1m∞ = 1.

Example, continued: m0, m1, and m∞ are
−1

1 −1
1 −2

1 −2
1 −1

 ,


1 0

1 −1
1 −3

1 −2
−1

 , and


−1 1

−1 1

1 1

1 1

1


In general, m0 and m∞ are regular, but m1 − 1 has rank one.



Hypergeometric motives: “definition”

Let T = P1(C)− {0, 1,∞} with base point ? = 1/2.

The map π1(T , ?)→ GLd(Q) sending the standard generator γτ to
the matrix mτ gives a local system on T , i.e., a family of
d-dimensional rational vector spaces H(A,B , t) indexed by t ∈ T . In
our example, H(A,B , t) = H([2, 4, 4], [1, 3, 3], t) is a local system of
5-dimensional Q-vector spaces.

There is a natural family of smooth complex projective varieties
X (A,B , t) such that H(A,B , t) appears in some Hk(X (A,B , t),Q)
[BCM]. The family is defined over Q, giving motives H(A,B , t) for
t ∈ Q× − {1}.

I will skip defining X (A,B , t). The philosophy is that final answers to
1-4 should be expressible in terms of A, B , t alone. They should be
in substantial measure understandable in terms of (m0,m1,m∞).



1. Hodge vector: combinatorial computation

The Hodge vector of the family H(A,B) can be computed by the
following combinatorial procedure.

1. Draw the roots exp(2πiαj) of f (x) and exp(2πiβj) of g(x) on the
unit circle.

2. Draw a zig-zag function over the unit circle flattened to [0, 1),
going up one when you encounter an αj and down one when you
encounter a βj .

3. The Hodge vector (hw ,0, . . . , h0,w ), normalized by hw ,0 = h0,w 6= 0,
is such that hp,w−p counts the up steps at height p.

Our family H([2, 4, 4], [1, 3, 3]) has Hodge vector (1, 3, 1).



1. Hodge vector: possibilities

There are 2bd/2c a priori possibilities for ~h in degree d .
• One extreme: complete intertwining yields ~h = (d).

• An intermediate case yields ~h = (1, d − 2, 1).

• The other extreme: complete separation yields ~h = (1, 1, . . . , 1, 1).
A given Hodge vector can occur for many families:

d : 1 2 3 4 5 6 7 8 9 · · ·
(d) 1 2 2 7 4 13 11 31 7 · · ·

(1, d − 2, 1) 6 15 31 56 53 120 95 · · ·
(1, . . . , 1) 1 6 6 25 25 73 73 184 184 · · ·

In degrees d ≤ 20, the only possibility which does not actually occur
is ~h = (6, 1, 1, 1, 2, 1, 1, 1, 6).



2. Good factors and 3a tame factors

Fix H(A,B , t). Suppose a prime p

1. does not divide a member of A or B

2. does not divide num(t), num(t − 1), or denom(t).

Then H(A,B , t) has good reduction at p and the degree d Frobenius
polynomials Fp(x) can be calculated via a remarkable trace formula
involving Gauss sums [Greene, Katz, BCM].

If p satisfies 1 but not 2, then H(A,B , t) is tamely ramified at p.
Again Fp(x) can be calculated. The contribution to the conductor is
pcp where cp = d − degree(Fp(x)).

In both cases, the local L-factor is

Lp(H(A,B , t), s) =
1

Fp(p−s)
.



2. Good and tame L-factors: Example

As a sample of Magma’s functionality (with answer prettified):

>H := HypergeometricData([2,4,4],[1,3,3]);

>[EulerFactor(H,10/3,p): p in PrimesInInterval(5,17)];

5 1− 5x

7 (1− 7x + 72x2)(1 + 2x + 72x2)

11 (1− 11x)(1− 6x + 15 · 11x2 − 6 · 112x2 + 114x4)

13 (1− 13x)2(1 + 13x)(1 + 13x + 132x2)

17 (1− 17x)(1− 8x + 14 · 17x2 − 8 · 172x3 + 174x4)

The good factors are all of the form

Fp(x) = (1−
(

−21
p

)
px)(1 + apx + bppx2 + app2x3 + p4x4)

This form reflects the motivic Galois group G = GO5, the
determinant det(M), and the Hodge vector (1, 3, 1).



3b. Wild L-factors via congruences and Belyi maps

For general motives M , contributions pcp to the conductor from wild
primes p can be expected to be complicated.

Similarly, wild L-factors Lp(M , s) = Fp(p−s)−1 are complicated
(although identically 1 in the totally ramified case).

A key fact is that much of this information can be read off from mod
` representations for any ` 6= p.

We have Belyi maps Y → P1 giving mod 2 representations for most
cases in degree ≤ 7, and mod 3 representation for most cases in
degree ≤ 5.

These covers allow determination of wild factors, and thus complete
L-functions Λ(H(A,B , t), s), in many cases in low degree. It’s on our
agenda to incorporate this fully into Magma.



3b. Wild L-factors: a large degree example

In favorable cases, wild ramification can be completely analyzed in
large degree as well. For example, consider the large degree family

H([

33︷ ︸︸ ︷
2, . . . , 2], [

33︷ ︸︸ ︷
1, . . . , 1], t). It has the most complicated Hodge vector

(

33︷ ︸︸ ︷
1, . . . , 1). To obtain complete L-functions, we are only missing

information at 2. Fortunately, there is a chain of congruences:

H([233], [133], t)
11≡ H([22, 22, 22, 2, 2, 2], [11, 11, 11, 1, 1, 1], t)
3≡ H([66, 22, 6, 2], [33, 11, 3, 1], t) (~h = (33)).

This chain says that c2 for H([233], [133], t) is the same for c2 of the
Artin motive H([66, 22, 6, 2], [33, 11, 3, 1], t) whenever the latter is
totally wild.



The conductor exponent c2 for H([66, 22, 6, 2], [33, 11, 3, 1], t) for
t = u2k is indicated by the picture:
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For most k , it is independent of u (black). For some k it depends on
whether u ≡ 3 (4) (blue) or u ≡ 1 (4) (green).

For all H(A,B , t) and all wild p, the picture seems to be qualitatively
similar.



4. L-functions: numerical certification

We informally say that the completion Λ(M , s) of a correct partial
L-function LS(M , s) has been numerically certified if it passes
Magma’s CheckFunctionalEquation to high precision.

Our expectation is that a numerically certified Λ(M , s) indeed has all
its extra factors correct and indeed satisfies the expected analytic
continuation and functional equation.

From hypergeometric motives we get many numerically certified
Λ(M , s) with a broad range of Hodge vectors (hw ,0, . . . , h0,w ) and full
motivic Galois group GSpd or GOd .



4. L-functions: an example

The specialization point t = 1 gives particularly interesting motives
where formulas are slightly different. For example:

The motive M = H([216], [116], 1) has Hodge vector
(1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1), a certified-to-10-digits
Λ(M , s), with conductor 215, sign 1, order of central vanishing 2, and
L′′(M , 8) ≈ 7.851654518.

The first two Frobenius polynomials (two seconds and thirty seconds):

F3(x) = (1 − 268 · 3x + 204193 · 34x2 − 1001800 · 39x3 + 204193 · 319x4 − 268 · 331x5 + 345x6)

(1 + 2992 · x + 39116 · 34x2 − 7596496 · 36x3 − 203836426 · 312x4

−7596496 · 321x5 + 39116 · 334x6 + 2992 · 345x7 + 360x8)

F5(x) = (1 + 1614 · 53x + 28284579 · 54x2 + 1394686516 · 59x3 + 28284579 · 519x4 + 1614 · 533x5 + 545x6)

(1 − 41208 · x − 44999364 · 53x2 − 22376708712 · 56x3 + 3926679014806 · 512x4

−22376708712 · 521x5 − 44999364 · 533x6 − 41208 · 545x7 + 560x8)



4. L-functions: the example, continued

The splitting M = M6 ⊕M8 is known a priori from a joint symmetry
t ↔ 1/t and 2↔ 1. The Hodge vectors of the summands are

(0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0),

(1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1).

The two Frobenius polynomials suffice to prove that the motivic
Galois group of the two factors are GSp6 and GSp8.

Q1. Since L2(M , s) = 1, there are only two possibilities for
(cond(M6), cond(M8)), namely (26, 29) or (27, 28). Which is it?

Q2. There are only three possibilities for (rank(M6), rank(M8)),
namely (2, 0), (1, 1), or (0, 2). Which one is correct?
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Some references, continued

Variations of Hodge Structure for Hypergeometric Differential
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May 7, 2015, has the Hodge number formula. Antecedents include
works of Terasoma, Corti, Golyshev, Dettweiler, and Sabbah.
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