Hypergeometric motives and their wild ramification David P. Roberts

University of Minnesota, Morris

Goal of group project: illustrate the theory of motives with a well-organized and broad collection of examples having completely computed L-functions with numerically checked functional equations.

Review of generalities with two examples:

- **1.** Motives in $M(\mathbb{Q}, \mathbb{Q})$
- 2. Galois representations in $M(\mathbb{Q}, \mathbb{F}_{\ell})$
- **3.** Wild ramification at *p*

Explicitation for hypergeometric motives:

- 4. HGMs in $M(\mathbb{Q},\mathbb{Q})$
- 5. Their reduction to $M(\mathbb{Q}, \mathbb{F}_{\ell})$
- 6. Their wild ramification at p
- 7. Examples

1. Motives in $M(\mathbb{Q},\mathbb{Q})$. In the 1990s André modified Grothendieck's original 1960s definitions to get an unconditional and useful theory of pure motives. In particular,

- There is a reductive proalgebraic group G, called the absolute motivic Galois group of Q. It surjects to Gal(Q/Q).
- The category M(Q,Q) of motives "over Q with coefficients in Q" is the category of representations of G on finite dimensional Q-vector spaces, thus semisimple.
- For X a smooth projective variety over \mathbb{Q} , the cohomology groups $H^w(X(\mathbb{C}), \mathbb{Q})$ are objects in $M(\mathbb{Q}, \mathbb{Q})$ and they generate the whole category.

- \mathbb{C}^{\times} sits naturally in $\mathbb{G}(\mathbb{R})$. On a motive M, it gives a Hodge decomposition $M \otimes \mathbb{C} = \bigoplus M^{p,q}$ with \mathbb{C}^{\times} acting by $z^p \overline{z}^q$ on $M^{p,q}$.
- For each prime ℓ , there is a section $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to \mathbb{G}(\mathbb{Q}_{\ell}).$

To motivically understand a given X, one should

- **1:** Express each cohomology group as a sum of irreducibles, $H^w(X(\mathbb{C}), \mathbb{Q}) = \bigoplus_i M_{w,i}$.
- 2: Study each appearing M individually, starting with computing its motivic Galois group $G_M := \text{Image}(\mathbb{G}) \subseteq GL_M.$

In Step 2, the original variety X may fade into the background. For example, one may already have encountered M in the study of another variety. Famous conjectures in arithmetic geometry can be studied for individual motives:

- (Hodge) $\rho_{\infty} : \mathbb{C}^{\times} \to G_M(\mathbb{R})$ has \mathbb{Q} -Zariski dense image in the identity component G_M^0 .
- (Tate) ρ_{ℓ} : $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to G_M(\mathbb{Q}_{\ell})$ has open image for each ℓ .
- (Compatibility) L-functions L(M, s) and conductors N defined via ℓ-adic cohomology are independent of ℓ. [We tacitly assume compatibility to simplify statements]
- (Automorphy) For $M \subseteq H^w(X(\mathbb{C}), \mathbb{Q})$, the *L*-function L(M, s) is automorphic and hence satisfies a functional equation with respect to $s \mapsto w + 1 - s$.

The conjectures are known for many motives, sometimes easily, sometimes by deep theorems.

Examples: Let $X_1 : y^2 = x(x-1)(x-9)$ (Elliptic Curve 24.a3), $X_3 : y^2 = x_1x_2x_3(x_1+x_2)(x_2+x_3)(x_1+1)(x_3+1),$ and take $M_1 = H^1(X_1(\mathbb{C}),\mathbb{Q})$ (so $(h^{1,0},h^{0,1}) = (1,1)),$ $M_3 = H^3(X_3(\mathbb{C}),\mathbb{Q})$ (so $(h^{3,0},\ldots,h^{0,3}) = (1,0,0,1)).$ Put

$$L(M_1,s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s} = 1 \cdot \frac{1}{1+3^{-s}} \prod_{p \ge 5} \frac{1}{1-a_p p^{-s} + p^{1-s}},$$

$$L(M_3,s) = \sum_{n=1}^{\infty} \frac{b_n}{n^s} = 1 \cdot \prod_{p \ge 3} \frac{1}{1-b_p p^{-s} + p^{3-s}}.$$

Then automorphy holds via

$$\sum_{\substack{n=1\\\infty\\n=1}}^{\infty} a_n q^n = \eta_{12} \eta_6 \eta_4 \eta_2 \in S_2(\Gamma_0(24)),$$
$$\sum_{n=1}^{\infty} b_n q^n = \eta_4^4 \eta_2^4 \in S_4(\Gamma_0(8)),$$

where $\eta_k = q^{k/24} \prod_{j=1}^{\infty} (1 - q^{kj}).$

2. Galois representations in $M(\mathbb{Q}, \mathbb{F}_{\ell})$. Let $M(\mathbb{Q}, \mathbb{F}_{\ell})$ be the category of representations of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ on finite-dimensional \mathbb{F}_{ℓ} -vector spaces. A motive M in $M(\mathbb{Q}, \mathbb{Q})$ determines a semisimple object M/ℓ in $M(\mathbb{Q}, \mathbb{F}_{\ell})$ up to isomorphism. We write $M \stackrel{\ell}{\equiv} M'$ for $M/\ell \cong M'/\ell$.

Examples. Here $a_p \stackrel{3}{\equiv} b_p$ for all primes and so $M_1 \stackrel{3}{\equiv} M_3$. Via $GL_2(\mathbb{F}_3) \subset S_8$ the common mod 3 Galois representation corresponds to

$$f(x) = x^8 - 6x^4 + 4x^2 - 3.$$

Some data illustrating the connections:

p	2	3	5	7	11	13	17	19	23	29
a_p	0	-1	-2	0	4	-2	2	-4	-8	6
b_p	0	-4	-2	24	-44	22	50	44	-56	198
\overline{a}_p	0	2	1	0	1	1	2	2	1	0
\overline{p}	2	0	2	1	2	1	2	1	2	2
λ_p			8	44	8	62	8	62	8	$2^{3}1^{2}$

Here λ_p is the factorization partition of $f(x) \in \mathbb{F}_p[x]$. It is correlated with $(\overline{a}_p, \overline{p}) \in \mathbb{F}_3 \times \mathbb{F}_3^{\times}$:

\overline{a}_p	0	1	1	2	2	0	1	2
$\left \overline{p} \right $	1	1	1	1	1	2	2	2
λ_p	44	62	2 ⁴ 3	3 ² 1 ²	1 ⁸	$2^{3}1^{2}$	8	8

3. Wild ramification at p. Fix a decomposition group $D = \text{Gal}(\overline{\mathbb{Q}}_p/\mathbb{Q}_p) \subset \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ with inertial subgroup I, wild inertia group P, and canonical filtration

$$D \stackrel{\widehat{\mathbb{Z}}}{\supset} I \stackrel{\widehat{\mathbb{Z}}^p}{\supset} P \supset \cdots \supset P^{\geq s} \stackrel{\mathbb{F}_p^{\infty}}{\supset} P^{>s} \supset \cdots$$

with s running over positive rationals. Let $\operatorname{Fr}_p \in D$ generate $D/I \cong \widehat{\mathbb{Z}}$. For M in $M(\mathbb{Q}, \mathbb{Q})$ its local L-factor is

$$L_p(M,s) = \frac{1}{\det(1 - \operatorname{Fr}_p p^{-s} | M_{\ell}^I)}$$

The tame exponent of M is $\tau_p(M) = \dim(M_\ell/M_\ell^I)$.

One has a canonical decomposition into summands indexed by Swan slopes:

$$M_{\ell} = M_{\ell}^P \bigoplus \bigoplus_{s>0} M_{\ell}^s$$

Here $P^{\geq s}$ acts non-trivially and $P^{>s}$ acts trivially on M^s_{ℓ} . The *Swan exponent* of *M* is

$$s_p(M) = \sum_{s>0} \dim(M^s_\ell)s$$

The exponent of M is $c_p(M) = \tau_p(M) + s_p(M)$.

Write $M \stackrel{p}{\sim} M'$ if $M_{\ell} \cong M'_{\ell}$ as *P*-representations. Elementary group theory then says an equivalent condition is $M/\ell \cong M'/\ell$ as *P*-representations. Hence

$$M \stackrel{\ell}{\equiv} M' \stackrel{\star}{\Longrightarrow} M \stackrel{p}{\sim} M'$$

Only the conductor $N = \prod_p p^{c_p}$ appears in the functional equation for L(M, s). However it is good to focus on the s_p part of c_p because of the stability (*). "Wild ramification is sometimes easier than tame ramification."

Examples. The splitting field K of

 $x^8 - 6x^4 + 4x^2 - 3$

has $Gal(K/\mathbb{Q}) = GL_2(3)$. The quotient filtration is

$$D \stackrel{2}{\supset} I \stackrel{3}{\supset} P^{\geq 1/3} \stackrel{2^2}{\supset} P^* \stackrel{2}{\supset} P^{>1/2}$$
$$\parallel \qquad \parallel \qquad \parallel \qquad \parallel \qquad \parallel$$
$$GL_2(3) \supset SL_2(3) \supset Q_8 \qquad \supset C_2 \supset \{e\}$$

with $P^* = P^{>1/3} = P^{\geq 1/2}$. For both M_1 and M_3 , this forces $s_2 = 1/2 + 1/2 = 1$ and $\tau_2 = 2$ so that $c_2 = 3$.

4. HGMs in $M(\mathbb{Q}, \mathbb{Q})$. Indices and matrices. For

$$f(x) = x^d + c_1 x^{d-1} + \dots + c_d,$$

let

$$C(f) = \begin{pmatrix} 0 & 0 & \cdots & 0 & 0 & -c_d \\ 1 & 0 & \cdots & 0 & 0 & -c_{d-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 0 & -c_3 \\ 0 & 0 & \cdots & 1 & 0 & -c_2 \\ 0 & 0 & \cdots & 0 & 1 & -c_1 \end{pmatrix}$$

be its companion matrix. Let

 $A = [a_1, a_2, \ldots] \text{ and } B = [b_1, b_2, \ldots]$ be such that

$$f_{\infty}(x) = \prod_{i} \Phi_{a_i}(x)$$
 and $f_0(x) = \prod_{j} \Phi_{b_j}(x)$

have the same degree d. Put

$$g_{\infty} = C(f_{\infty})$$
 and $g_0 = C(f_0)$.

Assume for several slides that A and B are disjoint. In this case, $\langle g_{\infty}, g_0 \rangle$ acts absolutely irreducibly on \mathbb{Q}^d .

Monodromy Representations. Define g_1 by $g_0g_1g_{\infty} = 1$. Let $T = \mathbb{P}^1 - \{0, 1, \infty\}$. View (g_0, g_1, g_{∞}) as giving a representation of the fundamental group

 $\pi_1(T(\mathbb{C}), 1/2) = \langle \gamma_0, \gamma_1, \gamma_\infty | \gamma_0 \gamma_1 \gamma_\infty = 1 \rangle.$

The representation corresponds to an absolutely irreducible local system H(A, B, t) of \mathbb{Q} vector spaces over $T(\mathbb{C})$. (The local system underlies classical hypergeometric functions, e.g.

$$\sum_{n=0}^{\infty} \frac{\left(\frac{1}{5}\right)_n \left(\frac{2}{5}\right)_n \left(\frac{3}{5}\right)_n \left(\frac{4}{5}\right)_n}{n! n! \left(\frac{1}{6}\right)_n \left(\frac{5}{6}\right)_n} t^n$$

for A = [5] and B = [1, 1, 6].)

Hypergeometric Motives. For $t \in T(\mathbb{Q}) = \mathbb{Q}^{\times} - \{1\}$, the vector space H(A, B, t) is naturally a degree d motive in $M(\mathbb{Q}, \mathbb{Q})$. Also one naturally has a motive H(A, B, 1) (which we won't mention again until §7).

Hodge numbers. Hodge numbers are determined by how the roots of $f_{\infty}(x)$ and $f_{0}(x)$ intertwine on the unit circle. For example, for (A, B) = ([2, 2, 8], [3, 3, 6]), the diagram

yields the Hodge vector

 $(h^{3,0}, h^{2,1}, h^{1,2}, h^{0,3}) = (1, 2, 2, 1).$

Both extremes are particularly interesting: complete intertwining yields

$$h^{0,0} = (d).$$

Complete separation yields

$$(h^{d-1,0},\ldots,h^{0,d-1}) = (1,1\ldots,1,1).$$

Signatures. Action of $Gal(\mathbb{C}/\mathbb{R})$ on H(A, B, t) is known, completing the determination of the ∞ -factor $L_{\infty}(H(A, B, t), s)$.

Monodromy groups. Hodge numbers are always normalized by requiring Hodge vectors of the form $(h^{w,0},\ldots,h^{0,w})$ with $h^{w,0} > 0$. If w = 0, then monodromy groups $\langle g_{\infty}, g_0 \rangle$ are finite. If w > 0 and $gcd(a_1,\ldots,b_1,\ldots) = 1$, then Zariski closures of monodromy groups are

Symplectic Sp_d , if w is odd, Orthogonal O_d , if w is even.

Similar but more complicated statements hold for mod ℓ monodromy groups and motivic Galois groups of specializations.

Types of primes. A prime p is called *very bad* for (A, B, u/v) if it divides an index in A or B. It is called *slightly bad* if it is not very bad, but it divides uv(u-v). It is called *good* otherwise.

Good primes are unramified in H(A, B, t). Slightly bad primes are at most tamely ramified. Very bad primes are typically wildly ramified. **Frobenius traces.** Frobenius traces and hence good factors $L_p(H(A, B, t), s)$ are given by an efficient formula. As a special case, for odd prime powers q define functions on \mathbb{F}_q^{\times} :

$$m_1(t,q) = \left(\frac{1-t}{q}\right) \quad \text{(Legendre Symbol)},$$
$$m_d(t,q) = -\sum_{u \in \mathbb{F}_q^{\times}} m_{d-1}(\frac{t}{u},q) m_1(u,q).$$

Then, for $t \in \mathbb{Q}^{\times} - \{1\}$ reducing to an element of \mathbb{F}_p^{\times} ,

Trace
$$\left(\mathsf{Fr}_q | H([2^d], [1^d], t)\right) = m_d(t, q).$$

Modifications of the general formula work for slightly bad primes and for t = 1.

Earlier examples.

$$M_1 = H([2,2],[1,1],9), \text{ so } a_p = m_2(9,p),$$

 $M_3 = H([2^4],[1^4],1), \text{ so } b_p = m_4(1,p) - p.$

Examples from trinomials. For positive integers b and β , put

$$a = b + \beta,$$

$$g = gcd(b, \beta),$$

$$d = a - g.$$

Take

$$A = \text{Divs}(a) - \text{Divs}(g)$$

$$B = \text{Divs}(b) + \text{Divs}(\beta) - \text{Divs}(g)$$

Then $T(b,\beta) := H(A,B)$ is a motivic family with unique Hodge number $h^{0,0} = d$. It arises from trinomial covers of \mathbb{P}^1 .

Example. T(4,1) = H([5], [4,2,1]). Indices really do intertwine:

$$\begin{bmatrix} 5]: & \frac{1}{5} & \frac{2}{5} & \frac{3}{5} & \frac{4}{5} \\ [4,2,1]: & \frac{0}{1} & \frac{1}{4} & \frac{1}{2} & \frac{3}{4} \end{bmatrix}$$

For $t \in \mathbb{Q}^{\times} - \{1\}$, trinomials enter via

$$X_t = \operatorname{Spec}\left(\mathbb{Q}[x]/(x^5 - 5tx - 4t)\right),$$

$$H^0(X_t(\mathbb{C}), \mathbb{Q}) = T(4, 1, t) \oplus \mathbb{Q} \quad \text{in } M(\mathbb{Q}, \mathbb{Q}).$$

More weight zero examples. Beukers and Heckman classified all finite monodromy examples, with Weyl groups figuring prominently:

$W(E_{6})$:	BH45 – BH 49,
$W(E_{7})$:	BH58 – BH 62,
$W(E_{8})$:	BH63 – BH77.

We have equations for almost all these covers.

Example. BH45 = H([3, 12], [1, 2, 8]) has indices that really do intertwine:

[3, 12]:	$\frac{1}{12}$	$\frac{1}{3}$		$\frac{5}{12}$		$\frac{7}{12}$		$\frac{2}{3}$		$\frac{11}{12}$
$[1,2,8]: \frac{0}{1}$		3	<u>3</u> 8		$\frac{1}{2}$		<u>5</u> 8		<u>7</u> 8	

Governing polynomial is

$$f(t,x) = t2^4 x^3 (x^2 - 3)^{12} -3^9 (x-2)(x-1)^8 (x^2 - 2x - 1)^8.$$

Uniform normalization. For §5, an alternative normalization is needed, where h(A, B) is the "Tate twist" of H(A, B) which has weight 0 or 1.

Degenerate cases. Also for §5, It is convenient to define h(A, B, t) also when there is overlap between A and B. Write

$$A = A' + [c_1^{m_1}, \dots, c_k^{m_k}], B = B' + [c_1^{m_1}, \dots, c_k^{m_k}].$$

Then, by definition,

$$h(A, B, t) =$$

$$h(A', B', t) \bigoplus \bigoplus_{i=1}^{k} \bigoplus_{j=0}^{m_k - 1} H^0_{\mathsf{prim}}(X_{c_i}(\mathbb{C}), \mathbb{Q}(j)),$$

where $X_{c_i} = \operatorname{Spec}(\mathbb{Q}[x]/(x^{c_i}-t)).$

We call h(A', B') the core of h(A, B).

5. Reduction of HGMs to $M(\mathbb{Q}, \mathbb{F}_{\ell})$. Let ℓ be a prime. If $c = u\ell^k$ with u coprime to ℓ then

$$\Phi_c(x) \stackrel{\ell}{\equiv} \Phi_u(x)^{\phi(\ell^k)}.$$

Thus the monodromy representation of H(A, B, t)does not change modulo ℓ when one "kills ℓ " and thereby passes to the associated ℓ -free family $H(A^{\ell}, B^{\ell}, t)$. In the uniform normalization, Frobenius traces do not change modulo ℓ either and for $t \in \mathbb{Q}^{\times}$,

$$h(A, B, t) \stackrel{\ell}{\equiv} h(A^{\ell}, B^{\ell}, t).$$

as semisimple Galois representations.

Examples:

$$h([5], [1, 1, 6]) \stackrel{2}{\equiv} h([5], [1, 1, 3]),$$

$$h([5], [1, 1, 6]) \stackrel{3}{\equiv} h([5], [1, 1, 2, 2]),$$

$$h([5], [1, 1, 6]) \stackrel{5}{\equiv} h([1, 1, 1, 1], [1, 1, 6]).$$

The ℓ -free families on the right are often degenerate, making their analysis reduce to HGMs of lower degree. The prime ℓ being disallowed in indices, there aren't so many mod ℓ families in low degrees and it is reasonable to tabulate them.

Mod 2 hypergeometric families in rank \leq 7								
				Rar	n fo	r §6		
Label	M	A	B	3	5	7		
0	1	_	_					
T(2, 1)	$O_2^{-}(2)$	3	11	2a				
<i>T</i> (4,2)	$O_4^+(2)$	33	1111	4 <i>a</i>				
<i>T</i> (3,2)	$O_4^{-}(2)$	5	311	2a	4 <i>a</i>			
$ullet \mathrm{T}(4,1)ullet$	$O_{4}^{-}(2)$	5	1111		4 <i>a</i>			
T(5, 1)	$Sp_{4}(2)$	5	33	4 <i>a</i>	4 <i>a</i>			
<i>T</i> (6,3)	$S_3 \wr A_3$	9	3311	6 <i>b</i>				
T(5, 2)	S_7	7	511		4 <i>a</i>	6 <i>a</i>		
T(6, 1)	S_7	7	3311	4 <i>a</i>		6 <i>a</i>		
<i>T</i> (4,3)	S_7	7	31111	2a		6 <i>a</i>		
T(7, 1)	$O_{6}^{+}(2)$	7	111111			6 <i>a</i>		
T(5, 3)	$O_{6}^{+}(2)$	53	111111	2a	4 <i>a</i>			
●6BH45●	$O_{6}^{-}(2)$	333	111111	6 <i>e</i>				
6 <i>BH</i> 46	$O_{6}^{-}(2)$	333	511	6e	4 <i>a</i>			
6 <i>BH</i> 47	$O_{6}^{-}(2)$	9	111111	6 <i>d</i>				
6 <i>BH</i> 48	$O_{6}^{-}(2)$	9	31111	6 <i>c</i>				
6 <i>BH</i> 49	$O_{6}^{-}(2)$	9	511	6 <i>d</i>	4 <i>a</i>			
7 <i>BH</i> 58	$Sp_{6}(2)$	9	333	6 <i>a</i>				
7 <i>BH</i> 59	$Sp_{6}(2)$	9	53	6 <i>c</i>	4 <i>a</i>			
7 <i>BH</i> 60	$Sp_{6}(2)$	9	7	6 <i>d</i>		6 <i>a</i>		
7 <i>BH</i> 61	$Sp_{6}(2)$	7	333	6 <i>e</i>		6 <i>a</i>		
7 <i>BH</i> 62	<i>Sp</i> ₆ (2)	7	53	2a	4 <i>a</i>	6 <i>a</i>		

Mod 3 hy	pergeom	etric fa	milies	in ran	ks \leq 4
				Ram	for §6
Label	M	A	B	2	5
1^3A	$O_1(3)$	2	1	1 <i>A</i>	
<i>T</i> (4, 2)	$O_{2}^{-}(3)$	4	21	2 <i>A</i>	
31, 31, 22	$\bar{Sp_{2}(3)}$	4	11	2 <i>a</i>	
31, 31, 31	$Sp_{2}(3)$	22	11	2 <i>b</i>	
T(3, 1)	<i>O</i> ₃ (3)	42	111	3 A	
<i>T</i> (3,3)	$O_{3}^{+}(3)$	222	111	3 <i>B</i>	
T(4,4)	64	8	421	4 <i>A</i>	
$\bullet T(4,1) \bullet$	120	5	421	3 <i>A</i>	4 <i>a</i>
<i>T</i> (3,2)	120	5	2111	1 A	4 <i>a</i>
4 ³ <i>D</i>	384	8	2111	4 <i>B</i>	
4 <i>BH</i> 37	576	44	2111	4 <i>C</i>	
T(5, 1)	$O_4(3)^-$	10	2111	3 <i>B</i>	4 <i>a</i>
4 ³ <i>a</i>	1152	8	44	4 <i>a</i>	
4 ³ <i>b</i>	1152	8	2211	4 <i>d</i>	
$4^{3}c$	1152	44	2211	4 <i>f</i>	
4BH24	$Sp_{4}(3)$	2222	1111	4 <i>h</i>	
4BH25	$Sp_{4}(3)$	422	1111	4 <i>g</i>	
4BH26	$Sp_{4}(3)$	44	1111	4 <i>e</i>	
4BH27	$Sp_{4}(3)$	8	411	4 <i>b</i>	
4 <i>BH</i> 28	$Sp_{4}(3)$	8	1111	4 <i>c</i>	
4 <i>BH</i> 29	$Sp_{4}(3)$	10	5	4 <i>h</i>	
4 <i>BH</i> 30	$Sp_{4}(3)$	5	44	4 <i>e</i>	4 <i>a</i>
4 <i>BH</i> 31	$Sp_{4}(3)$	8	5	4 <i>c</i>	4 <i>a</i>
4 <i>BH</i> 32	<i>Sp</i> ₄ (3)	5	2211	2 <i>b</i>	4 <i>a</i>
4 <i>BH</i> 33	<i>Sp</i> ₄ (3)	10	411	4 <i>g</i>	4 <i>a</i>
4 <i>BH</i> 34	<i>Sp</i> ₄ (3)	5	411	2a	4 <i>a</i>
4 <i>BH</i> 35	<i>Sp</i> ₄ (3)	5	1111		4 <i>a</i>
4 <i>BH</i> 36	<i>Sp</i> ₄ (3)	10	1111	4 <i>h</i>	4 <i>a</i>

Mod 3	Mod 3 hypergeometric families in rank 5								
				Ram	for §6				
Label	M	A	B	2	5				
T(5,5)	2 ⁵ .5	10,2	51	5 <i>F</i>					
<i>T</i> (8,2)	$2^4.S_5$	82	51	5 <i>C</i>	4 <i>a</i>				
<i>T</i> (6,4)	$2^5.S_5$	10,2	4111	5 <i>E</i>	4 <i>a</i>				
5 <i>BH</i> 41	$O_{5}(3)^{*}$	442	11111	5 <i>D</i>					
5 <i>BH</i> 42	<i>O</i> ₅ (3)*	442	51	5 <i>D</i>	4 <i>a</i>				
5 <i>BH</i> 43	<i>O</i> ₅ (3)*	10,2	11111	5 <i>F</i>	4 <i>a</i>				
5 <i>BH</i> 44	$O_{5}(3)^{*}$	22222	11111	5 <i>F</i>					
●6BH45●	$O_5(3)^+$	82	441	5 <i>A</i>					
6BH46	$O_5(3)^+$	52	441	4 <i>C</i>	4 <i>a</i>				
6 <i>BH</i> 47	$O_5(3)^+$	4222	11111	5 <i>E</i>					
6 <i>BH</i> 48	$O_5(3)^+$	82	11111	5 <i>C</i>					
6 <i>BH</i> 49	$O_5(3)^+$	52	11111	1 A	4 <i>a</i>				
N1	$O_5(3)$	82	4111	5 <i>B</i>					
N2	$O_{5}(3)$	52	81	4 <i>B</i>	4 <i>a</i>				
N3	$O_{5}(3)$	52	101	3 <i>B</i>					
N4	$O_{5}(3)$	52	4111	2A	4 <i>a</i>				

We have computed a corresponding cover for almost all of the Galois representations just listed, many having been already seen in characteristic zero. 6. Analysis of HGMs at p. Let p be a prime. One can kill all $\ell \neq p$ in turn to get from a given H(A, B, t) to its associated p-primary $H(A_p, B_p, t)$. The original and new motives have the same wild p-adic ramification:

 $H(A, B, t) \stackrel{p}{\sim} H(A_p, B_p, t).$

Example with no degree drop at each p:

TypeH([5], [12]) $\stackrel{2}{\sim}$ H([1, 1, 1, 1], [4, 4])4eH([5], [12]) $\stackrel{3}{\sim}$ H([1, 1, 1, 1], [3, 3])4aH([5], [12]) $\stackrel{5}{\sim}$ H([5], [1, 1, 1, 1])4a

Example with full degree drop at each p:

 $\begin{array}{r} & \frac{\text{Type}}{2} \\ H([3,2,2],[6,1,1]) \stackrel{2}{\sim} & H([1,1,2,2],[1,1,2,2]) & 0 \\ H([3,2,2],[6,1,1]) \stackrel{3}{\sim} & H([1,1,3],[1,1,3]) & 0 \\ \end{array}$ Most examples have an intermediate behavior depending on p.

All examples in low degrees can be studied via explicitly computed covers:

P	ossibiliti	ies for 2	-ac	lic	ran	nifica	atior	n in	degr	ees ≤ 5
L	A	B	1	2	3	4	5	6	7	Mod 3
0	_	_		1		7		26		
1 <i>A</i>	2	1	1	1	2	4	10	21	46	
2A	4	21		1	1	3	5	12	24	
2 <i>a</i>	4	11		2		10		50		
2 <i>b</i>	22	11		3		8		46		
3 <i>A</i>	42	111			2	4	8	20	42	
3 <i>B</i>	222	111			3	4	7	16	39	
4 <i>A</i>	8	421				1	1	3	5	<i>T</i> (8,4)
4 <i>B</i>	8	2111				2	4	6	16	4 ³ <i>D</i>
4 <i>C</i>	44	2111				4	8	12	32	4 <i>BH</i> 37
4 <i>a</i>	8	44				2		4		4 ³ <i>a</i>
4 <i>b</i>	8	411				2		10		4 <i>BH</i> 27
4 <i>c</i>	8	1111				4		16		4 <i>BH</i> 28
4 <i>d</i>	8	2211				3		8		4 ³ <i>b</i>
4 <i>e</i>	44	1111				8		32		4 <i>BH</i> 26
4 <i>f</i>	44	2211				6		16		4^3c
4 <i>g</i>	422	1111				8		40		4 <i>BH</i> 33
4h	2222	1111				10		32		4BH24
5 <i>A</i>	82	441					2	4	6	●6BH45●
5 <i>B</i>	82	4111					2	4	8	N1
5 <i>C</i>	82	11111					4	8	12	<i>T</i> (8,2)
5 <i>D</i>	442	11111					8	16	24	5 <i>BH</i> 41
5 <i>E</i>	4222	11111					8	16	32	<i>T</i> (6,4)
5 <i>F</i>	22222	11111					10	16	26	T(5,5)
(L	ower cas	se in L:	syr	npl	ect	ic. (Capi	tal:	orth	ogonal.)

Possibilities for *p*-adic ramification in degrees \leq 7

	3-adic ramification									
L	A	В	1	2	3	4	5	6	7	Mod 2
0		_	1	4	4	30	25	135	102	
2a	3	11		4	4	32	28	216	164	T(2, 1)
4 <i>a</i>	33	1111				28	24	124	96	<i>T</i> (4,2)
6 <i>a</i>	9	333						6	12	7 <i>BH</i> 58
6 <i>b</i>	9	3311						16	16	T(6, 3)
6 <i>c</i>	9	31111						24	24	6 <i>BH</i> 47
6 <i>d</i>	9	1111111						30	24	6 <i>BH</i> 48
6 <i>e</i>	333	111111						90	72	6BH45

	5-adic ramification									
L	A	В	1	2	3	4	5	6	7	Mod 2
0	—	—	1	8	8	68	53	425	326	
4 <i>a</i>	5	1111				22	24	216	184	$\bullet T(4,1) \bullet$

	7-adic ramification									
L	A	В	1	2	3	4	5	6	7	Mod 2
0	_	—	1	8	8	90	77	565	434	
6 <i>a</i>	7	111111						76	76	T(6, 1)

Possibilities for wild *p*-adic ramification in a given degree *d* decrease rapidly with *p*. E.g. in degree seven for p = 2, 3, 5, 7 there are 13, 8, 2, 2 possibilities for the *p*-core.

p-adic ramification as a function of *t*. For a family H(A, B), define

$$d_{\infty} = \sum_{p|a} \phi(a), \quad d_{0} = \sum_{p|b} \phi(b),$$

$$s_{\infty} = \sum_{p|a} s(a), \quad s_{0} = \sum_{p|b} s(b).$$

where

$$s(a) = \phi(a) \left(\operatorname{ord}_p(a) + \frac{1}{p-1} \right).$$

Define a "ramp function" r(k) as indicated:

Conjecture (with FRV). The Swan conductor of $H(A, B, up^k)$ is at most r(k). If k is coprime to p then one has equality, there being exactly d_{∞} or d_0 wild slopes as indicated.

There are other general patterns, but computation suggests that a universal formula covering all cases would be complicated.

Example. for d odd, H([2d], [d], t) can be analyzed via $2^{2d}x^d(x-1)^d + t = 0$. Then conclusions about 2-wild ramification can be transferred to other motives like $H([2^d], [1^d], t)$. The case d = 33, with c_2 as a function of $t = u2^k$:

A black dot is above k if u does not matter. Otherwise a green dot indicates $u \equiv 1$ (4) and a blue dot indicates $u \equiv 3$ (4).

7. Examples. For uniformity: all families are symplectic with Hodge vector (1, 1, ..., 1, 1); all specializations have wild *L*-factors $L_p(M, s) = 1$. All *L*-functions are numerically checked via CheckFunctionalEquation to high precision.

Wild at 3. Some $H([3^{d/2}], [1^d], t)$, all with conductor $N = 2^a 3^b$ with $a \in \{0, 1\}$.

The order of central vanishing is indicated by the number of boxes. The underlined bold entries are not covered by the ramp formula.

Example. The motive $M = H([3^4], [1^8], 1)$ has Hodge vector (1, 1, 1, 0, 0, 1, 1, 1), Galois group CSp_6 , conductor 3^9 , and rank two with

 $L''(M,4) \approx 6.494840100810020078040772$

Wild at 2. Specializations of $H([2^d], [1^d], t)$ with conductor $2^a 3^b$ with $b \in \{0, 1\}$:

Here $H([2^d], [1^d], t)$ and $H([2^d], [1^d], 1/t)$ are twists of one another, forcing a drop in Galois group at t = -1 and a decomposition at t = 1.

Example. $H([2^8], [1^8], 1) = M_2 \oplus M_4$ with

$Hodge(M_2)$	=	(1, 0, 0, 0, 0, 1)
$Hodge(M_4)$	=	(1, 0, 1, 0, 0, 1, 0, 1)
Conductor(M_2)	=	2 ²
Conductor (M_4)	=	2 ⁵

and M_2 corresponding to $\eta_2^{12} \in S_6(\Gamma_0(4))$.

Wild at 2 and 3. When several wild primes are involved, one often knows the *L*-function completely from congruences. However the range of degrees that can be analytically studied is smaller because conductors are larger.

Example. $M = H([3^3], [2^6], 1)$ has Hodge vector (1, 1, 0, 0, 1, 1), motivic Galois group CSp_4 , and conductor 2^63^5 . All initial good a_p are negative:

 $L''(M,3) \approx 12.6191334778913437117846768$

Longer run times and less precision make many more L(M, s) in computational reach.

Some reports by other group members available online:

Henri Cohen. *L-functions of Hypergeometric Motives* (slides).

Fernando Rodriguez Villegas. *Hypergeometric Motives* (video).

Mark Watkins. What I know about Hypergeometric Motives (text).

Some key references:

Yves André. *Pour une théorie inconditionnelle de motifs.* Inst. Hautes Études Sci. Publ. Math. No. 83 (1996), 5–49.

Frits Beukers and Gert Heckman. *Monodromy* for the hypergeometric function $_{n}F_{n-1}$. Invent. Math. 95 (1989), no. 2, 325–354. Alessio Corti and Vasily Golyshev. Hypergeometric equations and weighted projective spaces. Sci. China Math. 54 (2011), no. 8, 1577–1590.

Nicholas M. Katz. *Exponential sums and differential equations.* Annals of Mathematics Studies, 124.

A key software resource:

John Cannon, et al. *MAGMA*. Especially the Hypergeometric Motive package (Mark Watkins) and the L-function package (Tim Dokchitser).