Hypergeometric motives
 and their wild ramification
 David P. Roberts
 University of Minnesota, Morris

Goal of group project: illustrate the theory of motives with a well-organized and broad collection of examples having completely computed L-functions with numerically checked functional equations.

Review of generalities with two examples:

1. Motives in $M(\mathbb{Q}, \mathbb{Q})$
2. Galois representations in $M\left(\mathbb{Q}, \mathbb{F}_{\ell}\right)$
3. Wild ramification at p

Explicitation for hypergeometric motives:
4. HGMs in $M(\mathbb{Q}, \mathbb{Q})$
5. Their reduction to $M\left(\mathbb{Q}, \mathbb{F}_{\ell}\right)$
6. Their wild ramification at p
7. Examples

1. Motives in $M(\mathbb{Q}, \mathbb{Q})$. In the 1990 s André modified Grothendieck's original 1960s definitions to get an unconditional and useful theory of pure motives. In particular,

- There is a reductive proalgebraic group \mathbb{G}, called the absolute motivic Galois group of \mathbb{Q}. It surjects to $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$.
- The category $M(\mathbb{Q}, \mathbb{Q})$ of motives "over \mathbb{Q} with coefficients in \mathbb{Q} " is the category of representations of \mathbb{G} on finite dimensional \mathbb{Q}-vector spaces, thus semisimple.
- For X a smooth projective variety over \mathbb{Q}, the cohomology groups $H^{w}(X(\mathbb{C}), \mathbb{Q})$ are objects in $M(\mathbb{Q}, \mathbb{Q})$ and they generate the whole category.
- \mathbb{C}^{\times}sits naturally in $\mathbb{G}(\mathbb{R})$. On a motive M, it gives a Hodge decomposition $M \otimes \mathbb{C}=$ $\oplus M^{p, q}$ with \mathbb{C}^{\times}acting by $z^{p} \bar{z}^{q}$ on $M^{p, q}$.
- For each prime ℓ, there is a section $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow \mathbb{G}\left(\mathbb{Q}_{\ell}\right)$.

To motivically understand a given X, one should

1: Express each cohomology group as a sum of irreducibles, $H^{w}(X(\mathbb{C}), \mathbb{Q})=\bigoplus_{i} M_{w, i}$.

2: Study each appearing M individually, starting with computing its motivic Galois group $G_{M}:=\operatorname{Image}(\mathbb{G}) \subseteq G L_{M}$.

In Step 2, the original variety X may fade into the background. For example, one may already have encountered M in the study of another variety.

Famous conjectures in arithmetic geometry can be studied for individual motives:

- (Hodge) $\rho_{\infty}: \mathbb{C}^{\times} \rightarrow G_{M}(\mathbb{R})$ has \mathbb{Q}-Zariski dense image in the identity component G_{M}^{0}.
- (Tate) $\rho_{\ell}: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \rightarrow G_{M}\left(\mathbb{Q}_{\ell}\right)$ has open image for each ℓ.
- (Compatibility) L-functions $L(M, s)$ and conductors N defined via ℓ-adic cohomology are independent of ℓ. [We tacitly assume compatibility to simplify statements]
- (Automorphy) For $M \subseteq H^{w}(X(\mathbb{C}), \mathbb{Q})$, the L-function $L(M, s)$ is automorphic and hence satisfies a functional equation with respect to $s \mapsto w+1-s$.

The conjectures are known for many motives, sometimes easily, sometimes by deep theorems.

Examples: Let

$$
\begin{aligned}
& X_{1}: y^{2}=x(x-1)(x-9) \quad \text { (Elliptic Curve 24.a3), } \\
& X_{3}: y^{2}=x_{1} x_{2} x_{3}\left(x_{1}+x_{2}\right)\left(x_{2}+x_{3}\right)\left(x_{1}+1\right)\left(x_{3}+1\right),
\end{aligned}
$$

and take

$$
\begin{array}{ll}
M_{1}=H^{1}\left(X_{1}(\mathbb{C}), \mathbb{Q}\right) \quad\left(\text { so } \quad\left(h^{1,0}, h^{0,1}\right)=(1,1)\right), \\
M_{3}=H^{3}\left(X_{3}(\mathbb{C}), \mathbb{Q}\right) \quad\left(\text { so }\left(h^{3,0}, \ldots, h^{0,3}\right)=(1,0,0,1)\right) .
\end{array}
$$

Put

$$
\begin{aligned}
& L\left(M_{1}, s\right)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}=1 \cdot \frac{1}{1+3^{-s}} \prod_{p \geq 5} \frac{1}{1-a_{p} p^{-s}+p^{1-s}}, \\
& L\left(M_{3}, s\right)=\sum_{n=1}^{\infty} \frac{b_{n}}{n^{s}}=1 \cdot \prod_{p \geq 3} \frac{1}{1-b_{p} p^{-s}+p^{3-s}} .
\end{aligned}
$$

Then automorphy holds via

$$
\begin{array}{ll}
\sum_{n=1}^{\infty} a_{n} q^{n}=\eta_{12} \eta_{6} \eta_{4} \eta_{2} & \in S_{2}\left(\Gamma_{0}(24)\right), \\
\sum_{n=1}^{\infty} b_{n} q^{n}=\eta_{4}^{4} \eta_{2}^{4} & \in S_{4}\left(\Gamma_{0}(8)\right),
\end{array}
$$

where $\eta_{k}=q^{k / 24} \Pi_{j=1}^{\infty}\left(1-q^{k j}\right)$.
2. Galois representations in $M\left(\mathbb{Q}, \mathbb{F}_{\ell}\right)$. Let $M\left(\mathbb{Q}, \mathbb{F}_{\ell}\right)$ be the category of representations of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ on finite-dimensional $\mathbb{F}_{\ell^{-}}$-vector spaces. A motive M in $M(\mathbb{Q}, \mathbb{Q})$ determines a semisimple object M / ℓ in $M\left(\mathbb{Q}, \mathbb{F}_{\ell}\right)$ up to isomorphism. We write $M \stackrel{\ell}{\equiv} M^{\prime}$ for $M / \ell \cong M^{\prime} / \ell$.
Examples. Here $a_{p} \stackrel{3}{\underline{=}} b_{p}$ for all primes and so $M_{1} \stackrel{3}{\equiv} M_{3} . V i a G L_{2}\left(\mathbb{F}_{3}\right) \subset S_{8}$ the common mod 3 Galois representation corresponds to

$$
f(x)=x^{8}-6 x^{4}+4 x^{2}-3
$$

Some data illustrating the connections:

p	2	3	5	7	11	13	17	19	23	29
a_{p}	0	-1	-2	0	4	-2	2	-4	-8	6
b_{p}	0	-4	-2	24	-44	22	50	44	-56	198
\bar{a}_{p}	0	2	1	0	1	1	2	2	1	0
\bar{p}	2	0	2	1	2	1	2	1	2	2
λ_{p}			8	44	8	62	8	62	8	$2^{3} 1^{2}$

Here λ_{p} is the factorization partition of $f(x) \in$ $\mathbb{F}_{p}[x]$. It is correlated with $\left(\bar{a}_{p}, \bar{p}\right) \in \mathbb{F}_{3} \times \mathbb{F}_{3}^{\times}$:

\bar{a}_{p}	0	1	1	2	2	0	1	2
\bar{p}	1	1	1	1	1	2	2	2
λ_{p}	44	62	2^{4}	$3^{2} 1^{2}$	1^{8}	$2^{3} 1^{2}$	8	8

3. Wild ramification at p. Fix a decomposition group $D=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right) \subset \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ with inertial subgroup I, wild inertia group P, and canonical filtration

$$
D \stackrel{\widehat{\mathbb{U}}}{\supset} I \stackrel{\hat{\mathbb{Z}}^{p}}{\supset} \supset \supset \cdots P^{\geq s} \stackrel{\mathbb{F}_{p}^{\infty}}{\supset} P^{>s} \supset \cdots
$$

with s running over positive rationals. Let $\operatorname{Fr}_{p} \in D$ generate $D / I \cong \mathbb{Z}$. For M in $M(\mathbb{Q}, \mathbb{Q})$ its local L-factor is

$$
L_{p}(M, s)=\frac{1}{\operatorname{det}\left(1-\mathrm{Fr}_{p} p^{-s} \mid M_{\ell}^{I}\right)}
$$

The tame exponent of M is $\tau_{p}(M)=\operatorname{dim}\left(M_{\ell} / M_{\ell}^{I}\right)$.
One has a canonical decomposition into summands indexed by Swan slopes:

$$
M_{\ell}=M_{\ell}^{P} \bigoplus \bigoplus_{s>0} M_{\ell}^{s}
$$

Here $P^{\geq s}$ acts non-trivially and $P^{>s}$ acts trivially on M_{ℓ}^{s}. The Swan exponent of M is

$$
s_{p}(M)=\sum_{s>0} \operatorname{dim}\left(M_{\ell}^{s}\right) s
$$

The exponent of M is $c_{p}(M)=\tau_{p}(M)+s_{p}(M)$.

Write $M \stackrel{p}{\sim} M^{\prime}$ if $M_{\ell} \cong M_{\ell}^{\prime}$ as P-representations. Elementary group theory then says an equivalent condition is $M / \ell \cong M^{\prime} / \ell$ as P-representations. Hence

$$
M \stackrel{\ell}{=} M^{\prime} \stackrel{\star}{\rightleftharpoons} M \stackrel{p}{\sim} M^{\prime}
$$

Only the conductor $N=\Pi_{p} p^{c_{p}}$ appears in the functional equation for $L(M, s)$. However it is good to focus on the s_{p} part of c_{p} because of the stability (\star). "Wild ramification is sometimes easier than tame ramification."

Examples. The splitting field K of

$$
x^{8}-6 x^{4}+4 x^{2}-3
$$

has $\operatorname{GaI}(K / \mathbb{Q})=G L_{2}(3)$. The quotient filtration is

with $P^{*}=P^{>1 / 3}=P^{\geq 1 / 2}$. For both M_{1} and M_{3}, this forces $s_{2}=1 / 2+1 / 2=1$ and $\tau_{2}=2$ so that $c_{2}=3$.

4. HGMs in $M(\mathbb{Q}, \mathbb{Q})$. Indices and matrices.

For

$$
f(x)=x^{d}+c_{1} x^{d-1}+\cdots+c_{d},
$$

let

$$
C(f)=\left(\begin{array}{rrrrrr}
0 & 0 & \cdots & 0 & 0 & -c_{d} \\
1 & 0 & \cdots & 0 & 0 & -c_{d-1} \\
\vdots & \vdots & & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & 0 & -c_{3} \\
0 & 0 & \cdots & 1 & 0 & -c_{2} \\
0 & 0 & \cdots & 0 & 1 & -c_{1}
\end{array}\right)
$$

be its companion matrix. Let

$$
A=\left[a_{1}, a_{2}, \ldots\right] \text { and } B=\left[b_{1}, b_{2}, \ldots\right]
$$

be such that

$$
f_{\infty}(x)=\prod_{i} \Phi_{a_{i}}(x) \text { and } f_{0}(x)=\prod_{j} \Phi_{b_{j}}(x)
$$

have the same degree d. Put

$$
g_{\infty}=C\left(f_{\infty}\right) \text { and } g_{0}=C\left(f_{0}\right) .
$$

Assume for several slides that A and B are disjoint. In this case, $\left\langle g_{\infty}, g_{0}\right\rangle$ acts absolutely irreducibly on \mathbb{Q}^{d}.

Monodromy Representations. Define g_{1} by $g_{0} g_{1} g_{\infty}=1$. Let $T=\mathbb{P}^{1}-\{0,1, \infty\}$. View (g_{0}, g_{1}, g_{∞}) as giving a representation of the fundamental group

$$
\pi_{1}(T(\mathbb{C}), 1 / 2)=\left\langle\gamma_{0}, \gamma_{1}, \gamma_{\infty} \mid \gamma_{0} \gamma_{1} \gamma_{\infty}=1\right\rangle .
$$

The representation corresponds to an absolutely irreducible local system $H(A, B, t)$ of \mathbb{Q} vector spaces over $T(\mathbb{C})$. (The local system underlies classical hypergeometric functions, e.g.

$$
\sum_{n=0}^{\infty} \frac{\left(\frac{1}{5}\right)_{n}\left(\frac{2}{5}\right)_{n}\left(\frac{3}{5}\right)_{n}\left(\frac{4}{5}\right)_{n}}{n!n!\left(\frac{1}{6}\right)_{n}\left(\frac{5}{6}\right)_{n}} t^{n}
$$

for $A=[5]$ and $B=[1,1,6]$.)

Hypergeometric Motives. For $t \in T(\mathbb{Q})=$ $\mathbb{Q}^{\times}-\{1\}$, the vector space $H(A, B, t)$ is naturally a degree d motive in $M(\mathbb{Q}, \mathbb{Q})$. Also one naturally has a motive $H(A, B, 1)$ (which we won't mention again until §7).

Hodge numbers. Hodge numbers are determined by how the roots of $f_{\infty}(x)$ and $f_{0}(x)$ intertwine on the unit circle. For example, for $(A, B)=([2,2,8],[3,3,6])$, the diagram

yields the Hodge vector

$$
\left(h^{3,0}, h^{2,1}, h^{1,2}, h^{0,3}\right)=(1,2,2,1) .
$$

Both extremes are particularly interesting: complete intertwining yields

$$
h^{0,0}=(d) .
$$

Complete separation yields

$$
\left(h^{d-1,0}, \ldots, h^{0, d-1}\right)=(1,1 \ldots, 1,1) .
$$

Signatures. Action of $\operatorname{Gal}(\mathbb{C} / \mathbb{R})$ on $H(A, B, t)$ is known, completing the determination of the ∞-factor $L_{\infty}(H(A, B, t), s)$.

Monodromy groups. Hodge numbers are always normalized by requiring Hodge vectors of the form ($h^{w, 0}, \ldots, h^{0, w}$) with $h^{w, 0}>0$. If $w=0$, then monodromy groups $\left\langle g_{\infty}, g_{0}\right\rangle$ are finite. If $w>0$ and $\operatorname{gcd}\left(a_{1}, \ldots, b_{1}, \ldots\right)=1$, then Zariski closures of monodromy groups are

Symplectic $S p_{d}, \quad$ if w is odd, Orthogonal O_{d}, \quad if w is even.

Similar but more complicated statements hold for mod ℓ monodromy groups and motivic Galois groups of specializations.

Types of primes. A prime p is called very bad for $(A, B, u / v)$ if it divides an index in A or B. It is called slightly bad if it is not very bad, but it divides $u v(u-v)$. It is called good otherwise.

Good primes are unramified in $H(A, B, t)$. Slightly bad primes are at most tamely ramified. Very bad primes are typically wildly ramified.

Frobenius traces. Frobenius traces and hence good factors $L_{p}(H(A, B, t), s)$ are given by an efficient formula. As a special case, for odd prime powers q define functions on \mathbb{F}_{q}^{\times}:

$$
\begin{aligned}
& m_{1}(t, q)=\left(\frac{1-t}{q}\right) \quad(\text { Legendre Symbol }) \\
& m_{d}(t, q)=-\sum_{u \in \mathbb{F}_{q}^{\times}} m_{d-1}\left(\frac{t}{u}, q\right) m_{1}(u, q)
\end{aligned}
$$

Then, for $t \in \mathbb{Q}^{\times}-\{1\}$ reducing to an element of \mathbb{F}_{p}^{\times},

$$
\operatorname{Trace}\left(\operatorname{Fr}_{q} \mid H\left(\left[2^{d}\right],\left[1^{d}\right], t\right)\right)=m_{d}(t, q) .
$$

Modifications of the general formula work for slightly bad primes and for $t=1$.

Earlier examples.

$$
\begin{array}{ll}
M_{1}=H([2,2],[1,1], 9), & \text { so } \quad a_{p}=m_{2}(9, p), \\
M_{3}=H\left(\left[2^{4}\right],\left[1^{4}\right], 1\right), & \text { so } \quad b_{p}=m_{4}(1, p)-p .
\end{array}
$$

Examples from trinomials. For positive integers b and β, put

$$
\begin{aligned}
& a=b+\beta, \\
& g=\operatorname{gcd}(b, \beta), \\
& d=a-g .
\end{aligned}
$$

Take

$$
\begin{aligned}
& A=\operatorname{Divs}(a)-\operatorname{Divs}(g) \\
& B=\operatorname{Divs}(b)+\operatorname{Divs}(\beta)-\operatorname{Divs}(g)
\end{aligned}
$$

Then $T(b, \beta):=H(A, B)$ is a motivic family with unique Hodge number $h^{0,0}=d$. It arises from trinomial covers of \mathbb{P}^{1}.

Example. $\quad T(4,1)=H([5],[4,2,1]) . \quad$ Indices really do intertwine:

For $t \in \mathbb{Q}^{\times}-\{1\}$, trinomials enter via

$$
\begin{aligned}
X_{t} & =\operatorname{Spec}\left(\mathbb{Q}[x] /\left(x^{5}-5 t x-4 t\right)\right), \\
H^{0}\left(X_{t}(\mathbb{C}), \mathbb{Q}\right) & =T(4,1, t) \oplus \mathbb{Q} \quad \text { in } M(\mathbb{Q}, \mathbb{Q})
\end{aligned}
$$

More weight zero examples. Beukers and Heckman classified all finite monodromy examples, with Weyl groups figuring prominently:

$$
\begin{array}{ll}
W\left(E_{6}\right): & B H 45-B H 49, \\
W\left(E_{7}\right): & B H 58-B H 62, \\
W\left(E_{8}\right): & B H 63-B H 77 .
\end{array}
$$

We have equations for almost all these covers.

Example. $B H 45=H([3,12],[1,2,8])$ has indices that really do intertwine:

$$
[3,12]: 0_{[1,2,8]:}^{0_{1}^{1}}{ }^{\frac{1}{12}} \frac{1}{8}^{\frac{1}{3}} \frac{3}{8}^{\frac{5}{12}} \frac{1}{2}^{\frac{7}{12}}{ }_{\frac{5}{8}}{ }^{\frac{2}{3}}{ }_{\frac{7}{8}}^{\frac{11}{12}}
$$

Governing polynomial is

$$
\begin{aligned}
& f(t, x)= \\
& \quad t 2^{4} x^{3}\left(x^{2}-3\right)^{12} \\
& \quad-3^{9}(x-2)(x-1)^{8}\left(x^{2}-2 x-1\right)^{8} .
\end{aligned}
$$

Uniform normalization. For §5, an alternative normalization is needed, where $h(A, B)$ is the "Tate twist" of $H(A, B)$ which has weight 0 or 1 .

Degenerate cases. Also for $\S 5$, It is convenient to define $h(A, B, t)$ also when there is overlap between A and B. Write

$$
\begin{aligned}
& A=A^{\prime}+\left[c_{1}^{m_{1}}, \ldots, c_{k}^{m_{k}}\right] \\
& B=B^{\prime}+\left[c_{1}^{m_{1}}, \ldots, c_{k}^{m_{k}}\right] .
\end{aligned}
$$

Then, by definition,
$h(A, B, t)=$

$$
h\left(A^{\prime}, B^{\prime}, t\right) \bigoplus \bigoplus_{i=1}^{k} \bigoplus_{j=0}^{m_{k}-1} H_{\mathrm{prim}}^{0}\left(X_{c_{i}}(\mathbb{C}), \mathbb{Q}(j)\right)
$$

where $X_{c_{i}}=\operatorname{Spec}\left(\mathbb{Q}[x] /\left(x^{c_{i}}-t\right)\right)$.
We call $h\left(A^{\prime}, B^{\prime}\right)$ the core of $h(A, B)$.
5. Reduction of HGMs to $M\left(\mathbb{Q}, \mathbb{F}_{\ell}\right)$. Let ℓ be a prime. If $c=u \ell^{k}$ with u coprime to ℓ then

$$
\Phi_{c}(x) \stackrel{\ell}{\equiv} \Phi_{u}(x)^{\phi\left(\ell^{k}\right)}
$$

Thus the monodromy representation of $H(A, B, t)$ does not change modulo ℓ when one "kills ℓ " and thereby passes to the associated ℓ-free family $H\left(A^{\ell}, B^{\ell}, t\right)$. In the uniform normalization, Frobenius traces do not change modulo ℓ either and for $t \in \mathbb{Q}^{\times}$,

$$
h(A, B, t) \stackrel{\ell}{=} h\left(A^{\ell}, B^{\ell}, t\right) .
$$

as semisimple Galois representations.
Examples:

$$
\begin{array}{lll}
h([5],[1, ~ 1, ~ 6]) & \stackrel{2}{=} h([5],[1,1,3]), \\
h([5],[1,1,6]) & \stackrel{3}{=} h([5],[1,1,2,2]), \\
h([5],[1,1,6]) & \stackrel{5}{=} h([1,1,1,1],[1,1,6]) .
\end{array}
$$

The ℓ-free families on the right are often degenerate, making their analysis reduce to HGMs of lower degree.

The prime ℓ being disallowed in indices, there aren't so many mod ℓ families in low degrees and it is reasonable to tabulate them.

Mod 2 hypergeometric families in rank ≤ 7						
				Ram for $\S 6$		
Label	M	A	B	3	5	7
0	1	-	-			
$T(2,1)$	$O_{2}^{-}(2)$	3	11	$2 a$		
$T(4,2)$	$O_{4}^{+}(2)$	33	1111	$4 a$		
$T(3,2)$	$O_{4}^{-}(2)$	5	311	$2 a$	$4 a$	
\bullet T(4, 1)•	$O_{4}^{-}(2)$	5	1111		$4 a$	
$T(5,1)$	$S p_{4}(2)$	5	33	$4 a$	$4 a$	
$T(6,3)$	$S_{3} 2 A_{3}$	9	3311	$6 b$		
$T(5,2)$	S_{7}	7	511		$4 a$	$6 a$
$T(6,1)$	S_{7}	7	3311	$4 a$		$6 a$
$T(4,3)$	S_{7}	7	31111	$2 a$		$6 a$
$T(7,1)$	$O_{6}^{+}(2)$	7	111111			$6 a$
$T(5,3)$	$O_{6}^{+}(2)$	53	111111	$2 a$	$4 a$	
$\bullet 6 B H 45 \bullet$	$O_{6}^{-}(2)$	333	111111	$6 e$		
$6 B H 46$	$O_{6}^{-}(2)$	333	511	$6 e$	$4 a$	
$6 B H 47$	$O_{6}^{-}(2)$	9	111111	$6 d$		
$6 B H 48$	$O_{6}^{-}(2)$	9	31111	$6 c$		
$6 B H 49$	$O_{6}^{-}(2)$	9	511	$6 d$	$4 a$	
$7 B H 58$	$S p_{6}(2)$	9	333	$6 a$		
$7 B H 59$	$S p_{6}(2)$	9	53	$6 c$	$4 a$	
$7 B H 60$	$S p_{6}(2)$	9	7	$6 d$		$6 a$
$7 B H 61$	$S p_{6}(2)$	7	333	$6 e$		$6 a$
$7 B H 62$	$S p_{6}(2)$	7	53	$2 a$	$4 a$	$6 a$

Mod 3 hypergeometric families in ranks ≤ 4					
				Ram for $\S 6$	
Label	M	A	B	2	5
$1^{3} A$	$O_{1}(3)$	2	1	$1 A$	
$T(4,2)$	$O_{2}^{-}(3)$	4	21	$2 A$	
$31,31,22$	$S p_{2}(3)$	4	11	$2 a$	
$31,31,31$	$S p_{2}(3)$	22	11	$2 b$	
$T(3,1)$	$O_{3}(3)$	42	111	$3 A$	
$T(3,3)$	$O_{3}^{+}(3)$	222	111	$3 B$	
$T(4,4)$	64	8	421	$4 A$	
$\bullet \mathbf{T}(4,1) \bullet$	120	5	421	$3 A$	$4 a$
$T(3,2)$	120	5	2111	$1 A$	$4 a$
$4^{3} D$	384	8	2111	$4 B$	
$4 B H 37$	576	44	2111	$4 C$	
$T(5,1)$	$O_{4}(3)^{-}$	10	2111	$3 B$	$4 a$
$4^{3} a$	1152	8	44	$4 a$	
$43 b$	1152	8	2211	$4 d$	
$43 c$	1152	44	2211	$4 f$	
$4 B H 24$	$S p_{4}(3)$	2222	1111	$4 h$	
$4 B H 25$	$S p_{4}(3)$	422	1111	$4 g$	
$4 B H 26$	$S p_{4}(3)$	44	1111	$4 e$	
$4 B H 27$	$S p_{4}(3)$	8	411	$4 b$	
$4 B H 28$	$S p_{4}(3)$	8	1111	$4 c$	
$4 B H 29$	$S p_{4}(3)$	10	5	$4 h$	
$4 B H 30$	$S p_{4}(3)$	5	44	$4 e$	$4 a$
$4 B H 31$	$S p_{4}(3)$	8	5	$4 c$	$4 a$
$4 B H 32$	$S p_{4}(3)$	5	2211	$2 b$	$4 a$
$4 B H 33$	$S p_{4}(3)$	10	411	$4 g$	$4 a$
$4 B H 34$	$S p_{4}(3)$	5	411	$2 a$	$4 a$
$4 B H 35$	$S p_{4}(3)$	5	1111		$4 a$
$4 B H 36$	$S p_{4}(3)$	10	1111	$4 h$	$4 a$

Mod 3 hypergeometric families in rank 5					
				Ram for $\S 6$	
Label	M	A	B	2	5
$T(5,5)$	$2^{5} .5$	10,2	51	$5 F$	
$T(8,2)$	$2^{4} \cdot S_{5}$	82	51	$5 C$	$4 a$
$T(6,4)$	$2^{5} . S_{5}$	10,2	4111	$5 E$	$4 a$
$5 B H 41$	$O_{5}(3)^{*}$	442	11111	$5 D$	
$5 B H 42$	$O_{5}(3)^{*}$	442	51	$5 D$	$4 a$
$5 B H 43$	$O_{5}(3)^{*}$	10,2	11111	$5 F$	$4 a$
$5 B H 44$	$O_{5}(3)^{*}$	22222	11111	$5 F$	
$\bullet 6 B H 45 \bullet$	$O_{5}(3)^{+}$	82	441	$5 A$	
$6 B H 46$	$O_{5}(3)^{+}$	52	441	$4 C$	$4 a$
$6 B H 47$	$O_{5}(3)^{+}$	4222	11111	$5 E$	
$6 B H 48$	$O_{5}(3)^{+}$	82	11111	$5 C$	
$6 B H 49$	$O_{5}(3)^{+}$	52	11111	$1 A$	$4 a$
$N 1$	$O_{5}(3)$	82	4111	$5 B$	
$N 2$	$O_{5}(3)$	52	81	$4 B$	$4 a$
$N 3$	$O_{5}(3)$	52	101	$3 B$	
$N 4$	$O_{5}(3)$	52	4111	$2 A$	$4 a$

We have computed a corresponding cover for almost all of the Galois representations just listed, many having been already seen in characteristic zero.
6. Analysis of HGMs at p. Let p be a prime. One can kill all $\ell \neq p$ in turn to get from a given $H(A, B, t)$ to its associated p-primary $H\left(A_{p}, B_{p}, t\right)$. The original and new motives have the same wild p-adic ramification:

$$
H(A, B, t) \stackrel{p}{\sim} H\left(A_{p}, B_{p}, t\right) .
$$

Example with no degree drop at each p:

$$
\begin{array}{lclc}
H([5],[12]) & \stackrel{2}{\sim} & H([1,1,1,1],[4,4]) & \text { Type } \\
& \stackrel{3}{\sim} & H([1,1,1,1],[3,3]) & 4 a \\
H([5],[12]) & \stackrel{5}{\sim} & H([5],[1,1,1,1]) & 4 a
\end{array}
$$

Example with full degree drop at each p:

$$
\begin{array}{lclc}
& & \text { Type } \\
& \underset{\sim}{\sim} & H([1,1,2,2],[1,1,2,2]) & 0 \\
H([3,2,2],[6,1,1]) & \stackrel{\sim}{\sim} & H([1,1,3],[1,1,3]) & 0
\end{array}
$$

Most examples have an intermediate behavior depending on p.

All examples in low degrees can be studied via explicitly computed covers:

Possibilities for 2-adic ramification in degrees ≤ 5								
L	A	B	12	34	5	6	7	Mod 3
0	-	-	1	7		26		
1 A	2	1	11	24	10	21	46	
2 A	4	21	1	13	5	12	24	
$2 a$	4	11	2	10		50		
$2 b$	22	11	3	8		46		
3 A	42	111		24	8	20	42	
$3 B$	222	111		34	7	16	39	
4 A	8	421		1	1	3	5	$T(8,4)$
$4 B$	8	2111		2	4		16	$4^{3} \mathrm{D}$
4 C	44	2111		4	8		32	4 BH 37
$4 a$	8	44		2		4		$4^{3} a$
$4 b$	8	411		2		10		4 BH 27
$4 c$	8	1111		4		16		4 BH 28
$4 d$	8	2211		3		8		$4^{3} b$
$4 e$	44	1111		8		32		4 BH 26
$4 f$	44	2211		6		16		$4^{3} \mathrm{C}$
$4 g$	422	1111		8		40		4 BH 33
$4 h$	2222	1111		10		32		4 BH 24
$5 A$	82	441			2	4	6	$\bullet 6 \mathrm{BH} 45 \bullet$
$5 B$	82	4111			2	4	8	N1
$5 C$	82	11111			4	8	12	$T(8,2)$
$5 D$	442	11111			8	16	24	5BH41
$5 E$	4222	11111			8	16	32	$T(6,4)$
$5 F$	22222	11111			10	16	26	$T(5,5)$
(Lower case in L: symplectic. Capital: orthogonal.)								

Possibilities for p-adic ramification in degrees ≤ 7

3-adic ramification										
L	A	B	1	2	3	4	5	6	7	Mod 2
0	-	-	1	4	4	30	25	135	102	
$2 a$	3	11		4	4	32	28	216	164	$T(2,1)$
$4 a$	33	1111				28	24	124	96	$T(4,2)$
$6 a$	9	333						6	12	7BH58
$6 b$	9	3311						16	16	$T(6,3)$
$6 c$	9	31111						24	24	6BH47
$6 d$	9	111111						30	24	6 BH 48
$6 e$	333	111111						90	72	6 BH 45

5-adic ramification										
L	A	B	1	2	3	4	5	6	7	Mod 2
0	-	-	1	8	8	68	53	425	326	
$4 a$	5	1111				22	24	216	184	$\bullet \mathrm{T}(4,1) \bullet$

7-adic ramification										
L	A	B	1	2	3	4	5	6	7	Mod 2
0	-	-	1	8	8	90	77	565	434	
$6 a$	7	111111						76	76	$T(6,1)$

Possibilities for wild p-adic ramification in a given degree d decrease rapidly with p. E.g. in degree seven for $p=2,3,5,7$ there are 13, $8,2,2$ possibilities for the p-core.
p-adic ramification as a function of t. For a family $H(A, B)$, define

$$
\begin{aligned}
d_{\infty} & =\sum_{p \mid a} \phi(a), & d_{0}=\sum_{p \mid b} \phi(b), \\
s_{\infty} & =\sum_{p \mid a} s(a), & s_{0}=\sum_{p \mid b} s(b) .
\end{aligned}
$$

where

$$
s(a)=\phi(a)\left(\operatorname{ord}_{p}(a)+\frac{1}{p-1}\right) .
$$

Define a "ramp function" $r(k)$ as indicated:

Conjecture (with FRV). The Swan conductor of $H\left(A, B, u p^{k}\right)$ is at most $r(k)$. If k is coprime to p then one has equality, there being exactly d_{∞} or d_{0} wild slopes as indicated.

There are other general patterns, but computation suggests that a universal formula covering all cases would be complicated.

Example. for d odd, $H([2 d],[d], t)$ can be analyzed via $2^{2 d} x^{d}(x-1)^{d}+t=0$. Then conclusions about 2 -wild ramification can be transferred to other motives like $H\left(\left[2^{d}\right],\left[1^{d}\right], t\right)$. The case $d=33$, with c_{2} as a function of $t=u 2^{k}$:

A black dot is above k if u does not matter. Otherwise a green dot indicates $u \equiv 1$ (4) and a blue dot indicates $u \equiv 3$ (4).
7. Examples. For uniformity: all families are symplectic with Hodge vector ($1,1, \ldots, 1,1$); all specializations have wild L-factors $L_{p}(M, s)=$ 1. All L-functions are numerically checked via CheckFunctionalEquation to high precision.

Wild at 3. Some $H\left(\left[3^{d / 2}\right],\left[1^{d}\right], t\right)$, all with conductor $N=2^{a} 3^{b}$ with $a \in\{0,1\}$.

$d \backslash t$	$1 / 9$	$1 / 3$	$-1 / 3$	1	-1	3	-3	9
2	5	5	5		$\underline{3}$	4	4	3
4	10	10	10	$\underline{\mathbf{3}}$	$\underline{\mathbf{6}}$	9	9	8
6	15	15	15	$\underline{\mathbf{5}}$	$\underline{7}$	14	$\mathbf{1 4}$	13
8				$\underline{\mathbf{9}}$	$\underline{\mathbf{1 2}}$			
10				$\mathbf{1 2}$				
(exponents b)								

The order of central vanishing is indicated by the number of boxes. The underlined bold entries are not covered by the ramp formula.

Example. The motive $M=H\left(\left[3^{4}\right],\left[1^{8}\right], 1\right)$ has Hodge vector ($1,1,1,0,0,1,1,1$), Galois group $C S p_{6}$, conductor 3^{9}, and rank two with

$$
L^{\prime \prime}(M, 4) \approx 6.494840100810020078040772
$$

Wild at 2. Specializations of $H\left(\left[2^{d}\right],\left[1^{d}\right], t\right)$ with conductor $2^{a} 3^{b}$ with $b \in\{0,1\}$:

	$-\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{2}$	$-\frac{1}{2}$	1	-1	-2	2	4	-8
2	6	3	6	6		$\underline{5}$	5	5	3	3
4	12	7	12	12	3	$\underline{9}$	11	11	7	9
6	18	11	18	18	$\underline{6}$	13	17	17	11	15
8		15			$\underline{7}$	17			$\underline{15}$	
10					12					
12					13	(exponents a)				

Here $H\left(\left[2^{d}\right],\left[1^{d}\right], t\right)$ and $H\left(\left[2^{d}\right],\left[1^{d}\right], 1 / t\right)$ are twists of one another, forcing a drop in Galois group at $t=-1$ and a decomposition at $t=1$.

Example. $H\left(\left[2^{8}\right],\left[1^{8}\right], 1\right)=M_{2} \oplus M_{4}$ with

$$
\begin{aligned}
& \operatorname{Hodge}\left(M_{2}\right)=(1,0,0,0,0,1) \\
& \operatorname{Hodge}\left(M_{4}\right)=(1,0,1,0,0,1,0,1)
\end{aligned}
$$

$\operatorname{Conductor}\left(M_{2}\right)=2^{2}$
$\operatorname{Conductor}\left(M_{4}\right)=2^{5}$
and M_{2} corresponding to $\eta_{2}^{12} \in S_{6}\left(\Gamma_{0}(4)\right)$.

Wild at 2 and 3 . When several wild primes are involved, one often knows the L-function completely from congruences. However the range of degrees that can be analytically studied is smaller because conductors are larger.

Example. $M=H\left(\left[3^{3}\right],\left[2^{6}\right], 1\right)$ has Hodge vector ($1,1,0,0,1,1$), motivic Galois group $C S p_{4}$, and conductor $2^{6} 3^{5}$. All initial good a_{p} are negative:

p	5	7	11	13	17	19	23
a_{p}	-6	-126	-477	-883	-426	-1898	-4692

From 8000 coefficients and two minutes of computation, it has numeric rank two with

$$
L^{\prime \prime}(M, 3) \approx 12.6191334778913437117846768
$$

Longer run times and less precision make many more $L(M, s)$ in computational reach.

Some reports by other group members available online:

Henri Cohen. L-functions of Hypergeometric Motives (slides).

Fernando Rodriguez Villegas. Hypergeometric Motives (video).

Mark Watkins. What I know about Hypergeometric Motives (text).

Some key references:

Yves André. Pour une théorie inconditionnelle de motifs. Inst. Hautes Études Sci. Publ. Math. No. 83 (1996), 5-49.

Frits Beukers and Gert Heckman. Monodromy for the hypergeometric function ${ }_{n} F_{n-1}$. Invent. Math. 95 (1989), no. 2, 325-354.

Alessio Corti and Vasily Golyshev. Hypergeometric equations and weighted projective spaces. Sci. China Math. 54 (2011), no. 8, 1577-1590.

Nicholas M. Katz. Exponential sums and differential equations. Annals of Mathematics Studies, 124.

A key software resource:

John Cannon, et al. MAGMA. Especially the Hypergeometric Motive package (Mark Watkins) and the L-function package (Tim Dokchitser).

