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Overview of today’s talk

1. Definition of a nicely-indexed collection of varieties X (~p, ~q, t).
The “most interesting” part of their cohomology is then a
nicely-indexed collection of motives H(~p, ~q, t) in M(Q,Q).
Illustrations from the familiar settings dim(X (~p, ~q, t)) ≤ 1.

2. An interlude about Hodge numbers hp,q in general. A
combinatorial procedure for computing the Hodge numbers of the
H(~p, ~q, t). This computations show that H(~p, ~q, t) thoroughly leave
the setting of points and curves.

3. Very light sketch of the passage from an H(~p, ~q, t) to its
L-function. Demonstration of how Magma is close to calculating
complete L-functions of hypergeometric motives automatically, and
how they numerically seem to have the expected analytic properties.

Many fundamental topics just briefly mentioned, or omitted!



1. From canonical varieties to hypergeometric

motives



Canonical varieties (see [BCM])

Let ~p = (p1, . . . , pr ) and ~q = (q1, . . . , qs) be tuples of positive
integers with gcd(p1, . . . , pr , q1, . . . , qs) = 1, pi 6= qj always, and

p1 + · · ·+ pr = q1 + · · ·+ qs .

Let t ∈ Q× − {1}. Define Y (~p, ~q, t) in Pr+s−1 by

x1 + · · ·+ xr = y1 + · · ·+ ys ,

txp1
1 · · · xpr

r qq1
1 · · · qqs

s = pp1
1 · · · ppr

r yq1
1 · · · yqs

s .

Notes: • w := dim(Y (~p, ~q, t)) = r + s − 3.
• Y (~p, ~q, t) is complicated topologically and can have singularities.
• t = 1 makes sense, but then Y (~p, ~q, 1) has an extra singularity at
(x1, . . . , xr , y1, . . . , ys) = (p1, . . . , pr , q1, . . . , qs).



Zero-dimensional cases

In the special case (r , s) = (2, 1) the system takes the form

Y ((a, b), (c), t) : x1 + x2 = y1,

txa
1xb

2 cc = aabby c
1 .

Dehomogenizing by y1 = 1, eliminating via x2 = 1− x1, and
abbreviating x = x1 gives a traditional univariate equation

tccxa(1− x)b − aabb = 0.

The discriminant of the left side is aa(c−1)bb(c−1)cc2(t − 1)tc−1. The
generic Galois group is Sc , but there are occasional drops. E.g.,
(a, b, c) = (6, 1, 7) and t = 64 has the 168-element Galois group
PSL2(7) ∼= GL3(2) ⊂ S7.



A one-dimensional case

Via some new coordinates ([BCM] pages 4-5),

Y ((6, 1), (4, 3), t) : y 2 = x3 − 27

4t
x +

27

4t
.

The right side has discriminant −2−439(t − 1)t−3. The j-invariant of
Y ((6, 1), (4, 3), t) is 1728/(1− t).

So for all t ∈ Q× − {1}, the motivic Galois group of
Y ((6, 1), (4, 3)), t) is GL2, except for the eleven classical exceptions.
These exceptions range in height from

t =
189

125
=

337

53
(Potential CM by Q(

√
−7))

to

t =
33721121921272163

21253233293
(Potential CM by Q(

√
−163)).



Hypergeometric motives

[BCM] elegantly resolves singularities on Y (~p, ~q, t) to get a family of
smooth projective varieties X (~p, ~q, t), degenerating only at
t ∈ {0, 1,∞}. They determine the point count |X (~p, ~q, t)(Fq)| with
q = pf and p a good prime, using a hypergeometric trace formula
of [Greene] and [Katz].

For any t ∈ Q× − {1}, all cohomology is represented by algebraic
cycles except for the part corresponding to a motive H(~p, ~q, t) in the
middle cohomology.

Example: for (r , s) = (4, 4), the Betti numbers (b0, . . . , b10) are
(1, 0, 10, 0, 19, b5, 19, 0, 10, 0, 1) with b5 depending on (~p, ~q). The
point count is

|X (~p, ~q, t)(Fq)| = 1 + 10q + 19q2 + aq + 19q3 + 10q4 + q5.

Here aq = −Trace(Frq|H(~p, ~q, t)) is the interesting quantity.



2. Hodge numbers in general

and

Hodge numbers of hypergeometric motives



Hodge numbers in general, I

The Hodge numbers hp,q := dimC Hq(X ,Ωp) are fundamental
invariants of a smooth projective variety X over C.

For a connected w -dimensional variety, one traditionally presents
them as a Hodge diamond, as in the case of a surface:

h2,2 1

h2,1 h1,2 c c

h2,0 h1,1 h0,2 = a b a

h1,0 h0,1 c c

h0,0 1

One always has left-right symmetry hp,q = hq,p and up-down
symmetry hp,q = hw−q,w−p.



Hodge numbers in general, II

Genus g curve:
1

g g
1

Surfaces of low degree in P3:

1

1
0 0

0 1 0
0 0

1

2

1
0 0

0 2 0
0 0

1

3

1
0 0

0 7 0
0 0

1

4

1
0 0

1 20 1
0 0

1

5

1
0 0

4 45 4
0 0

1

Quintic threefold, its mirror, and an abelian threefold:

1
0 0

0 1 0
1 101 101 1

0 1 0
0 0

1

1
0 0

0 101 0
1 1 1 1

0 101 0
0 0

1

1
3 3

3 9 3
1 9 9 1

3 9 3
3 3

1



Hodge numbers in general, III

The standard way to present a weight w motive is as a summand in
the middle cohomology of a w -dimensional variety. One describes the
decomposition via Hodge vectors (hw ,0, . . . , h0,w ). E.g., a K 3
surface with 18 independent algebraic cycles decomposes as

(1, 20, 1) = (0, 18, 0) + (1, 2, 1).

Very extreme quintic 3-folds decompose as

(1, 101, 101, 1) = (0, 101, 101, 0) + (1, 0, 0, 1)

The Hodge width (= Hodge level= Hodge niveau) is the largest
|p − q| with hp,q nonzero. The generalized Hodge conjecture says
that if M is a motive with Hodge width w , then the Tate twist of
M
(
w−w
2

)
appears in the cohomology of an w -dimensional variety.



Hodge numbers of HGMs I (see [Fedorev])

The Hodge vector for H(~p, ~q; t) is calculated from the roots and
poles of the rational function∏r

i=1(xpi − 1)∏s
i=1(xqi − 1)

.

There is typically a lot of cancellation.
Example. For (~p, ~q) = ((8, 2, 2, 2), (6, 4, 3, 1)),

(x8 − 1)(x2 − 1)3

(x6 − 1)(x4 − 1)(x3 − 1)(x − 1)
=

Φ8(x)Φ2(x)2

Φ6(x)Φ3(x)2
.

Intertwining. What’s essential to the formula is how the roots
exp(2πiαj) and poles exp(2πiβk) intertwine on the unit circle, i.e.
how the indices αj and βk intertwine on R/Z.



Hodge numbers of HGMs II

The general procedure is illustrated by how it looks in our example
(~p, ~q) = ((8, 2, 2, 2), (6, 4, 3, 1)):

A:

B:

1

8

1

6

1

3

1

3

3

8

1

2

1

2

5

8

2

3

2

3

5

6

7

8
Hodge

1

2

2

1

As one goes right, one goes up while passing through an αj and down
when passing through a βk . From the number of upward steps at a
given height, one gets the Hodge numbers. In this weight
r + s − 3 = w = 5 case, ~h = (0, 1, 2, 2, 1, 0). Tate twisting down to
w = 3, the Hodge numbers become

(h3,0, h2,1, h1,2, h0,3) = (1, 2, 2, 1).



Hodge numbers of HGMs III

Both extremes are very interesting: complete intertwining yields

h0,0 = (d).

This case was intensively studied in [BH]; special motivic Galois
groups should be finite, rather than the Spd and Od that occur in
essentially all other cases.

Complete separation yields

(hd−1,0, . . . , h0,d−1) = (1, 1 . . . , 1, 1)

which should be families with maximal parameter number 1.

For a given degree, there are 2bd/2c intermediate Hodge vectors.
Computations shows that in degree ≤ 20 they all come from
HGMs, except for (6, 1, 1, 1, 2, 1, 1, 1, 6).



3. L-functions of hypergeometric motives:

quick demonstration of Magma package



Constructing and checking L-functions

For a given M = H(~p, ~q, t),

1. One has the good Euler factors Lp(M , s) from the hypergeometric
trace formula.

2. One has the Gamma factors L∞(M , s) from the Hodge number
procedure. For w = 2p even, one has the necessary supplemental
decomposition hp,p = hp,p

+ + hp,p
− which depends on the component of

R× − {1} containing t.

3. By a variety of techniques, one can often determine at least some
of the bad factors Lp(M , s) and some of the contributions pcp to the
conductor N .

4. The expected but almost always unproved analytic properties of
Λ(M , s) = N s/2L∞(M , s)

∏
p Lp(M , s) can be numerically confirmed

by Magma’s CheckFunctionalEquation. In the process, final
ambiguities about bad factors are removed.



The family H((6, 1), (7)) at t = 2 and t = 64

>H := HypergeometricData([*-6,-1,7*]);

>Identify(H,2);

Artin representation

S7: (6,4,0,2,3,0,2,0,1,-1,1,0,-1,-1,-1) of

ext<Q|x^7-6*x^6+15*x^5-20*x^4+15*x^3-6*x^2+x

-23328/823543>

>Identify(H,64);

Artin representation

PSL(2,7): (6,2,0,0,-1,-1) of

ext<Q|x^7-6*x^6+15*x^5-20*x^4+15*x^3-6*x^2+x

-729/823543>

Magma can compute the associated L-functions, up to bad primes
from the general hypergeometric formulas, or completely through its
Artin representation package.



The motive H((6, 1), (4, 3), 189/125)

>H := HypergeometricData([*-6,-1,4,3*]);

>L := LSeries(H,189/125);

>[<p,EulerFactor(L,p)>: p in PrimesInInterval(1,30)];

[<2, 1>,

<3, 3*x^2 + 1>,

<5, 1>,

<7, 1>,

<11, 11*x^2 + 4*x + 1>,

<13, 13*x^2 + 1>,

<17, 17*x^2 + 1>,

<19, 19*x^2 + 1>

<23, 23*x^2 + 8*x + 1>,

<29, 29*x^2 + 2*x + 1>]

The evenness of half the Euler factors reflects the potential CM by
Q(
√
−7) known to be present.



The motives H((5), (1, 1, 1, 1, 1), t)

This family has Hodge vector (1, 1, 1, 1) and is famous for appearing
in the Dwork pencil of threefolds

v 5 + w 5 + x5 + y 5 + z5 = 5ψvwxyz .

for t = 1/ψ5.

>H:=HypergeometricData([*-5,1,1,1,1,1*]);

>L:=LSeries(H,2);

WARNING: Guessing wild prime information

>Conductor(L); EulerFactor(L,5);

50000

1 (Is this 5-adic information right?)
>CheckFunctionalEquation(L);

0.000000000000000000000000000000 (Very likely, yes!)



The motive H((34), (112), 1)

This motive has Hodge vector (1, 1, 1, 0, 0, 1, 1, 1) and so can first
appear in a seven-fold.
>H := HypergeometricData([*-3,-3,-3,-3,

1,1,1,1,1,1,1,1,1,1,1,1*]);

>L := LSeries(H,1: BadPrimes:=[<3,9,1>]); (overriding
Magma’s incorrect guess to get a numerically certified L-series)

>Evaluate(L,4);

0.00000....

>Sign(L);

1.00000....

>LTaylor(L,4,2);

0.00000... + 0.00000... (s-4) +

3.24742005040501003902038649853 (s-4)^2



Some references

Hypergeometric Motives, with Fernando Rodriguez Villegas and Mark
Watkins, in preparation. Several presentations by each of us available
online.

Finite hypergeometric functions, by Frits Beukers, Henri Cohen, and
Anton Mellit. ArXiv May 12, 2015.

Hypergeometric functions over finite fields, by John Greene, Trans.
Amer. Math. Soc. 301 (1987), 77-101.

Exponential Sums and Differential Equations, by Nicholas M. Katz,
Annals of Math Studies, 124, (1990) is an early work emphasizing
motivic aspects of hypergeometric functions.



Some references, continued

Variations of Hodge Structure for Hypergeometric Differential
operators and parabolic Higgs bundles, by Roman Fedorov, ArXiv
May 7, 2015, has the Hodge number formula. Antecedents include
works of Terasoma, Corti, Golyshev, Dettweiler, and Sabbah.

Monodromy for the hypergeometric function nFn−1, by Frits Beukers
and Gert Heckman, Invent. Math. 95 (1989), 325-354, definitively
treats the case of complete intertwining.

The HGM package in Magma is by Mark Watkins. The L-function
package is by Tim Dokchitser.


