
Hypergeometric motives
and their wild ramification

David P. Roberts
University of Minnesota, Morris

Goal of group project: illustrate the theory of
motives with a well-organized and broad collec-
tion of examples having completely computed
L-functions with numerically checked functional
equations.

Review of generalities with two examples:

1. Motives in M(Q,Q)

2. Galois representations in M(Q,F`)

3. Wild ramification at p

Explicitation for hypergeometric motives:

4. HGMs in M(Q,Q)

5. Their reduction to M(Q,F`)

6. Their wild ramification at p

7. Examples



1. Motives in M(Q,Q). In the 1990s André

modified Grothendieck’s original 1960s defini-

tions to get an unconditional and useful theory

of pure motives. In particular,

• There is a reductive proalgebraic group G,

called the absolute motivic Galois group of

Q. It surjects to Gal(Q/Q).

• The category M(Q,Q) of motives “over Q
with coefficients in Q” is the category of

representations of G on finite dimensional

Q-vector spaces, thus semisimple.

• For X a smooth projective variety over Q,

the cohomology groups Hw(X(C),Q) are

objects in M(Q,Q) and they generate the

whole category.



• C× sits naturally in G(R). On a motive M ,
it gives a Hodge decomposition M ⊗ C =⊕
Mp,q with C× acting by zpz̄q on Mp,q.

• For each prime `, there is a section
Gal(Q/Q)→ G(Q`).

To motivically understand a given X, one should

1: Express each cohomology group as a sum
of irreducibles, Hw(X(C),Q) =

⊕
iMw,i.

2: Study each appearing M individually, start-
ing with computing its motivic Galois group
GM := Image(G) ⊆ GLM .

In Step 2, the original variety X may fade into
the background. For example, one may already
have encountered M in the study of another
variety.



Famous conjectures in arithmetic geometry can
be studied for individual motives:

• (Hodge) ρ∞ : C× → GM(R) has Q-Zariski
dense image in the identity component G0

M .

• (Tate) ρ` : Gal(Q/Q) → GM(Q`) has open
image for each `.

• (Compatibility) L-functions L(M, s) and con-
ductors N defined via `-adic cohomology
are independent of `. [We tacitly assume
compatibility to simplify statements]

• (Automorphy) For M ⊆ Hw(X(C),Q), the
L-function L(M, s) is automorphic and hence
satisfies a functional equation with respect
to s 7→ w + 1− s.

The conjectures are known for many motives,
sometimes easily, sometimes by deep theorems.



Examples: Let

X1 : y2 = x(x− 1)(x− 9) (Elliptic Curve 24.a3),

X3 : y2 = x1x2x3(x1 + x2)(x2 + x3)(x1 + 1)(x3 + 1),

and take

M1 =H1(X1(C),Q) (so (h1,0, h0,1) = (1,1)),

M3 =H3(X3(C),Q) (so (h3,0, . . . , h0,3) = (1,0,0,1)).

Put

L(M1, s) =
∞∑
n=1

an

ns
= 1 ·

1

1 + 3−s

∏
p≥5

1

1− app−s + p1−s ,

L(M3, s) =
∞∑
n=1

bn

ns
= 1 ·

∏
p≥3

1

1− bpp−s + p3−s .

Then automorphy holds via

∞∑
n=1

anq
n = η12η6η4η2 ∈ S2(Γ0(24)),

∞∑
n=1

bnq
n = η4

4η
4
2 ∈ S4(Γ0(8)),

where ηk = qk/24∏∞
j=1(1− qkj).



2. Galois representations in M(Q,F`). Let
M(Q,F`) be the category of representations of
Gal(Q/Q) on finite-dimensional F`-vector spaces.
A motive M in M(Q,Q) determines a semisim-
ple object M/` in M(Q,F`) up to isomorphism.

We write M
`≡M ′ for M/` ∼= M ′/`.

Examples. Here ap
3≡ bp for all primes and so

M1
3≡M3. Via GL2(F3) ⊂ S8 the common mod

3 Galois representation corresponds to

f(x) = x8 − 6x4 + 4x2 − 3.

Some data illustrating the connections:

p 2 3 5 7 11 13 17 19 23 29
ap 0 −1 −2 0 4 −2 2 −4 −8 6
bp 0 −4 −2 24 −44 22 50 44 −56 198
ap 0 2 1 0 1 1 2 2 1 0
p 2 0 2 1 2 1 2 1 2 2
λp 8 44 8 62 8 62 8 2312

Here λp is the factorization partition of f(x) ∈
Fp[x]. It is correlated with (ap, p) ∈ F3 × F×3 :

ap 0 1 1 2 2 0 1 2
p 1 1 1 1 1 2 2 2
λp 44 62 24 3212 18 2312 8 8



3. Wild ramification at p. Fix a decompo-
sition group D = Gal(Qp/Qp) ⊂ Gal(Q/Q) with
inertial subgroup I, wild inertia group P , and
canonical filtration

D
Ẑ
⊃ I

Ẑp
⊃ P ⊃ · · · ⊃ P≥s

F∞p
⊃ P>s ⊃ · · ·

with s running over positive rationals. Let
Frp ∈ D generate D/I ∼= Ẑ. For M in M(Q,Q)
its local L-factor is

Lp(M, s) =
1

det(1− Frpp−s|MI
` )

The tame exponent of M is τp(M) = dim(M`/M
I
` ).

One has a canonical decomposition into sum-
mands indexed by Swan slopes:

M` = MP
`

⊕⊕
s>0

Ms
`

Here P≥s acts non-trivially and P>s acts triv-
ially on Ms

` . The Swan exponent of M is

sp(M) =
∑
s>0

dim(Ms
` )s

The exponent of M is cp(M) = τp(M)+sp(M).



Write M
p∼M ′ if M`

∼= M ′` as P -representations.
Elementary group theory then says an equiva-
lent condition is M/` ∼= M ′/` as P -representations.
Hence

M
`≡M ′ ?

=⇒M
p∼M ′

Only the conductor N =
∏
p p

cp appears in the
functional equation for L(M, s). However it is
good to focus on the sp part of cp because of
the stability (?). “Wild ramification is some-
times easier than tame ramification.”

Examples. The splitting field K of

x8 − 6x4 + 4x2 − 3

has Gal(K/Q) = GL2(3). The quotient filtra-
tion is

D
2
⊃ I

3
⊃ P≥1/3 22

⊃ P ∗
2
⊃ P>1/2

‖ ‖ ‖ ‖ ‖
GL2(3) ⊃ SL2(3) ⊃ Q8 ⊃ C2 ⊃ {e}

with P ∗ = P>1/3 = P≥1/2. For both M1 and
M3, this forces s2 = 1/2 + 1/2 = 1 and τ2 = 2
so that c2 = 3.



4. HGMs in M(Q,Q). Indices and matrices.
For

f(x) = xd + c1x
d−1 + · · ·+ cd,

let

C(f) =



0 0 · · · 0 0 −cd
1 0 · · · 0 0 −cd−1
... ... ... ... ...

0 0 · · · 0 0 −c3
0 0 · · · 1 0 −c2
0 0 · · · 0 1 −c1


be its companion matrix. Let

A = [a1, a2, . . .] and B = [b1, b2, . . .]

be such that

f∞(x) =
∏
i

Φai(x) and f0(x) =
∏
j

Φbj(x)

have the same degree d. Put

g∞ = C(f∞) and g0 = C(f0).

Assume for several slides that A and B are dis-
joint. In this case, < g∞, g0 > acts absolutely
irreducibly on Qd.



Monodromy Representations. Define g1 by

g0g1g∞ = 1. Let T = P1 − {0,1,∞}. View

(g0, g1, g∞) as giving a representation of the

fundamental group

π1(T (C),1/2) = 〈γ0, γ1, γ∞|γ0γ1γ∞ = 1〉.

The representation corresponds to an abso-

lutely irreducible local system H(A,B, t) of Q-

vector spaces over T (C). (The local system

underlies classical hypergeometric functions, e.g.

∞∑
n=0

(
1
5

)
n

(
2
5

)
n

(
3
5

)
n

(
4
5

)
n

n!n!
(

1
6

)
n

(
5
6

)
n

tn

for A = [5] and B = [1,1,6].)

Hypergeometric Motives. For t ∈ T (Q) =

Q× − {1}, the vector space H(A,B, t) is natu-

rally a degree d motive in M(Q,Q). Also one

naturally has a motive H(A,B,1) (which we

won’t mention again until §7).



Hodge numbers. Hodge numbers are deter-
mined by how the roots of f∞(x) and f0(x)
intertwine on the unit circle. For example, for
(A,B) = ([2,2,8], [3,3,6]), the diagram

A:

B:

1

8

1

6

1

3

1

3

3

8

1

2

1

2

5

8

2

3

2

3

5

6

7

8
Hodge

1

2

2

1

yields the Hodge vector

(h3,0, h2,1, h1,2, h0,3) = (1,2,2,1).

Both extremes are particularly interesting: com-
plete intertwining yields

h0,0 = (d).

Complete separation yields

(hd−1,0, . . . , h0,d−1) = (1,1 . . . ,1,1).

Signatures. Action of Gal(C/R) on H(A,B, t)
is known, completing the determination of the
∞-factor L∞(H(A,B, t), s).



Monodromy groups. Hodge numbers are al-

ways normalized by requiring Hodge vectors

of the form (hw,0, . . . , h0,w) with hw,0 > 0. If

w = 0, then monodromy groups 〈g∞, g0〉 are fi-

nite. If w > 0 and gcd(a1, . . . , b1, . . .) = 1, then

Zariski closures of monodromy groups are

Symplectic Spd, if w is odd,

Orthogonal Od, if w is even.

Similar but more complicated statements hold

for mod ` monodromy groups and motivic Ga-

lois groups of specializations.

Types of primes. A prime p is called very bad

for (A,B, u/v) if it divides an index in A or B.

It is called slightly bad if it is not very bad, but

it divides uv(u−v). It is called good otherwise.

Good primes are unramified in H(A,B, t). Slightly

bad primes are at most tamely ramified. Very

bad primes are typically wildly ramified.



Frobenius traces. Frobenius traces and hence

good factors Lp(H(A,B, t), s) are given by an

efficient formula. As a special case, for odd

prime powers q define functions on F×q :

m1(t, q) =

(
1− t
q

)
(Legendre Symbol),

md(t, q) = −
∑
u∈F×q

md−1( tu, q)m1(u, q).

Then, for t ∈ Q×− {1} reducing to an element

of F×p ,

Trace
(
Frq|H([2d], [1d], t)

)
= md(t, q).

Modifications of the general formula work for

slightly bad primes and for t = 1.

Earlier examples.

M1 = H([2,2], [1,1],9), so ap = m2(9, p),
M3 = H([24], [14],1), so bp = m4(1, p)− p.



Examples from trinomials. For positive in-
tegers b and β, put

a = b+ β,

g = gcd(b, β),

d = a− g.
Take

A = Divs(a)−Divs(g)

B = Divs(b) + Divs(β)−Divs(g)

Then T (b, β) := H(A,B) is a motivic family
with unique Hodge number h0,0 = d. It arises
from trinomial covers of P1.

Example. T (4,1) = H([5], [4,2,1]). Indices
really do intertwine:

[5]: 1
5

2
5

3
5

4
5

[4,2,1]: 0
1

1
4

1
2

3
4

For t ∈ Q× − {1}, trinomials enter via

Xt = Spec
(
Q[x]/(x5 − 5tx− 4t)

)
,

H0(Xt(C),Q) = T (4,1, t)⊕ Q in M(Q,Q).



More weight zero examples. Beukers and

Heckman classified all finite monodromy exam-

ples, with Weyl groups figuring prominently:

W (E6) : BH45−BH49,

W (E7) : BH58−BH62,

W (E8) : BH63−BH77.

We have equations for almost all these covers.

Example. BH45 = H([3,12], [1,2,8]) has in-

dices that really do intertwine:

[3,12]: 1
12

1
3

5
12

7
12

2
3

11
12

[1,2,8]: 0
1

1
8

3
8

1
2

5
8

7
8

Governing polynomial is

f(t, x) =

t24x3
(
x2 − 3

)12

−39(x− 2)(x− 1)8
(
x2 − 2x− 1

)8
.



Uniform normalization. For §5, an alterna-

tive normalization is needed, where h(A,B) is

the “Tate twist” of H(A,B) which has weight

0 or 1.

Degenerate cases. Also for §5, It is con-

venient to define h(A,B, t) also when there is

overlap between A and B. Write

A = A′+ [cm1
1 , . . . , c

mk
k ],

B = B′+ [cm1
1 , . . . , c

mk
k ].

Then, by definition,

h(A,B, t) =

h(A′, B′, t)
⊕ k⊕

i=1

mk−1⊕
j=0

H0
prim(Xci(C),Q(j)),

where Xci = Spec(Q[x]/(xci − t)).

We call h(A′, B′) the core of h(A,B).



5. Reduction of HGMs to M(Q,F`). Let `
be a prime. If c = u`k with u coprime to ` then

Φc(x)
`≡ Φu(x)φ(`k).

Thus the monodromy representation of H(A,B, t)
does not change modulo ` when one “kills `”
and thereby passes to the associated `-free
family H(A`, B`, t). In the uniform normaliza-
tion, Frobenius traces do not change modulo
` either and for t ∈ Q×,

h(A,B, t)
`≡ h(A`, B`, t).

as semisimple Galois representations.

Examples:

h([5], [1,1,6])
2≡ h([5], [1,1,3]),

h([5], [1,1,6])
3≡ h([5], [1,1,2,2]),

h([5], [1,1,6])
5≡ h([1,1,1,1], [1,1,6]).

The `-free families on the right are often de-
generate, making their analysis reduce to HGMs
of lower degree.



The prime ` being disallowed in indices, there
aren’t so many mod ` families in low degrees
and it is reasonable to tabulate them.

Mod 2 hypergeometric families in rank ≤ 7
Ram for §6

Label M A B 3 5 7
0 1 − −

T (2,1) O−2 (2) 3 11 2a
T (4,2) O+

4 (2) 33 1111 4a
T (3,2) O−4 (2) 5 311 2a 4a
•T(4, 1)• O−4 (2) 5 1111 4a
T (5,1) Sp4(2) 5 33 4a 4a
T (6,3) S3 oA3 9 3311 6b
T (5,2) S7 7 511 4a 6a
T (6,1) S7 7 3311 4a 6a
T (4,3) S7 7 31111 2a 6a
T (7,1) O+

6 (2) 7 111111 6a
T (5,3) O+

6 (2) 53 111111 2a 4a
•6BH45• O−6 (2) 333 111111 6e
6BH46 O−6 (2) 333 511 6e 4a
6BH47 O−6 (2) 9 111111 6d
6BH48 O−6 (2) 9 31111 6c
6BH49 O−6 (2) 9 511 6d 4a
7BH58 Sp6(2) 9 333 6a
7BH59 Sp6(2) 9 53 6c 4a
7BH60 Sp6(2) 9 7 6d 6a
7BH61 Sp6(2) 7 333 6e 6a
7BH62 Sp6(2) 7 53 2a 4a 6a



Mod 3 hypergeometric families in ranks ≤ 4
Ram for §6

Label M A B 2 5
13A O1(3) 2 1 1A
T (4,2) O−2 (3) 4 21 2A
31,31,22 Sp2(3) 4 11 2a
31,31,31 Sp2(3) 22 11 2b
T (3,1) O3(3) 42 111 3A
T (3,3) O+

3 (3) 222 111 3B
T (4,4) 64 8 421 4A
•T(4, 1)• 120 5 421 3A 4a
T (3,2) 120 5 2111 1A 4a
43D 384 8 2111 4B
4BH37 576 44 2111 4C
T (5,1) O4(3)− 10 2111 3B 4a
43a 1152 8 44 4a
43b 1152 8 2211 4d
43c 1152 44 2211 4f
4BH24 Sp4(3) 2222 1111 4h
4BH25 Sp4(3) 422 1111 4g
4BH26 Sp4(3) 44 1111 4e
4BH27 Sp4(3) 8 411 4b
4BH28 Sp4(3) 8 1111 4c
4BH29 Sp4(3) 10 5 4h
4BH30 Sp4(3) 5 44 4e 4a
4BH31 Sp4(3) 8 5 4c 4a
4BH32 Sp4(3) 5 2211 2b 4a
4BH33 Sp4(3) 10 411 4g 4a
4BH34 Sp4(3) 5 411 2a 4a
4BH35 Sp4(3) 5 1111 4a
4BH36 Sp4(3) 10 1111 4h 4a



Mod 3 hypergeometric families in rank 5
Ram for §6

Label M A B 2 5
T (5,5) 25.5 10,2 51 5F
T (8,2) 24.S5 82 51 5C 4a
T (6,4) 25.S5 10,2 4111 5E 4a
5BH41 O5(3)∗ 442 11111 5D
5BH42 O5(3)∗ 442 51 5D 4a
5BH43 O5(3)∗ 10,2 11111 5F 4a
5BH44 O5(3)∗ 22222 11111 5F
•6BH45• O5(3)+ 82 441 5A
6BH46 O5(3)+ 52 441 4C 4a
6BH47 O5(3)+ 4222 11111 5E
6BH48 O5(3)+ 82 11111 5C
6BH49 O5(3)+ 52 11111 1A 4a
N1 O5(3) 82 4111 5B
N2 O5(3) 52 81 4B 4a
N3 O5(3) 52 101 3B
N4 O5(3) 52 4111 2A 4a

We have computed a corresponding cover for

almost all of the Galois representations just

listed, many having been already seen in char-

acteristic zero.



6. Analysis of HGMs at p. Let p be a prime.

One can kill all ` 6= p in turn to get from

a given H(A,B, t) to its associated p-primary

H(Ap, Bp, t). The original and new motives

have the same wild p-adic ramification:

H(A,B, t)
p∼ H(Ap, Bp, t).

Example with no degree drop at each p:

Type

H([5], [12])
2∼ H([1,1,1,1], [4,4]) 4e

H([5], [12])
3∼ H([1,1,1,1], [3,3]) 4a

H([5], [12])
5∼ H([5], [1,1,1,1]) 4a

Example with full degree drop at each p:

Type

H([3,2,2], [6,1,1])
2∼ H([1,1,2,2], [1,1,2,2]) 0

H([3,2,2], [6,1,1])
3∼ H([1,1,3], [1,1,3]) 0

Most examples have an intermediate behavior

depending on p.



All examples in low degrees can be studied via
explicitly computed covers:

Possibilities for 2-adic ramification in degrees ≤ 5
L A B 1 2 3 4 5 6 7 Mod 3
0 − − 1 7 26

1A 2 1 1 1 2 4 10 21 46
2A 4 21 1 1 3 5 12 24
2a 4 11 2 10 50
2b 22 11 3 8 46
3A 42 111 2 4 8 20 42
3B 222 111 3 4 7 16 39
4A 8 421 1 1 3 5 T (8,4)
4B 8 2111 2 4 6 16 43D
4C 44 2111 4 8 12 32 4BH37
4a 8 44 2 4 43a
4b 8 411 2 10 4BH27
4c 8 1111 4 16 4BH28
4d 8 2211 3 8 43b
4e 44 1111 8 32 4BH26
4f 44 2211 6 16 43c
4g 422 1111 8 40 4BH33
4h 2222 1111 10 32 4BH24
5A 82 441 2 4 6 •6BH45•
5B 82 4111 2 4 8 N1
5C 82 11111 4 8 12 T (8,2)
5D 442 11111 8 16 24 5BH41
5E 4222 11111 8 16 32 T (6,4)
5F 22222 11111 10 16 26 T (5,5)
(Lower case in L: symplectic. Capital: orthogonal.)



Possibilities for p-adic ramification in degrees ≤ 7

3-adic ramification
L A B 1 2 3 4 5 6 7 Mod 2
0 − − 1 4 4 30 25 135 102

2a 3 11 4 4 32 28 216 164 T (2,1)
4a 33 1111 28 24 124 96 T (4,2)
6a 9 333 6 12 7BH58
6b 9 3311 16 16 T (6,3)
6c 9 31111 24 24 6BH47
6d 9 111111 30 24 6BH48
6e 333 111111 90 72 6BH45

5-adic ramification
L A B 1 2 3 4 5 6 7 Mod 2
0 − − 1 8 8 68 53 425 326

4a 5 1111 22 24 216 184 •T(4, 1)•

7-adic ramification
L A B 1 2 3 4 5 6 7 Mod 2
0 − − 1 8 8 90 77 565 434

6a 7 111111 76 76 T (6,1)

Possibilities for wild p-adic ramification in a

given degree d decrease rapidly with p. E.g.

in degree seven for p = 2, 3, 5, 7 there are 13,

8, 2, 2 possibilities for the p-core.



p-adic ramification as a function of t. For
a family H(A,B), define

d∞ =
∑
p|a φ(a), d0 =

∑
p|b φ(b),

s∞ =
∑
p|a s(a), s0 =

∑
p|b s(b).

where

s(a) = φ(a)

(
ordp(a) +

1

p− 1

)
.

Define a “ramp function” r(k) as indicated:

k

s

rHkL=s¥

rHkL=s0

r'HkL=-1

Hs¥ ³ s0L

d¥ È d0

Conjecture (with FRV). The Swan conduc-
tor of H(A,B, upk) is at most r(k). If k is co-
prime to p then one has equality, there being
exactly d∞ or d0 wild slopes as indicated.



There are other general patterns, but compu-
tation suggests that a universal formula cover-
ing all cases would be complicated.

Example. for d odd, H([2d], [d], t) can be an-
alyzed via 22dxd(x− 1)d + t = 0. Then conclu-
sions about 2-wild ramification can be trans-
ferred to other motives like H([2d], [1d], t). The
case d = 33, with c2 as a function of t = u2k:

-100 -50 50 100

20

40

60

80

100

A black dot is above k if u does not matter.
Otherwise a green dot indicates u ≡ 1 (4) and
a blue dot indicates u ≡ 3 (4).



7. Examples. For uniformity: all families are
symplectic with Hodge vector (1,1, . . . ,1,1);
all specializations have wild L-factors Lp(M, s) =
1. All L-functions are numerically checked via
CheckFunctionalEquation to high precision.

Wild at 3. Some H([3d/2], [1d], t), all with
conductor N = 2a3b with a ∈ {0,1}.

d \ t 1/9 1/3 −1/3 1 −1 3 −3 9

2 5 5 5 3 4 4 3

4 10 10 10 3 6 9 9 8

6 15 15 15 5 7 14 14 13

8 9 12

10 12 (exponents b)

The order of central vanishing is indicated by
the number of boxes. The underlined bold en-
tries are not covered by the ramp formula.

Example. The motive M = H([34], [18],1) has
Hodge vector (1,1,1,0,0,1,1,1), Galois group
CSp6, conductor 39, and rank two with

L′′(M,4) ≈ 6.494840100810020078040772



Wild at 2. Specializations of H([2d], [1d], t)

with conductor 2a3b with b ∈ {0,1}:

−1
8

1
4

1
2 −1

2 1 −1 −2 2 4 −8

2 6 3 6 6 5 5 5 3 3
4 12 7 12 12 3 9 11 11 7 9
6 18 11 18 18 6 13 17 17 11 15
8 15 7 17 15

10 12

12 13 (exponents a)

Here H([2d], [1d], t) and H([2d], [1d],1/t) are twists

of one another, forcing a drop in Galois group

at t = −1 and a decomposition at t = 1.

Example. H([28], [18],1) = M2 ⊕M4 with

Hodge(M2) = (1,0,0,0,0,1)

Hodge(M4) = (1,0,1,0,0,1,0,1)

Conductor(M2) = 22

Conductor(M4) = 25

and M2 corresponding to η12
2 ∈ S6(Γ0(4)).



Wild at 2 and 3. When several wild primes are

involved, one often knows the L-function com-

pletely from congruences. However the range

of degrees that can be analytically studied is

smaller because conductors are larger.

Example. M = H([33], [26],1) has Hodge vec-

tor (1,1,0,0,1,1), motivic Galois group CSp4,

and conductor 2635. All initial good ap are

negative:

p 5 7 11 13 17 19 23
ap −6 −126 −477 −883 −426 −1898 −4692

From 8000 coefficients and two minutes of

computation, it has numeric rank two with

L′′(M,3) ≈ 12.6191334778913437117846768

Longer run times and less precision make many

more L(M, s) in computational reach.



Some reports by other group members avail-

able online:

Henri Cohen. L-functions of Hypergeometric

Motives (slides).

Fernando Rodriguez Villegas. Hypergeometric

Motives (video).

Mark Watkins. What I know about Hypergeo-

metric Motives (text).

Some key references:

Yves André. Pour une théorie inconditionnelle

de motifs. Inst. Hautes Études Sci. Publ. Math.

No. 83 (1996), 5–49.

Frits Beukers and Gert Heckman. Monodromy

for the hypergeometric function nFn−1. Invent.

Math. 95 (1989), no. 2, 325–354.



Alessio Corti and Vasily Golyshev. Hypergeo-

metric equations and weighted projective spaces.

Sci. China Math. 54 (2011), no. 8, 1577–1590.

Nicholas M. Katz. Exponential sums and dif-

ferential equations. Annals of Mathematics

Studies, 124.

A key software resource:

John Cannon, et al. MAGMA. Especially the

Hypergeometric Motive package (Mark Watkins)

and the L-function package (Tim Dokchitser).


