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Abstract. The study of the moduli of covers of the projective line leads to
the theory of Hurwitz varieties covering configuration varieties. Certain one-
dimensional slices of these coverings are particularly interesting Belyi maps.
We present systematic examples of such “Hurwitz-Belyi maps.” Our examples
illustrate a wide variety of theoretical phenomena and computational tech-
niques.
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1. Introduction

The theory of Belyi maps sits at an attractive intersection in mathematics where
group theory, algebraic geometry, and number theory all play fundamental roles.
In this paper we first introduce a simply-indexed class of particularly interesting
Belyi maps which arise in solutions of Hurwitz moduli problems. Our main focus
is then the computation of sample Hurwitz-Belyi maps and the explicit exhibition
of their remarkable properties. We expect that our exploratory work here will
support future more theoretical studies. We conclude this paper by speculating
that as degrees become large, Hurwitz-Belyi maps become extreme outliers among
all Belyi maps. The rest of the introduction amplifies on this first paragraph.

1.1. Belyi maps. In the classical theory of smooth projective complex algebraic
curves, ramified covering maps from a given curve Y to the projective line P1

play a prominent role. If Y is connected with genus g, then any degree n map
F : Y → P1 has 2n+ 2g− 2 critical points in Y, counting multiplicities. For generic
F , these critical points yi are all distinct and moreover the critical values F (yi) are
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also also distinct. A Belyi map by definition is a map Y → P1 having all critical
values in {0, 1,∞}. One should think of Belyi maps as the maps which are as far
from generic as possible, with their critical values being moreover normalized to a
standard position. The recent paper [24] provides a computationally-focused survey
of Belyi maps, with many references.

1.2. An example. The main focus of this paper is the explicit construction of
Belyi maps with certain extreme properties. A Belyi map from [15] arises from
outside the main context of this paper but still exhibits these extremes:

π : P1 → P1,

x 7→
(x+ 2)9x18

(
x2 − 2

)18
(x− 2)

(x+ 1)16 (x3 − 3x+ 1)
16 .(1.1)

We use this map as an introductory example, because it represents a class of very
extreme Belyi maps which provide some context for this paper, as discussed further
in §1.3 and §11.1 below.

The degree of π is 64 and the 126 critical points are easily identified as follows.
From the numerator A(x), one has the critical points −2, 0,

√
2, −
√
−2, with total

multiplicity 8+17+17+17 = 59 and critical value 0. From the denominator C(x),
one has critical points −1, x2, x3, x4 with total multiplicity 15 + 15 + 15 + 15 = 60
and critical value ∞. Since both A(x) and C(x) are monic, one has π(∞) = 1.
The exact coefficients in (1.1) are chosen so that the degree of A(x) − C(x) is
only 56. This means that ∞ is a critical point of multiplicity 63 − 56 = 7. As
59 + 60 + 7 = 126, there can be no critical values outside {0, 1,∞} and so π is
indeed a Belyi map.

In general, a degree m Belyi map π has a monodromy group Mπ ⊆ Sm, a
number field Fπ ⊂ C of definition, and a finite set Pπ of bad primes. We call π
full if Mπ ∈ {Am, Sm}. Our example π is full because Mπ = S64. It is defined
over Fπ = Q because all the coefficients in (1.1) are in Q. It has bad reduction set
Pπ = {2, 3} because numerator and denominator have a common factor in Fp[x]
exactly for p ∈ {2, 3}. In the sequel, we almost always drop the subscript π, as it
is clear from context.

To orient the reader, we remark that the great bulk of the explicit literature on
Belyi maps concerns maps which are not full. Much of this literature, for example
[13, Chapter II], focuses on Belyi maps with M a finite simple group different from
Am. On the other hand, seeking Belyi maps defined over Q is a common focus
in the literature. Similarly, preferring maps with small bad reduction sets P is a
common viewpoint.

1.3. An inverse problem. To provide a framework for our computations, we
pose the following inverse problem: given a finite set of primes P and a degree m,
find all full degree m Belyi maps π defined over Q with bad reduction set within
P. The finite set of full Belyi maps in a given degree m is parameterized in an
elementary way by group-theoretic data. So, in principle at least, this problem is
simply asking to extract those for which Fπ = Q and Pπ ⊆ P. Our inverse problem
is in the spirit of the classical inverse Galois problem [13]; however it focuses on
constrained ramification, rather than unusual Galois groups.

While the Belyi map (1.1) may look rather ordinary, it is already unusual for
full Belyi maps to be defined over Q. It seems to be extremely rare that their bad
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reduction set is so small. In fact, we know of no full Belyi maps defined over Q
with m ≥ 4 and |Pπ| ≤ 1. For |Pπ| = 2 we know of only a very sparse collection
of such maps [14], [15], as discussed further in our last section here. The largest
degree of these with both primes less than seventeen is m = 64, coming from (1.1).

1.4. Hurwitz-Belyi maps. Suppose now that P contains the set PT of primes
dividing the order of a finite nonabelian simple group T . The theoretical setting for
this paper is a systematic method of constructing Belyi maps of arbitrarily large
degree defined over Q and ramified within P.

In brief, the method has two steps and goes as follows. First, from T one can build
infinitely many natural covers from a Hurwitz variety to a configuration variety.
In our notation, these covers are written πh : Hur∗h → Confν , and the common
dimension of both cover and base can be arbitrarily large. Second, there can be
many non-trivial maps u from the thrice-punctured projective line P1 − {0, 1,∞}
into Confν . Let X0 be the preimage of u(P1 − {0, 1,∞}) in Hurh, and let X be its
smooth completion. Then the corresponding Hurwitz-Belyi map πh,u is the induced
map from X to P1. As we explain in our last section, we expect infinitely many
of these πh,u to be full, and thus satisfy the remaining condition of our inverse
problem.

1.5. Contents of this paper. Our viewpoint is that Hurwitz-Belyi maps form a
remarkable class of mathematical objects, and are worth studying in all their as-
pects. This paper focuses on presenting explicit defining equations for systematic
collections of Hurwitz-Belyi maps, and exhibits a number of theoretical structures
in the process. The defining equations are obtained by two complementary meth-
ods. What we call the standard method centers on algebraic computations directly
with the r-point Hurwitz source. The braid-triple method is an alternative method
introduced in this paper. It uses the r-point Hurwitz source only to give necessary
braid group information; its remaining computations are then the same ones used
to compute general Belyi maps.

We focus primarily on the case r = 4 which is the easiest case for computations
for a given T . This case was studied in some generality by Lando and Zvonkin in [8,
§5.5] under the term megamap. In the last two sections, we shift the focus to r ≥ 5,
which is necessary to obtain the very large degrees m we are most interested in.
The standard method is insensitive to genera of covering curves X, and so we could
easily present examples of quite high genus. However, to give a uniform tidiness to
our final equations, we present defining equations only in the case of genus zero.
Thus the reader will find many explicit rational functions in Q(x) with properties
similar to those of our initial example (1.1). All these rational functions and related
information are available in the Mathematica file HBM.m on the author’s homepage.

Section 2 reviews the theory of Belyi maps. Section 3 reviews the theory of Hur-
witz maps and explains how carefully chosen one-dimensional slices are Hurwitz-
Belyi maps. Of the many Belyi maps appearing in Section 2, two are unexpectedly
defined over Q. These maps each appear again in Section 4, with now their ratio-
nality obvious from the beginning via the Hurwitz theory.

Section 5 introduces the alternative braid-triple method for finding defining equa-
tions. We give general formulas for the preliminary braid computations in the set-
ting r = 4. Passing from braid information to defining equations can then be much
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more computationally demanding than in our initial examples, and we find equa-
tions mainly by p-adic techniques. Section 6 then presents three examples for which
both methods work, with these examples having the added interest that lifting in-
variants force X to be disconnected. In each case, X in fact has two components,
each of which is full over the base projective line.

Sections 7, 8, and 9 consider a systematic collection of Hurwitz-Belyi maps, with
all final equations computed by the braid-triple method. They focus on the cases
where |PT | ≤ 3. By the classification of finite simple groups, the possible PT have
the form {2, 3, p} with p ∈ {5, 7, 13, 17}. Section 7 sets up our framework and
presents one example each for p = 13 and p = 17. Sections 8 and 9 then give many
examples for p = 5 and p = 7 respectively.

Section 10 takes first computational steps into the setting r ≥ 5. Working just
with T = A5 and r = 5, we summarize braid computations which easily prove the
existence of full Hurwitz-Belyi maps with bad reduction set {2, 3, 5} and degrees
into the thousands. We use the standard method to find equations of two such
covers related to T = A6, one in degree 96 and the other in degree 192.

Section 11 concludes by tying the considerations of this paper very tightly to
those of [22] and [21]. It conjectures a direct analog for Belyi maps of the main
conjecture there for number fields. The Belyi map conjecture responds to the above
inverse problem in the case that P contains the set of primes dividing the order of
some finite nonabelian simple group. In particular, it says that there then should
be full Belyi maps defined over Q and ramified within P of arbitrarily large degree.

1.6. Notation. Despite the arithmetic nature of our subject, we work almost ex-
clusively over C. Following [22] and [21], we use a sans serif font for complex spaces
as in Y, P1, Hur∗h, Confν , or X above.

The phenomenon that allows us to work mainly over C is that to a great extent
geometry determines arithmetic. Thus an effort to find a function π(x) ∈ C(x)
giving a full Belyi map π : P1 → P1 involves choices of normalization. Typically,
one can make these choices in a geometrically natural way, and then the coefficients
of π(x) automatically span the field of definition. When this field is Q, and the
normalization is sufficiently canonical, the primes of bad reduction can be similarly
read off.

Often there will be several projective lines under consideration at once. When
clarifying, we distinguish them by subscripting by the coordinate we are using.
We commonly present a Belyi map π : P1

x → P1
v not as a rational function v =

A(x)/C(x) but rather via the corresponding polynomial equation A(x)−vC(x) = 0.
This trivial change in perspective has several advantages, one being that it lets one
see the three-point property and the primes of bad reduction simultaneously via
discriminants. For example, the discriminant of A(x)− vC(x) in our first example
(1.1) is 22563126v59(v − 1)7.

1.7. Acknowledgements. This work was partially supported by the Simons Foun-
dation through grant #209472, and, its last stages, by the National Science Founda-
tion through grant DMS-1601350. I thank Stefan Krämer, Kay Magaard, Hartmut
Monien, Sam Schiavone, Akshay Venkatesh, and John Voight for helpful conversa-
tions. Finally I thank the anonymous referee for detailed comments which helped
streamline this paper.
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2. Two Belyi maps unexpectedly defined over Q

This section presents twenty-eight Belyi maps as explicit rational functions in
C(y), two of which are unexpectedly in Q(y). Via these examples, it provides a
quick summary, adapted to this paper’s needs, of the general theory of Belyi maps.
We will revisit the two rational maps from a different point of view in Section 4. Our
three-point computations here are providing models for later r-point computations.
Accordingly, we use the letter y as a primary variable.

2.1. Partition triples. Let n be a positive integer. Let Λ = (λ0, λ1, λ∞) be a
triple of partitions of n, with the λτ having all together n + 2 − 2g parts, with
g ∈ Z≥0. The two examples pursued in this section are

Λ′ = (322, 421, 511), Λ′′ = (642, 2222211, 5322).(2.1)

So the degrees of the examples are n = 7 and n = 12, and both have g = 0.
Consider Belyi maps F : Y → P1 with ramification numbers of the points in

F−1(τ) forming the partition λτ , for each τ ∈ {0, 1,∞}. Up to isomorphism, there
are only finitely many such maps. For some of these maps, Y may be disconnected,
and we are not interested here in these degenerate cases. Accordingly, let X be
the set of isomorphism classes of such Belyi maps with Y connected. One wants
to explicitly identify X, and simultaneously get an algebraic expression for each
corresponding Belyi map Fx : Yx → P1. The Riemann-Hurwitz formula says that
all these Yx have genus g.

Note that in the previous paragraph we have finitely many Belyi maps Fx : Y →
P1 indexed by the finite set X. In the bulk of this paper, we will have infinitely
many maps Fx : Yx → P1, which are now ramified above more than three points.
These less extreme covers will be continuously indexed by the covering curve X in
a Belyi map π : X → P1. Our notations are chosen so that the computations of
this section are in the same notation as the computations of the later sections, even
though the position of Belyi maps in these computations is different.

Computations in our current three-point setting can be put into a standard form
when g = 0 and the partitions λ0, λ1, and λ∞ have in total at least three singletons.
Then one can pick an ordered triple of singletons and coordinatize Y by choosing
y to take the values 0, 1, and ∞ in order at the three corresponding points. In our
two examples, we do this via

Λ′∗ = (3022, 412x1, 5∞11), Λ′′∗ = (60412x, 2222211, 5∞322).(2.2)

Also we have chosen a fourth point in each case and subscripted it by x. This choice
gives a canonical map from X into C, as will be illustrated in our two examples.
When the map corresponding to such a marked triple Λ∗ is injective, as it almost
always seems to be, we say that Λ∗ is a cleanly marked genus zero triple.

When g = 0 and there is at least one singleton, computations can be done very
similarly. All the explicit examples of this paper are in this setting. When g = 0
and there are no singletons, one often has to take extra steps, but the essence of
the method remains very similar. When g > 0, computations are still possible, but
they are very much more complicated.
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2.2. The triple Λ′ and its associated 4 = 3 + 1 splitting. The subscripted
triple Λ′∗ in (2.2) requires us to consider rational functions

F (y) =
1 + c+ d

(1 + a+ b)2
· y

3(y2 + ay + b)2

y2 + cy + d

and focus on the equation

(2.3) 5y4 + 3(a+ 2c)y3 + (4ac+ b+ 7d)y2 + (5ad+ 2bc)y+ 3bd = 5(y− 1)3(y−x).

The left side is a factor of the numerator of F ′(y) and thus its roots are critical
points. The right side gives the required locations and multiplicities of these critical
points.

Equating coefficients of y in (2.3) and using also F (x) = 1 gives five equations
in five unknowns. There are four solutions, indexed by the roots of

(2.4) fΛ′∗
(x) = (x+ 2)

(
16x3 − 248x2 − 77x− 6

)
.

In general from a cleanly marked genus zero triple Λ∗, one gets a separable moduli
polynomial fΛ∗(x). The moduli algebra

KΛ = Q[x]/fΛ∗(x)

depends, as indicated by the notation, only on Λ and not on the marking. It is
well-defined in the general case when the genus is arbitrary, even though we are not
giving a procedure here to find a particular polynomial.

While the computation just presented is typical, the final result is not. We give
three independent conceptual explanations for the factorization in (2.4), two in §4.1
and one at the end of §6.3. For context, the splitting of the moduli polynomial is
one of just four unexplained splittings on the fourteen-page table of moduli algebras
in [11]. While here the degree 7 partition triple yields a moduli algebra splitting as
3 + 1, in the other examples the degrees are 8, 9, and 9, and the moduli algebras
split as 7 + 1, 8 + 1, and 8 + 1.

2.3. Dessins. A Belyi map F : Y → P1
t can be visualized by its dessin as

follows. Consider the interval [0, 1] in P1
t as the bipartite graph •−−◦. Then

Y[0,1] := F−1([0, 1]) inherits the structure of a bipartite graph. This bipartite
graph, considered always as inside the ambient real surface Y, is the dessin associ-
ated to F . A key property is that F is completely determined by the topology of
the dessin.

Returning to the example of the previous subsection, the roots indexing the four
solutions are

x1 = −2, x2 ≈ 0.153− 0.018i,

x3 ≈ 15.86, x4 ≈ 0.153 + 0.018i.

The complete first solution is

(2.5) F1(y) = −
y3
(
y2 + 2y − 5

)2
4(2y − 1)(3y − 4)

.

The coefficients of the other Fi are cubic irrationalities. The four corresponding
dessins in Yi = P1

y are drawn in Figure 2.1. The scales of the four dessins in terms
of the common y-coordinate are quite different. Always the black triple point is at
0 and the white quadruple point is at 1. The white double point is then at xi.
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Figure 2.1. Dessins Yxi,[0,1] ⊂ P1
y corresponding to the points of

XΛ′ = {x1, x2, x3, x4} with Λ′ = (322, 421, 511)

2.4. Monodromy. The dessins visually capture the group theory which is central
to the theory of Belyi maps but has not been mentioned so far. Given a degree n
Belyi map F : Y → P1, consider the set Y? of the edges of the dessin. Let g0 and g1

be the operators on Y? given by rotating minimally counterclockwise about black
and white vertices respectively.

The choice of [0, 1] as the base graph is asymmetric with respect to the three
critical values 0, 1, and ∞. Orbits of g0 and g1 correspond to black vertices and
white vertices respectively. In our first example, the original partitions λ0 = 322
and λ1 = 421 can be recovered from each of the four dessins from the valencies of
these vertices. On the other hand, the orbits of g∞ = g−1

1 g−1
0 correspond to faces.

The valence of a face is by definition half the number of edges encountered as one
traverses its boundary. Thus λ∞ = 511 is recovered from each of the four dessins
in Figure 2.1, with the outer face always having valence five and the two bounded
faces having valence one.

Let Y∗ be the set of ordered triples (g0, g1, g∞) in Sn such that

• g0, g1, and g∞ respectively have cycle type λ0, λ1, and λ∞,
• g0g1g∞ = 1,
• 〈g0, g1〉 is a transitive subgroup of Sn.

Then Sn acts on Y∗ by simultaneous conjugation, and the quotient is canonically
identified with Y?.

For each of the thirty-one dessins of this section, the monodromy group 〈g0, g1〉
is all of Sn. Indeed the only transitive subgroup of S7 having the three cycle types
of Λ′ is S7, and the only transitive subgroup of S12 having the three cycle types of
Λ′′ is S12.

2.5. Galois action. Let Gal(Q/Q) be absolute Galois group of Q. The “profound
identity” mentioned in the introduction centers on the fact that Gal(Q/Q) acts
naturally on the set X of Belyi maps belonging to any given Λ. In the favorable
cleanly marked situation set up in §2.1, one has X ⊂ Q and the action on X is the
restriction of the standard action on Q.
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A broad problem is to describe various ways in which Gal(Q/Q) may be forced
to have more than one orbit. Suppose x, x′ ∈ X respectively give rise to monodromy
groups 〈g0, g1〉 and 〈g′0, g′1〉. If these monodromy groups are not conjugate in Sn
then certainly x and x′ are in different Galois orbits. Malle’s paper [11] repeatedly
illustrates the next most common source of decompositions, namely symmetries
with respect to certain base-change operators P1

t → P1
t . The two splittings in this

section do not come from either of these simple sources.

2.6. The triple Λ′′ and its associated 24 = 23+1 splitting. Here we summarize
the situation for Λ′′. Again the computation is completely typical, but the result
is atypical. The clean marking on Λ′′ identifies XΛ′′ with the roots of

(5x+ 4)·

(48828125x23 + 283203125x22 − 4345703125x21 − 21400390625x20 + 134842187500x19

+ 461968375000x18 − 1670830050000x17 − 2095451850000x16 + 7249113240000x15

+ 6576215456000x14 − 23053309281280x13 − 10284915779584x12 + 50191042453504x11

+ 9449308979200x10 − 74715419574272x9 + 5031544553472x8 + 71884253429760x7

− 35243151065088x6 − 41613745192960x5 + 29347637362688x4 + 14541349978112x3

+ 1765701320704x2 + 100126425088x+ 2684354560).

Figure 2.2. Dessins in Yx,[0,1] ⊂ P1
y corresponding to the twenty-

four points x ∈ XΛ′′ with Λ′′ = (642, 2222211, 5322)
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The twenty-four associated dessins are drawn in Figure 2.2. The cover F−4/5 :

P1
y → P1

t is given by

(2.6) t =
55y6(y − 1)4(5y + 4)2

2433(2y + 1)3 (5y2 − 6y + 2)
2 .

This splitting of one cover away from the other twenty-three covers is explained in
§4.3.

In choosing conventions for using dessins to represent covers, one often has to
choose between competing virtues, such as symmetry versus simplicity. Figure 2.2
represents the standard choice when λ1 has the form 2a1b: one draws the white
vertices just as regular points, because they are not necessary for recovering the
cover. With this convention there are just three highlighted points in each of the
dessins in Figure 2.2: black dots of valence 6, 4, 2 at y = 0, 1, x. The rational
cover, with x = −4/5, appears in the upper left.

2.7. Bounds on bad reduction. Let n be a positive integer and let Λ =
(λ0, λ1, λ∞) be a triple of partitions of n as above. Let P loc be the set of primes
dividing a part of one of the λi. Let Pglob be the set of primes less than or equal
to n. In our two examples P loc = {2, 3, 5} and Pglob is larger, by {7} and {7, 11}
respectively.

Let KΛ be the moduli algebra associated to Λ. Let DΛ be its discriminant,
i.e. the product of the discriminants of the factor fields. In our two examples,
DΛ′ = −23 3 53 7 and DΛ′′ = 238 325 518 76. Let PΛ be the set of primes dividing
DΛ. Then one always has PΛ ⊆ Pglob. Of course if KΛ = Q, then one has PΛ = ∅.
Our experience is that once [KΛ : Q] has moderately large degree, PΛ is quite likely
to be all or almost all of Pglob, as in the two examples.

Suppose now that π : Y → P1 is a Belyi map defined over Q. Then its set P of
bad primes satisfies

(2.7) P loc ⊆ P ⊆ Pglob.

For our two examples, P coincides with its lower bound {2, 3, 5}. The conceptual
explanations of the splitting given in Section 3 also explain why the remaining one
or two primes in Pglob are primes of good reduction.

3. Hurwitz maps, Belyi pencils, and Hurwitz-Belyi maps

In §3.1 we very briefly review the formalism of dealing with moduli of maps
Y → P1

t with r critical values. A key role is played by Hurwitz covering maps
πh : Hur∗h → Confν . In §3.2 we introduce the concept of a Belyi pencil u : P1 −
{0, 1,∞} → Confν and in §3.3 we give three important examples in r = 4. Finally
§3.4 combines the notion of Hurwitz map and Belyi pencil in a straightforward way
to obtain the general notion of a Hurwitz-Belyi map πh,u.

3.1. Hurwitz maps. Consider a general degree n map F : Y → P1
t as in §1.1.

Three fundamental invariants are
• Its global monodromy group G ⊆ Sn.
• The list C = (C1, . . . , Ck) of distinct conjugacy classes of G arising as

non-identity local monodromy transformations.
• The corresponding list (D1, . . . , Dk) of disjoint finite subsets Di ⊂ P1 over

which these classes arise.
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To obtain a single discrete invariant, we write ν = (ν1, . . . , νk) with νi = |Di|. The
triple h = (G,C, ν) is then a Hurwitz parameter in the sense of [22, §2] or [21, §3].

A Hurwitz parameter h determines a Hurwitz moduli space Hurh whose points x
index maps Fx : Yx → P1

t of type h. The Hurwitz space covers the configuration
space Confν of all possible divisor tuples (D1, . . . , Dk) of type ν. The common
dimension of Hurh and Confν is r =

∑
i νi, the number of critical values of any Fx.

Sections 2-4 of [22] and Section 3 of [21] provide background on Hurwitz maps,
some main points being as follows. There is a group-theoretic formula for a mass m
which is an upper bound and often agrees with the degree m of πh : Hurh → Confν .
If all the Ci are rational classes, and under weaker hypotheses as well, then the
covering of complex varieties descends canonically to a covering of varieties defined
over the rationals, πh : Hurh → Confν . The set Ph of primes at which this map
has bad reduction is contained in the set PG of primes dividing |G|.

On the computational side, [21] provides many examples of explicit compu-
tations of Hurwitz covers. Because the map πh is equivariant with respect to
PGL2 actions, we normalize to take representatives of orbits and thereby re-
place Hurh → Confν by a similar cover with three fewer dimensions. Our
computations in the previous section for h = (S7, (322, 421, 511), (1, 1, 1)) and
h = (S12, (642, 2222211, 5322), (1, 1, 1)) illustrate the case r = 3. Computations
in the cases r ≥ 4 proceed quite similarly. The next section gives some simple
examples and a collection of more complicated examples is given in the companion
paper [16].

Let Out(G,C) be the subgroup of Out(G) which fixes all classes Ci in C. Then
Out(G,C) acts freely on Hurh. For any subgroup Q ⊆ Out(G,C), we let HurQh be
the quotient Hurh/Q and let πQh : HurQh → Confν be the corresponding covering
map. One can expect that Q will usually play a very elementary role. For example,
it can be somewhat subtle to get the exact degree m of a map πh, but then the
degree of πQh is just m/|Q|.

We already have the simpler notation Hurh for Hur{e}h . Similarly, following [22],
we use ∗ as a superscript to represent the entire group Out(G,C). In the literature,
Hurh is often called an inner Hurwitz space while Hur∗h is an outer Hurwitz space.
In the entire sequel of this paper, the only Q that we will consider are these two
extreme cases. It is important for us to descend to the ∗-level to obtain fullness.

3.2. Belyi pencils. For any ν as above, the variety Confν naturally comes from
a scheme over Z. Thus for any commutative ring R, we can consider the set
Confν(R). Section 8 of [22] and then the sequel paper [21] considered R = Q and
its subrings Z[1/P] = Z[{1/p}p∈P ]. From fibers Hurh,u ∈ Hurh(Q) above points
in Confν(Z[1/P]) one gets interesting number fields, the Hurwitz number fields of
the title of [21].

Our focus here is similar, but more geometric. A Belyi pencil u is an algebraic
map

(3.1) u : P1
v − {0, 1,∞} → Confν ,

with image not contained in a single PGL2 orbit. One can think of v as a time-like
variable here. The Belyi pencil u then can be understood as giving r points in P1

t ,
typically moving with v. There are νi points of color i; points are indistinguishable
except for color, and they always stay distinct except for collisions at v ∈ {0, 1,∞}.
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To make the similarity clear, for R a ring let

R〈v〉 = R[v,
1

v(v − 1)
].

Then a Belyi pencil can be understood as a point in Confν(C〈v〉). We say that the
Belyi pencil u is rational if it is in Confν(Q(〈v〉)). For rational pencils, one has a
natural bad reduction set Pu. It is the smallest set P with u ∈ Confν(Z[1/P]〈v〉).

Remark. A complicated Belyi pencil. In this paper we will actually use only the
three very simple Belyi pencils of the next subsection, and also the simple Belyi
pencil (10.1). However general Belyi pencils can be much more complicated. For
example, consider the eight-tuple((

t6 − 8vt3 + 9vt2 − 2v2
)
,
(
t6 − 3t5 + 10vt3 − 15vt2 + 9vt− 2v2

)
,(

t6 − 6vt5 + 15vt4 − 20vt3 + 6v2t2 + 9vt2 − 6v2t+ v2
)
,(3.2) (

t4 − 2t3 + 2vt− v
)
,
(
t4 − 4vt+ 3v

)
,
(
2t3 − 3t2 + v

)
, (t), {∞}

)
.

The product of the seven irreducible polynomials presented has leading coefficient 2
and discriminant 21613266v125(v−1)125. Thus u : P1

v−{0, 1,∞} → Conf6,6,6,4,4,3,1,1
is a Belyi pencil with bad reduction set {2, 3}.

3.3. Belyi pencils for r = 4. Three Belyi pencils play a special role in the case
r = 4, and we denote them by u1,1,1,1, u2,1,1, and u3,1. For u1,1,1,1, we keep our
standard variable v. To make u2,1,1 and u3,1 stand out when they appear in the
sequel, we switch the time-like variable v to respectively w and j for them. These
special Belyi pencils are then given by

({v}, {0}, {1}, {∞}) , (Dw, {0}, {∞}) , (Dj , {∞}) .(3.3)

Here the divisors Dw and Dj are the root-sets of t2 + t+ 1
4(1−w) and 4(1− j)t3 +

27jt + 27j respectively. So the three Belyi pencils are all rational, and their bad
reduction sets are respectively {}, {2}, and {2, 3}.

The images of these Belyi pencils are curves

U1,1,1,1 ⊂ Conf1,1,1,1, U2,1,1 ⊂ Conf2,1,1, U3,1 ⊂ Conf3,1.

The three curves are familiar as coarse moduli spaces of elliptic curves. Here
U1,1,1,1 = Y(2) parametrizes elliptic curves with a basis of 2-torsion, U2,1,1 = Y0(2)
parametrizes elliptic curves with a 2-torsion point, and U3,1 = Y(1) is the j-line
parametrizing elliptic curves. The formulas

w =
(2v − 1)2

9
, j =

(3w + 1)3

(9w − 1)2
=

22(v2 − v + 1)3

33v2(v − 1)2
(3.4)

give natural maps between these three bases: P1
v → P1

w → P1
j .

Remark. The two other 4-point cases. The cases ν = (2, 2) and ν = (4) are com-
plicated by the presence of extra automorphisms. Any configuration (D1, D2) ∈
Conf2,2 is in the PGL2 orbit of a configuration of the special form ({0,∞}, {a, 1/a}).
This latter configuration is stabilized by the automorphism t 7→ 1/t. Similarly, a
configuration (D1) ∈ Conf4 has a Klein four-group of automorphisms. To treat
these two cases, the best approach seems to be modify the last two pencils in (3.3)
to (Dw, {0,∞}) and (Dj ∪ {∞}). Outside of a quick example for ν = (4) in the
remark containing (8.10), we do not pursue any explicit examples with such ν in
this paper.
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3.4. Hurwitz-Belyi maps. We can now define the objects in our title.

Definition 3.1. Let h = (G,C, ν) be a Hurwitz parameter, let Q be a subgroup
of Out(G,C), and let πQh : HurQh → Confν be the corresponding Hurwitz map. Let
u : P1

v − {0, 1,∞} → Confν be a Belyi pencil. Let

(3.5) πQh,u : XQh,u → P1
v

be the Belyi map obtained by pulling back the Hurwitz map via the Belyi pencil and
canonically completing. A Belyi map obtainable by this construction is a Hurwitz-
Belyi map.

Recall from the end of §3.1 that Q plays a passive role. We usually take Q to
be all of Out(G,C), in which case we replace the superscript simply by ∗. In the
common case when Out(G,C) is trivial, we can abbreviate further by omitting the
superscript.

When r = 4 and u is one of the three maps (3.3), then we are essentially not
specializing, as we are taking a set of representatives for the PGL2 orbits on Confν .
We allow ourselves to drop the u in this situation, writing e.g. πh : Xh → P1

j . On
the other hand, when r ≥ 5 we are truly specializing a cover of (r− 3)-dimensional
varieties to a Belyi map.

Rationality and bad reduction are both essential to this paper. If h and u are
both defined over Q, then so is πh,u. If h has bad reduction set Ph and u has bad
reduction set Pu then the bad reduction set of πh,u is within Ph ∪ Pu. All the
examples we pursue in this paper satisfy Pu ⊆ Ph.

4. The two rational Belyi maps as Hurwitz-Belyi maps

This section presents some first examples in the setting r = 4, and in particular
interprets the two rational Belyi maps of Section 2 as Hurwitz-Belyi maps.

4.1. A degree 7 Hurwitz-Belyi map: computation and dessins. To realize
the Belyi map (2.5) as a Hurwitz-Belyi map, we start from the Hurwitz parameter

(4.1) h = (S6, (2x1111, 303, 31111, 4∞11), (1, 1, 1, 1)).

Here and in the sequel we often present Hurwitz parameters with subscripts which
indicate our normalization, without being as formal about markings as we were in
Section 2. Thus the subscript 0 in 303 causes us to write y2−a in the next equation,
rather than say y2 + zy− a; this type of normalization on the second-highest order
term does not introduce irrationalities.

The marked Hurwitz parameter (4.1) tells us to consider rational functions of
the form

(4.2) F (y) =
(y2 − a)3(b+ c+ 1)

(1− a)3 (y2 + by + c)

and the equation

(4.3) 4y3 + 5by2 + 2ay + ab = 4(y − 1)2(y − x).

The left side of (4.3) is a factor of the numerator of F ′(y) and thus its roots are
critical points. The right side gives the required locations and multiplicities of these
critical points.
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1

2

3

45

67

Figure 4.1. Left: The dessin Xh,[0,1] ⊂ P1
x belonging to h =

(S6, (21111, 33, 3111, 411), (1, 1, 1, 1)), with real axis pointing up; the
integers i are at preimages xi ∈ Xh,[0,1] of 1/2 ∈ P1

v. Right: the dessins
Yh,xi,[0,1] ⊂ P1

y for the seven i.

Equating coefficients of powers of y in (4.3) and solving, we get

a =
5x

x+ 2
, b = −4

5
(x+ 2), c =

4x2 + 5x+ 4

3(x+ 2)
.(4.4)

Summarizing, we have realized Xh as the complex projective x-line and identified
each Yh,x with the complex projective y-line P1

y so that the covering maps Fh,x :

P1
y → P1

t become

(4.5) Fh,x(y) =

(
(x+ 2)y2 − 5x

)3
4(2x− 1) (−15(x+ 2)y2 + 12(x+ 2)2y − 5(4x2 + 5x+ 4))

.
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Since the fourth critical value of Fh,x is just Fh,x(x), we have also coordinatized
the Hurwitz-Belyi map πh : Xh → P1

v to

(4.6) πh(x) = −
x3
(
x2 + 2x− 5

)2
4(2x− 1)(3x− 4)

.

Said more explicitly, to pass from the right side of (4.5) to the right side (4.6), one
substitutes x for y and cancels x2 + 2x− 5 from top and bottom.

The rational function (4.6) appeared already as (2.5), with its dessin printed in
the upper left of Figure 2.1. This connection is our first explanation of why (2.4)
splits. It also explains why the bad reduction set of the rational Belyi map is in
{2, 3, 5}.

Figure 4.1 presents the current situation pictorially, with v = 1/2 chosen as
a base point. The elements of Xh,1/2 = π−1

h (1/2) are labeled in the box at the
left, where the real axis runs from bottom to top for a better overall picture. For
each x ∈ Xh,1/2, a corresponding dessin Yx,[0,1] is drawn to its right. Like the
standard dessins of §2.3, these dessins have black vertices, white vertices, and faces.
However they each also have five vertices of a fourth type which we are not marking,
corresponding to the five parts of the partition 21111. The valence of this type of
vertex with ramification number e is 2e, so only the extra vertex coming from the
critical point with e = 2 is visible on Figure 4.1. The action of the braid group to
be discussed in §5.1 can be calculated geometrically from these dessins.

4.2. Cross-parameter agreement. An interesting phenomenon that we will see
repeatedly in later sections is cross-parameter agreement. By definition, cross-
parameter agreement occurs when two different Hurwitz parameters give rise to
isomorphic Hurwitz covers. At present, as mentioned in [21, §3.6], some of the
these agreements are explained by the Katz middle convolution operator. However
there are unexplained agreements as well that do not seem accidental. Already the
phenomenon of cross-parameter agreement occurs for our septic Belyi map, which
we realize in a second way as a Hurwitz-Belyi map as follows.

For the normalized Hurwitz parameter

ĥ = (S5, (2z111, 221, 3111, 3∞20), (1, 1, 1, 1)),

the computation is easier than it was for the Hurwitz parameter h of (4.1). An
initial form of F̂ (y), analogous to (4.2), is

(4.7) F̂ (y) =
(y − c)

(
y2 + ay + b

)2
(1− c)y2(a+ b+ 1)2

.

Analogously to (4.5), the covering maps P1
y → P1

t are
(4.8)

F̂z(y) =
(4yz + 2y − z)

(
−2y2z − y2 + 6yz2 + 14yz + 6y + 12z2 + 12z + 3

)2
4y2(3z + 2)5

.

Analogously to (2.2) the Hurwitz-Belyi map P1
z → P1

v is

(4.9) π̂(z) = F̂z(z) =

(
4z2 + z

) (
4z3 + 25z2 + 18z + 3

)2
4z2(3z + 2)5

.

The map (4.9) agrees with the map (2.2) via the substitution z = (1−2x)/(3x−4).
In terms of Figure 4.1, the dessin at the left remains exactly the same, up to
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change of coordinates. In contrast, the seven sextic dessins at the right would be
each replaced by a corresponding quintic dessin.

4.3. Two degree 12 Hurwitz-Belyi maps. In our labeling of conjugacy classes
mentioned in §1.6, we are accounting for the fact that the five cycles in A5

fall into two classes, with representatives (1, 2, 3, 4, 5) ∈ 5a and (1, 2, 3, 4, 5)2 =
(1, 3, 5, 2, 4) ∈ 5b. Consider two Hurwitz parameters, as in the left column:

haa = (A5, (5a, 311, 221), (2, 1, 1)), (β0, β1, β∞) = (5331, 222222, 5322),

hab = (A5, (5a, 5b, 311, 221), (1, 1, 1, 1)), (β0, β1, β∞) = (642, 2222211, 5322).

Applying the outer involution of A5 turns haa and hab respectively into similar
Hurwitz parameters hbb and hba, and so it would be redundant to explicitly consider
these latter two.

It is hard to computationally distinguish 5a from 5b. We will deal with this
problem by treating haa and hbb simultaneously. Thus we working formally with

h = (S5, (5, 311, 221), (2, 1, 1)),

ignoring that the classes do not generate S5. A second problem is that there are
only eight parts altogether in the partitions 5, 5, 311, and 221, so the covering
curves Y have genus two.

To circumvent the genus two problem, we use the braid-triple method, as de-
scribed later in Section 5. The mass formula [21, §3.5] applies to h, with only the
two abelian characters of S5 contributing. It says that the corresponding cover
Xh → P1

w has degree

|C5|2|C311||C221|
|A5|2

=
242 · 20 · 15

120 · 60
= 24.

A braid group computation of the type described in §5.2 says Xh has two compo-
nents, each of degree 12. The braid partition triples are given in the right column
above. The βτ then enter the formalism of Section 2 as the λτ there. Conveniently.
each cover sought has genus zero, and so the covers are easily computed. The
resulting polynomials are

f12aa(w, x) = x5
(
9x2 − 21x+ 16

)3
(x+ 3)− 28w(x− 1)3

(
9x2 − 12x+ 8

)2
,

f12ab(w, x) = 55(x− 1)4x6(5x+ 4)2 − 2433w(2x+ 1)3
(
5x2 − 6x+ 2

)2
.

Up to the simultaneous letter change y ↔ x, t ↔ w, the equation f12ab(w, x) = 0
defines the exact same map as (2.6). The current context explains why this map is
defined over Q and has bad reduction at exactly {2, 3, 5}.

Dessins corresponding to f12aa and f12ab are drawn in Figure 4.2. The two
dessins present an interesting contrast: the dessin on the left of Figure 4.2 is the
unique dessin with its partition triple, while the dessin on the right is one of the 24
locally equivalent dessins drawn in Figure 2.2.

Remark. An M12 specialization. Specializing Hurwitz-Belyi maps yields interesting
number fields. Except for this remark, we are saying nothing about this application,
because we discuss specialization of Hurwitz covers quite thoroughly in [19] and [21].
However the polynomial f12ab(1/4, x), or equivalently

x12 − 24x10 + 180x8 − 60x6 − 2520x5 + 4320x4 − 2520x3 + 864x2 − 216,
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Figure 4.2. Rational degree 12 dessins coming from Hurwitz pa-
rameters involving irrational classes. h12aa yielding partition triple
(5331, 222222, 5322) on the left and h12ab yielding (642, 2222211, 5322)
on the right

unexpectedly has the Mathieu group M12 as its Galois group. The splitting
field has root discriminant 23/233/2523/20 ≈ 93.55. Comparing with the discus-
sion in [20, §6.2], one sees that this field is currently the second least ramified of
known M12 Galois fields, being just slightly greater than the current minimum
225/12310/11513/10 ≈ 93.23.

5. The braid-triple method

Our first Hurwitz-Belyi map (4.6) was computed with the standard method.
After §5.1 gives background on braids, §5.2 and §5.3 describe the alternative braid-
triple method, already used twice in §4.3. The two methods are complementary, as
we explain in the short §5.4.

A key step in the braid-triple method is to pass from a Belyi pencil u to a
corresponding braid triple B = (B0, B1, B∞). In this paper, we use the braid-triple
method only for four u, and the corresponding B are given by the simple formulas
(5.3), (5.4), (5.5), and (10.2). We do not pursue the general case here; our policy
in this paper is to be very brief with respect to braid groups, saying just enough to
allow the reader to replicate our computations of individual covers.

5.1. Algebraic background on braid groups. The Artin braid group on r
strands is the most widely known of all braid groups, and our summary here follows
[22, §3]. The group is defined via r − 1 generators and

(
r−1

2

)
relations:

(5.1) Brr =

〈
σ1, . . . , σr−1 :

σiσj = σjσi, if |i− j| > 1
σiσjσi = σjσiσj , if |i− j| = 1

〉
.

The assignment σi 7→ (i, i + 1) extends to a surjection Brr � Sr. For every
subgroup of Sr one gets a subgroup of Brr by pullback. Thus, in particular, one
has surjections Brν � Sν for Sν = Sν1 × · · · × Sνr .

Given a finite group G, let Gr ⊂ Gr be the set of tuples (g1, . . . , gr) with the gi
generating G and satisfying g1 · · · gr = 1. The braid group Brr acts on the right of
Gr by the braiding rule

(5.2) (. . . , gi−1, gi, gi+1, gi+2, . . . )
σi = (. . . , gi−1, gi+1, g

gi+1

i , gi+2, . . . ).

The group G acts diagonally on Gr by simultaneous conjugation. The actions of
Brν and G commute with one another.
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Let h = (G,C, ν) be an r-point Hurwitz parameter, with C = (C1, . . . , Ck),
ν = (ν1, . . . , νk), and

∑k
i=1 νi = r, all as usual. Consider the subset Gh of Gr,

consisting of tuples with gj ∈ Ci for
∑i−1
a=1 νa < j ≤

∑i
a=1 νa. This subset is stable

under the action of Brν × G. The group Brν therefore acts on the right of the
quotient set Fh = Gh/G.

The actions of Brν on Fh all factor through a certain quotient HBrν . Terminology
is not important for us here, but for comparison with the literature we remark
that HBrν is the quotient of the standard Hurwitz braid group by its two-element
center. Choosing a base point ? and certain identifications appropriately, the group
HBrν is identified with the fundamental group π1(Confν , ?), in a way which makes
the action of HBrν on Fh agree with the action of π1(Confν , ?) on the base fiber
π−1
h (?) ⊂ Hurh.
Let Z be the center of G, this center being trivial for most of our examples. Let

Aut(G,C) be the subgroup of Aut(G) which stabilizes each conjugacy class Ci in
C. Then not only does G/Z act diagonally on Gh, but so does the entire overgroup
Aut(G,C). The group Out(G,C) introduced in §3.1 is the quotient of Aut(G,C)
by G/Z. Quotienting by the natural action of a subgroup Q ⊆ Out(G,C), gives
the base fiber FQh corresponding to the cover HurQh → Confν .

5.2. Step one: computation of braid triples. A Belyi pencil u : P1
v → Confν

determines, up to conjugacy depending on choices of base points and a path between
them, an abstract braid triple (B0, B1, B∞) of elements of HBrν . These elements
have the property that in any Hurwitz-Belyi map πh,u : Xh,u → P1, the images of
the Bτ in their action on Fh give the global monodromy of the cover. When Fh
is identified with {1, . . . ,m}, we denote the image of Bτ by bτ ∈ Sm and its cycle
partition by βτ . We call (b0, b1, b∞) a braid permutation triple. As we have already
done before, we call (β0, β1, β∞) a braid partition triple.

For the three 4-point Belyi pencils introduced in (3.3), the abstract braid triples
are

u1,1,1,1: (B0, B1, B∞) = (σ2
1 , σ

2
2 , σ
−2
2 σ−2

1 ),(5.3)

u2,1,1: (B0, B1, B∞) = (σ1, σ
−1
1 σ−2

2 , σ2
2),(5.4)

u3,1: (B0, B1, B∞) = (σ1σ2, σ
−1
2 σ−2

1 , σ1).(5.5)

The triple for u1,1,1,1 is given in [8, §5.5.2]. The other two can be deduced by
quadratic and then cubic base change, using (3.4). An important point is that, in
the quotient group HBrν , the B1 for u2,1,1 and u3,1 have order 2 and the B0 for
u3,1 has order 3.

It is worth emphasizing the conceptual simplicity of our braid computations.
They repeatedly use the generators σi of (5.1) and their actions on Fh from (5.2).
However they do not explicitly use the relations in (5.1). Likewise they do not
explicitly use the extra relations involved in passing from Brν to HBrν . Our actual
computations are at the level of the permutations bτ ∈ Sm rather than the level
of the braid words Bτ . At the permutation level, all these relations automatically
hold.

Computationally, we realize Fh via a set of representatives in Gh for the conju-
gation action. A difficulty is that the set Gh in which computations take place is
large. Relatively naive use of (5.1) and (5.2) suffices for the braid computations
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presented in the next five sections. To work as easily with larger groups and/or
larger degrees, a more sophisticated implementation as in [9] would be essential.

5.3. Step 2: passing from a braid triple to an equation. Having computed a
braid partition triple (β0, β1, β∞) belonging to πh,u, one can then try to pass from
the triple to an equation for πh,u by algebraic methods. We did this in §4.3 for two
partition triples with degree m = 12. For one, as described in §2.6, the desired πh,u
is just one of µ = 24 locally equivalent covers, the one defined over Q.

The braid partition triples (β0, β1, β∞) arising in the next five sections have
degrees m into the low thousands. The number µ of Belyi maps with a given such
braid partition triple is likely to be more than 10100 in some cases. The numbers 12
and 24 are therefore being replaced by very much larger m and µ respectively. It
is completely impractical to follow the purely algebraic approach of getting all the
maps belonging to the given (β0, β1, β∞) and extracting the desired rational one.
Instead, there are three more feasible techniques for computing only the desired
cover.

For almost all the covers in this paper, Step 2 was carried out by a p-adic
technique for finding covers defined over Q explained in detail in [10]. Here one
picks a good prime p for the cover sought, and first searches for a tame cover with the
correct (β0, β1, β∞) defined over Fp. Commonly, one finds several covers, and one
cannot yet tell which is the reduction of the cover sought. One then uniquely lifts
all these candidates iteratively to Z/pc for some large c. This step requires solving
linear equations and is easy. We commonly took c = 50. Then one recognizes the
coefficients of the lifted covers as p-adically near rational numbers. In practice this
is easy too, and only one of the initial solutions over Fp gives small height rational
numbers. One concludes by checking that the monodromy of the cover constructed
really does agree with the braid permutation triple (b0, b1, b∞). The efficiency of
this p-adic technique decreases rapidly with p. Since the covers we pursue all have
a small prime of good reduction, typically 5 or 7, the technique is well adapted to
our situation.

The second and third technique have been recently introduced, and both are un-
dergoing further development. They take the permutation triple (b0, b1, b∞) rather
than the partition triple (β0, β1, β∞) as a starting point. Thus they isolate the cover
sought immediately, and there is no issue of a large local equivalence class. The
technique of [6] centers on power series while the technique of [7] centers on numer-
ically solving partial differential equations. Schiavone used the programs described
in [6] to compute (7.5) here. Our tables in Sections 8-10 present braid information
going well beyond where one can currently compute equations, in part to provide
targets for these developing computational methods.

5.4. Comparison of the two methods. We used the standard method many
times in [21] in the context of constructing covers of surfaces. In the present context
of curves, the braid-triple method complements the standard method as follows. In
the standard method, one can expect the difficulty of the computation to increase
rapidly with the genus gY of Yx and the degree n of the cover Yx → P1

t . In the
braid-triple method, these measures of difficulty are replaced by the genus gX of
the curve Xh,u and the degree m of the cover Xh,u → P1

v. The quantities (gY , n)
and (gX ,m) are not tightly correlated with each other, and in practice each method



HURWITZ-BELYI MAPS 19

has a large range of parameters for which it works well while the other method does
not.

6. Hurwitz-Belyi maps exhibiting spin separation

This section presents three Hurwitz-Belyi maps for which we were able to find
a defining equation by both the standard and the braid-triple method. Each map
has the added interesting feature that the covering curve Xh has two components.
We explain this splitting by means of lifting invariants. Many of the covers in the
next four sections are similarly forced to split via lifting invariants.

6.1. Lifting in general. Decomposition of Hurwitz varieties was studied by Fried
and Serre. Here we give a very brief summary of the longer summary given in
[21, §4]. The decompositions come from central extensions G̃ of the given group
G. The term spin separation is used because many double covers are induced from
the double cover Spinn of the special orthogonal group SOn via an orthogonal
representation.

Let h = (G,C, ν) be a Hurwitz parameter. First, one has the Schur multiplier
H2(G,Z), always abbreviated in this paper as H2(G). Any universal central ex-
tension G̃ of G has the form H2(G).G. Second, one has a quotient H2(G,C) of
the Schur multiplier, with H2(G,C).G being the largest quotient in which each
Ci splits completely into |H2(G,C)| different conjugacy classes. Third, one has a
torsor Hh = H2(G,C, ν) over H2(G,C). So |Hh| = |H2(G,C)|, but the set Hh does
not necessarily have a distinguished point like the group H2(G,C) does.

The group Out(G,C) defined in §3.1 acts on the set Hh. For any subgroup
Q ⊆ Out(G,C), one has a natural map from the component set π0(HurQh ) of HurQh
to HQ

h . The most common behavior is that these maps π0(HurQh ) → HQ
h are

bijective. As said already in §3.1, our main interest is in Q = Out(G,C), in which
case we replace Out(G,C) by ∗ as a superscript.

In practice, the key groups H2(G,C) and Out(G,C) are extremely small. In the
next three subsections H2(G,C) has order 2, 3, and 3 respectively, while Out(G,C)
has order 1, 2, and 1. We explain lifting in some detail in these subsections and
also in §8.2 where H2(G,C) and Out(G,C) can be slightly larger.

6.2. A degree 25 = 15 + 10 family. Applying the mass formula [21, (3.6)] to
a Hurwitz parameter h = (G,C, ν) requires the use of the character table of G.
Common choices for G in this paper are A5 and S5. Table 6.1 gives the character
table for these two groups, as well as their Schur double covers Ã5, and S̃5. In
this subsection, we use this table to illustrate how mass formula computations for
a given Hurwitz parameter h appear in practice, including refinements involving
covering groups G̃.

The character table for A5 is given simply by the upper left 5-by-5 block. The
remaining character tables require the use of Atlas conventions. The double cover
Ã5 has the listed nine characters. The nine conjugacy classes arise because all but
the class 221 splits into two classes. We label these classes of Ã5 according to
whether the order of a representing element is even (+) or odd (−). Thus 5a splits
into 5a+ and 5a−. The printed character values refer to the class with odd order
elements. Thus, e.g., χ8(311+) = 1 but χ8(311−) = −1.

Only the groups A5 and Ã5 are used in the example of this subsection, but S5

and S̃5 are equally common in the sequel and we explain them here. The group S5
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|Ci| 1 15 20 12 12 10 30 20
Ci 15 221 311 5a 5b 2111 41 32
χ1 1 1 1 1 1 1 1 1
χ2 3 −1 0 −b −b′ 0 0 0
χ3 3 −1 0 −b′ −b′
χ4 4 0 1 −1 −1 2 0 −1
χ5 5 1 −1 0 0 1 −1 1

Orders of 1 4 3 5 5 2 8 6
classes 2 6 10 10 8 6

χ6 2 0 −1 b b′ 0 0 0
χ7 2 0 −1 b′ b
χ8 4 0 1 −1 −1 0 0

√
−3

χ9 6 0 0 1 1 0
√
−2 0

Table 6.1. Character tables for A5, S5, Ã5, and S̃5, with the abbre-
viations b = (−1 +

√
5)/2 and b′ = (−1−

√
5)/2.

has seven conjugacy classes, the classes 5a and 5b having merged to a single class
5. The corresponding seven characters are the printed χ1, χ4, χ5, the sum χ2 + χ3

extended by zero, and the twists χ1ε, χ4ε, and χ5ε. Here ε is the sign character,
taking value 1 on A5 and −1 on S5 − A5. The cover S̃5 has twelve characters, the
seven from before and the five new ones χ6 + χ7, χ8, χ8ε, χ9, and χ9ε.

For the example of this subsection, let h = (A5, (311, 5a), (3, 1)). Because of
0’s appearing as character values, only the characters χ1 and χ4 appear when
evaluating the mass formula:

mh =
|C1|3|C2|
|G|2

5∑
i=1

χi(C1)3χi(C2)

χi(1)2
=

20312

602

(
13(1)

12
+

13(−1)

42

)
=

20

3

15

16
= 25.

Because A5 does not have a proper subgroup meeting the both the classes 311 and
5a, the desired degree is just the mass, mh = mh = 25.

The joint paper [22] was originally planned to include this h as an example. The
curves Yx parameterized have genus one but Venkatesh nonetheless computed the
Belyi map πh : X → P1

j by the standard method, seeing directly that X breaks
into two components, each of genus zero, of degree 15 and 10 over P1

j . The present
author simultaneously used the braid-triple method, using (5.5) to get the braid
partition triples (3331, 22222, 541) and (33333, 22222221, 5433). Both methods end
at the explicit equations (8.4) and (8.5).

To explain the splitting, consider the Hurwitz parameters

h+ = (Ã5, (311+, 5a+), (3, 1)), h− = (Ã5, (311+, 5a−), (3, 1)).(6.1)

Let (g1, g2, g3, g4) ∈ Gh. For i = 1, 2, 3, let g̃i be the unique preimage of gi in 311+.
Then there is a unique lift g̃4 of g4 which satisfies g̃1g̃2g̃3g̃4 = 1. This lift can be
in either 5a+ or 5a−. In this way one gets a map from Gh to Hh = Z/2. This
invariant does not change under either the braid or conjugation action.
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The mass formula [21, (3.6)], applied to G̃ now, lets one find the degrees of the
factors. In this simple case, where proper subgroups of G̃ are not involved, one has

m±h =
1

2

|C1|3|C2|
|G|2

9∑
i=1

χi(C1)3χi(C2)

χi(1)2

=
1

2

20312

602

(
13(1)

12
+

13(−1)

42
± (−1)3(b+ b′)

22
± 13(−1)

42

)
=

40

3

(
1− 1

16
± 1

4
± −1

16

)
=

40

3

(
15

16
± 3

16

)
=

5

2
(5± 1) = 15, 10.

Similar mass computations let one properly identify components with lifting invari-
ants in general. We make these identifications, typically with no further comments,
in the next two subsections and many times in §8-10.

6.3. A degree 70 = 30 + 40 family: rational cubic splitting. Let

h = (A7, (22111, 511, 322), (2, 1, 1)).

The large singletons 5 and 3 help keep the standard method within computational
feasibility. By a direct application of this method, one sees at the end that the
degree m is 70 and there is a splitting into two components of degrees 30 and 40.

In the braid-triple method the order of events is reversed. Mass formula compu-
tations says that the desired X∗h → P1

w has degree 70. A braid group computation
using (5.4) says that X∗h has two components of degrees 30 and 40. The monodromy
groups are A30 and S40 respectively, with braid partition triples

(β0, β1, β∞) = (72 5 3 24, 214 12, 6 52 4 33 1),

(β0, β1, β∞) = (72 52 42 23 12, 220, 52 43 36).

As the total number of parts is 32 and 42 respectively, the genus is zero in each
case.

The second step in the braid-triple method is challenging, since the smallest
prime not in PA7

is 11. This step is only within feasibility because of the splitting
70 = 30+40, and the fact that one can compute the two components independently.
Explicit equations are

f30(w, x) = 2233
(
7x2 + 14x+ 4

)7
x5(2x+ 1)3

(
x2 + 3x+ 1

)2 (
2x2 + x+ 2

)2
+w

(
7x2 + 6x+ 2

)5
(5x+ 2)4

(
14x3 + 39x2 + 18x+ 2

)3
(x+ 2),

f40(w, x) = 2234
(
5x2 − 12x+ 3

)7 (
5x2 − 15x+ 12

)5 (
x2 − 3x+ 6

)4(
4x2 − 15x+ 15

)2
x(5x− 9)

+w
(
x2 − 3

)5 (
5x3 − 45x2 + 120x− 108

)4(
400x6 − 2700x5 + 7425x4 − 10530x3 + 7830x2 − 2430x− 27

)3
.

The polynomial discriminants are

D30(w) = −245032855957105w22(w − 1)14,

D40(w) = 29303125452307105w29(w − 1)20.
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Modulo squares these quantities are −105 and 7w, reflecting the fact that mon-
odromy groups and generic Galois groups are (A30, S30) in the first case and
(S40, S40) in the second.

The group A7 has the unusually large maximal non-split central extension 6.A7.
For both this subsection and the next, only the subextension 3.A7 is relevant be-
cause all the classes Ci split in it, while the class 22111 is inert in 2.A7. In
the notation reviewed in §6.1, this reduction is expressed by an identification
H2(A7, C) = Z/3. The group Out(A7, C) is all of Out(A7) = {±1} because the
classes 22111, 511, and 322 are all stabilized by the outer involution. The action
of {±1} on Z/3 is the nontrivial one where −1 acts by negation. The degree 30
component corresponds to the identity class 0 ∈ Z/3 while the degree 40 component
corresponds to the orbit of the two nonidentity classes in Z/3.

The promised third conceptual explanation of the degree splitting 4 = 3 + 1 for
h = (A7, (322, 421, 511), (1, 1, 1)) from (2.4) is in our present context. All three
classes split in 3.A7 while only the last two split in 2.A7. All three classes are
stable under outer involution. So here again Out(A7, C) = {±1} acts nontrivially
on H2(A7,Z) = Z/3. In this case the degree one factor corresponds to 0 ∈ Z/3
while the degree three factor corresponds to {−1, 1} ⊂ Z/3.

6.4. A degree 42 = 21 + 21 family: irrational cubic splitting. Lando and
Zvorkin [8, §5.4] investigated splitting of Hurwitz covers in some generality. The
unique splitting in their context that they could not conceptually explain comes
from the Hurwitz parameter

h = (A7, (22111, 7a), (3, 1)).

Here one has splitting of the form 42 = 21 + 21. In this subsection we complement
their study of this example by both giving an equation and explaining the splitting.

Computing using (5.5), one gets that the two components have the same braid
partition triple, namely

(6.2) (β0, β1, β∞) = (37, 210 1, 6 5 4 32).

This agreement is in contrast to the previous subsection, where the two compo-
nents even had different degrees. Lando and Zvonkin speculated (p. 333) that the
agreement is explained by the two components being Galois conjugate.

Indexing the two maps arbitrarily by ε ∈ {+,−}, each map we seek fits as the
right vertical map in a Cartesian square:

(6.3)
X̃ε → Xε

↓ ↓
P1
v → P1

j

.

Here the bottom map is the degree six S3 cover given in (3.4), and so the top map
is a degree six S3 cover as well.

There are 7 + 11 + 5 = 23 parts in all in (6.2), so that the genus of each Xε is 0
by the Riemann-Hurwitz formula. Lando and Zvonkin worked first with the base-
changed cover. Here the braid partition is (β̃0, β̃1, β̃∞), with each β̃τ = 5333322.
As 7 + 7 + 7 = 21, the genus is 1. Jones and Zvonkin [5] carried out the S3 descent
as we are doing here.



HURWITZ-BELYI MAPS 23

We find via explicit equations that the two components are indeed conjugate
with respect to the two choices s = ±

√
21:

f21±(j, x) =

2 · 5 ·
(
2700000x7 + x6(630000s− 3780000) + x5(724500− 829500s)

+x4(2228100− 474600s) + x3(1404725s− 5328225)

+x2(7020216− 1485456s) + x(856800s− 4384800)− 252000s+ 972000
)3

±3 · 77j(5239s− 21429)x5(10x− 9)4
(
150x2 + x(40s− 15)− 8s+ 88

)3
.

Figure 6.1 draws the dessins in P1
x corresponding to Cover 21+ on the left and its

5 4

3

3

5 4

3

3

Figure 6.1. Conjugate dessins, with 21+ on left and 21− on right

conjugate Cover 21− on the right. The preimages in P1
x of ∞ ∈ P1

j are indicated in
the picture by their ramification numbers, with the undrawn ∞ ∈ P1

x also being a
preimage with ramification number 6. Figure 6.1 gives the correct analytic shape
of Figure 3 of [5], and, after base change, the correct shape of Figure 5.15 of [8].

The splitting is induced by the existence of 3.A7 as in the previous subsection.
Again one has an identification H2(A7, C) = Z/3. Here however, because 7a is not
stabilized by the outer involution of A7, the group Out(A7, C) is trivial. Accordingly
one has a natural function from components of X to Z/3. One would generally
expect all three preimages to have one component each. In this case, the preimages
of 0, 1, and −1 are respectively empty, X+ and X−.

7. Hurwitz-Belyi maps with |G| = 2a3bp and ν = (3, 1)

In this section, we set up a framework for studying the Hurwitz-Belyi maps
coming from a systematic collection of 4-point Hurwitz parameters h. Here and in
the next two sections, we carry out the first part of the braid-triple method for all
these h, obtaining braid permutation triples (b0, b1, b∞) and thus braid partition
triples (β0, β1, β∞). In many low degree cases, we carry out the second part as well,
obtaining a defining equation for the cover.

7.1. Restricting to |P| = 3 and ν = (3, 1). To respond to the inverse problem
of §1.3, we consider only h = (G,C, ν) giving covers defined over Q. To keep our
computational study of manageable size we impose two severe restrictions. First,
we require that G be almost simple with exactly three primes dividing its order.
Second, we restrict attention to the case ν = (3, 1). There are many more cases
within computational reach which are excluded because of these two restrictions.
The rest of this subsection elaborates on the two restrictions.
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Almost simple groups divisible by at most three primes. There are exactly eight
nonabelian simple groups T for which the set PT of primes dividing |T | has size
at most 3. In all cases, the order has the form 2a3bp and the classical list is as in
Table 7.1. References into this classification literature and the complete list in the
much more complicated case |PT | = 4 are in [25].

p T |T | H2 A p T |T | H2 A
5 A5 60 = 22315 2 2 7 SL3(2) 168 = 23317 2 2
5 A6 360 = 23325 6 22 7 SL2(8) 504 = 23327 1 3
5 W (E6)+ 25920 = 25345 2 2 7 SU3(3) 6048 = 25337 1 2

13 SL3(3) 5616 = 243313 1 2 17 PSL2(17) 2448 = 243217 2 2

Table 7.1. The eight simple groups of order 2a3bp and related in-
formation

The column H2 gives the order of the Schur multiplier H2(T ). Non-trivial entries
here are the source of spin separation as explained in the previous section. The
column A in Table 7.1 gives the structure of the outer automorphism group of T .
So in every case except T = A6 there are two groups G to consider, T itself and
Aut(T ) = T.A. For T = A6 one has, in Atlas order, the extensions S6, PGL2(9),
and M10, as well as the full extension Aut(A6) = A6.2

2.

Attractive features of the case ν = (3, 1). The restriction ν = (3, 1) is chosen for
several reasons. First, it makes tables much shorter, and in fact Tables 8.1, 8.3, 9.1,
9.2 are complete. The case ν = (2, 2) would have similar length and the case ν = (4)
would be even shorter. However we stay away from both these alternatives as the
involutions discussed at the end of §3.3 complicate the situation. Second, covers
in a given degree m tend to have considerably smaller genus for ν = (3, 1) than
they do for ν = (2, 1, 1) or (1, 1, 1, 1). In fact our tables show that for ν = (3, 1),
covers can have genus zero into quite high degree. Third, in the case ν = (3, 1)
and (β0, β1) = (3m/3, 2m/2), Beukers and Montanus [1] described a method which
allows one to solve the given system with m unknowns by first solving an auxiliary
system with approximately m/3 unknowns. This method generalizes to the full
(3, 1) case of (β0, β1) = (3a 1m−3a, 2b 1m−2b); we used it simultaneously with the
p-adic technique sketched in §5.3 to extend the reach of our calculations. Finally,
as discussed in §3.3, the base P1

j is the familiar j-line. Transitive degree-m covers
Xh → P1

j correspond to index-m subgroups of PSL2(Z) and we are in a very
classical setting.

7.2. Agreement and indexing. As discussed in §4.2, the interesting phenomenon
of cross-parameter agreement says that different Hurwitz parameters can give rise
to isomorphic coverings. When the two groups involve different nonabelian simple
groups T , as in the initial example of §4.2, we use the term cross-group agreement.
We note cross-group agreement in our tables mainly by referencing a common
equation. Two covers appearing even for T involving different primes are

f3,1(j, x) = (x− 4)x3 + 4j(2x+ 1),(7.1)
f4,3,2(j, x) = (4x3 − 3x+ 2)3 − 27jx3(3x− 2)2.(7.2)
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These covers are capable of arising for |T | of the form 2∗3∗p for various p because
their discriminants are respectively −21233j2(j − 1)2 and 254339j6(j − 1)4.

The covers (7.1), (7.2) illustrate our convention of indexing by the braid partition
β∞. This partition and also β0 = 3a1m−3a can be read off from the presented
polynomial. The remaining partition β1 = 2b1m−2b governing the factorization of
fβ∞(1, x) is then determined by the fact that we give polynomials only in genus
zero cases.

7.3. A degree 46 map with bad reduction set {2, 3, 13}. The next two sections
focus on Hurwitz-Belyi maps coming from groups of order 2a3bp for p ∈ {5, 7}. Here
and in the next subsection, to give a sense of completeness, we give one map each
for p ∈ {13, 17}. From h = (PGL3(3), (2B, 4B), (3, 1)) we get the braid partition
triple (β0, β1, β∞) = (31414, 223, 132 8 6 3 2 1). Our final polynomial is

f132,8,6,3,2,1(j, x) =(
16x4 + 40x3 − 3x2 − 116x− 8

) (
4096x14 + 20480x13 − 25856x12−

196736x11 + 47189x10 + 680764x9 − 69384x8 − 1135104x7 + 7638144x6

−16337408x5 + 9620480x4 − 2785280x3 + 741376x2 − 16384x− 32768
)3

−213312j(x− 2)3x6(x+ 4)2(2x− 1)
(
3x2 + 2x− 4

)13
.

The discriminant of this polynomial is −222603137113351(j−1)23j28. Modulo squares
this discriminant is −39(j − 1). The factor of j − 1 is known from the outset by
the oddness of β1 and β∞.

7.4. A degree 54 map with bad reduction set {2, 3, 17}. The Hurwitz param-
eters

(7.3) h1 = (SL2(17), (17a+, 3a−), (3, 1)) and h2 = (PGL2(17), (2B, 6A), (3, 1))

each give conjugate braid permutation triples, with common braid partition triple

(7.4) (β0, β1, β∞) = (317 13, 227, 93 82 42 2 1).

An equation was determined by Schiavone using improvements of the techniques
described in [6]:

f93,82,42,2,1(j, x) =(
x3 + 12x2 + 12x− 8

)
·
(
x17 − 52x16 + 42136x15 − 593008x14 + 10147846x13

+225862160x12 + 1467000268x11 + 6342760760x10 + 593082769x9

−1815237116x8 − 5586407260x7 − 258348008x6 + 8975722736x5(7.5)

−8292246656x4 + 3424464320x3 − 664160384x2 + 44883968x− 131072
)3

−2439jx
(
x2 − 71x+ 32

)4 (
x2 + 2x− 1

)8 (
x3 + 18x2 − 48x− 8

)9
.

It seems that this cross-parameter agreement is one of an infinite family indexed by
odd primes as follows. Generalize h1 to (SL2(p), (pa+, 3a−), (3, 1)). Generalize h2

to (PGL2(p), (2B, 6A), (3, 1)) when p ≡ ±5 (12) and to (PSL2(p), (2b, 6a), (3, 1))
when p ≡ ±1 (12). Then mass computations confirm that both covers have degree

m =
p2 − 5

4
+

{
p if p ≡ 1 (3)
−p if p ≡ 2 (3)

.
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Braid computations say that indeed the covers are isomorphic at least for p ≤ 19.
For m = 5 and 7 the degrees are 0 and 18 respectively, these cases arising in §8.1
and §9.1.

8. Hurwitz-Belyi maps with |G| = 2a3b5 and ν = (3, 1)

In this section we work in the framework set up in §7.1 and present a systematic
collection of Hurwitz-Belyi maps having bad reduction at exactly {2, 3, 5}.

Cross-group agreement. Before getting to the individual groups, we present equa-
tions for covers involved in cross-group agreement. The covers

f5,3,1(j, x) = 52
(
5x3 − 45x2 + 39x+ 25

)3 − 21433jx3(3x− 25),(8.1)

f5,3,2(j, x) =
(
9x3 + 3x2 − 53x+ 81

)3
(x+ 9)− 21432jx3(3x− 5)2,(8.2)

f5,4,3(j, x) =
(
4x4 − 24x3 + 24x2 − 48x+ 27

)3 − 2233jx3(3x− 4)5(8.3)

appear for all three groups. The covers

f5,4,1(j, x) =
(
16x3 − 87x2 + 48x+ 16

)3
(16x+ 1)− 22312jx4(x− 5),(8.4)

f5,4,32(j, x) = 4
(
256x5 + 640x4 − 440x3 − 3325x2 − 6400x− 4096

)3(8.5)

− 312jx4
(
32x2 + 95x+ 80

)3
appear for the simple groups A5 and A6. The covers

f5,1(j, x) =
(
x2 − 5

)3 − 33j(2x− 5),(8.6)

f52,4,2(j, x) = 27x
(
18x5 − 144x4 + 336x3 − 224x2 + 801x− 162

)3(8.7)

− j(2x− 9)2
(
36x2 − 52x− 9

)5
,

appear for A6 and W (E6)+. Several larger degree covers also appear for both A6

and W (E6)+. A polynomial for the smallest of these is

f10,82,6,5,42,3(j, x) =(
184528125x16 − 984150000x15 + 2263545000x14 − 2768742000x13(8.8)

+1616849100x12 + 181316880x11 − 1023304104x10 + 721510416x9

−166620402x8 − 72763728x7 + 59318552x6 − 4952016x5 − 12051828x4

+7406640x3 − 2117016x2 + 314928x− 19683
)3

+220 38 j
(
9x2 − 10x+ 3

)8
x6(5x− 3)5

(
3x2 − 1

)4
(3x− 1)3.

8.1. The simple group A5
∼= SL2(4) ∼= PSL2(5). Tables 8.1, 8.3, 9.1, and 9.2

have a similar structure, which we explain now drawing on Table 8.1 where T = A5

for examples. The top left subtable gives degrees of components of Hurwitz-Belyi
maps X∗h → P1

j for h = (T, (C1, C2), (3, 1)). Here C1 and C2 are distinct conjugacy
classes in T . When the lifting invariant set H∗h from §6.1 is trivial, a single number
is typically printed. For T = A5, this triviality occurs exactly if 221 is one of the
Ci, as from Table 6.1 for A5, only 221 is inert in the double cover Ã5. When H∗h is
canonically Z/2, typically two numbers are printed; the top and bottom numbers
respectively give the degrees of X∗+h and X∗−h over P1

j .
The remaining subtables on the left sides of Tables 8.1, 8.3, 9.1, and 9.2

similarly give degrees of components of Hurwitz-Belyi maps, bit now for h =
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(T.2, (C1, C2), (3, 1)). When Hh = H∗h has 2 elements but is not canonically Z/2,
typically again two numbers are printed in a column. These numbers are neces-
sarily the same. In general, a number is put in italics when the corresponding
component is not defined over Q. For G = S5, irrationality occurs exactly if
{C1, C2} = {41, 32}, a key point being that 41 and 32 each split into two irrational
classes in S̃5. Other possibilities for H∗h occur only for T = A6 and will be discussed
in §8.2. In general, if there is splitting beyond that forced by lifting invariants then
the corresponding degree is written as a list of the component degrees separated by
commas. This extra splitting does not occur on Table 8.1 and we expect it to be
rare in general. Indeed for G = A5 and any (C, ν), it never occurs on the level of
the entire r-dimensional Hurwitz cover Hur∗h → Confν [4].

C1\C2 221 311 5b
221 • 0 10a

311 12 • 15
10b

5a 4 9 4
0 0

C1\C2 2111 41 32
2111 • 0 0

41 32 • 36
36

32 10b
16 •
16

# M g β0 β1 β∞ Eqn.
2+ A4 0 3 1 22 3 1 (7.1)
1+ A9 0 33 241 5 3 1 (8.1)
1+ S10a 0 331 25 5 3 2 (8.2)
2+ S10b 0 331 25 5 4 1 (8.4)
1+ S12 0 34 2512 5 4 3 (8.3)
1+ S15 0 35 371 5 4 32 (8.5)
1 A32 0 31012 216 10 6 5 42 3 (8.9)

Two pairs defined over Q(
√

6)
1 A16 0 35 1 28 6 5 4 1 (8.11)
1 A36 0 312 218 10 6 5 42 32 1

Table 8.1. Left: Degrees of components of Hurwitz-Belyi covers
with parameters (G, (C1, C2), (3, 1)) with G = A5 or S5. Right: fur-
ther information on these covers.

We are interested primarily in rational covers and we distinguish non-isomorphic
rational covers of the same degree by identifying labels. This convention highlights
cross-parameter agreement. Thus on the left half of Table 8.1 the two 4’s and the
two 10b’s each represent isomorphic covers.

The left half of Tables 8.1 8.3, 9.1, or 9.2, as just described, is well thought of
as the Hurwitz half. The right half can then be considered the Belyi half, as it
makes no reference to its Hurwitz sources beyond the column #. Here a number
printed under # just repeats the number of Hurwitz sources from the left half; a
+ sign represents cross-group agreement, as it indicates that the cover also arises
elsewhere in this paper for a different T . While our focus is on Hurwitz-Belyi covers
defined over Q, when there is space we include extra lines for Hurwitz-Belyi covers
not defined over Q.

Equations for the first six lines of the top right subtable of Table 8.1 have already
been presented in the context of cross-group agreement. An equation for the seventh
line is

f10,6,5,42,3(j, x) =
(
x10 − 38x9 + 591x8 − 4920x7 + 24050x6 − 71236x5 + 125638x4

−124536x3 + 40365x2 + 85050x− 91125
)3 (

x2 − 14x− 5
)

(8.9)
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+ 22033jx6(x− 5)5
(
x2 − 4x+ 5

)4
(x− 9)3.

Note that the four-point covers Yx → P1
t corresponding to the seventh line have

genus one, and so (8.9) would be hard to compute by the standard method. The
tables of this and the next section give many examples where gY is large but gX = 0.
As we are systematically using the braid-triple method, gY is irrelevant and the
tables present g = gX .

Remark. The excluded case ν = (4). Tables 8.1, 8.3, 9.1, and 9.2 exclude the case
C1 = C2 to stay in the context of ν = (3, 1). The excluded cases (G,C1, (4)) are
interesting too and we mention one of them. For h = (A5, (311), (4)), the cover
X∗+h is given by f5,3,1(j, x) from (8.1) while X∗−h is empty. This h is our first of
three illustrations of a general theorem of Serre [23] as follows. Consider Hurwitz
parameters

h = (An, (e11n−e1 , . . . , ek1n−ek), (ν1, . . . , νk))

with all ei odd, so that one has a lifting invariant and thus an equation X∗h =
X∗+h

∐
X∗−h . Suppose

∑
νi(ei − 1) = 2n − 2 so that the genus gY is 0. Then the

general theorem says,

(8.10) If
∏
eνii

8≡
{
±1
±3

then X∗h =

{
X∗+h
X∗−h

.

Table 8.1 shows that X∗−h is empty for (5a, 311) and (5a, 5b) as well, even though
gY > 0 and so Serre’s theorem does not apply in these cases.

Remark. A conjugate pair of irrational covers. Covers not defined over Q arise
naturally in our situation, and the left half of Table 8.3 refers to two pairs of
irrational covers. Letting s = ±

√
6, equations for the smaller degree pair are

f6,5,4,1(j, x) =

(3x+ s− 3)
(
−225x5 + 1305x4s+ 4005x4 − 8932x3s− 22662x3 + 6594x2s

+16254x2 − 28476xs− 69741x+ 11673s+ 28593
)3(8.11)

−12288jx5(5x− 9)4(53236s+ 130401)(−15x+ 76s+ 186).

8.2. The simple group A6
∼= Sp4(2)′ ∼= PSL2(9). In terms of both its Schur

multiplier H2
∼= Z/6 and its outer automorphism group A ∼= (Z/2)2, the group

T = A6 is the most complicated group on Table 7.1. Table 8.2 gives information
on conjugacy classes.

Conventions about the (C1, C2) entry in the left half of Table 8.3 have been given
in §8.1 whenever |H2(G,C)| ∈ {1, 2}. The remaining possibilities are as follows.
Three entries in a single row separated by semicolons means |Hh| = 3 and Out(G,C)
acts trivially on Hh, so that |H∗h| = 3 as well. This possibility arises three times,
always in the form (a; b; b). By the typeface convention of §8.1, this means that
the degree a component is rational and the degree b components are conjugate.
Two entries in a single row separated by semicolons means |Hh| = 3 but Out(G,C)
acts nontrivially on Hh, so that |H∗h| = 2. This possibility also arises three times,
always in the form (c; d). Here both components are rational, as indeed in these
three cases c 6= d. Instances of these two situations were described already in §6.4
and §6.3, where degrees were (a; b; b) = (0; 21; 21) and (c, d) = (30; 40) respectively.
In these situations, one generally expects a ≈ b and c ≈ d/2.
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H2(A6) = 6 H2(S6) = 2
Out(A6) = 22 Out(S6) = 2

2211 3111 33 42 5a 5b 21111 222 411 6 321
3 2 2 6 6 6 1 1 1 2 2

H2(PGL2(9)) = 3 H2(M10) = 3
Out(PGL2(9)) = 2 Out(M10) = 2

2222 811A 811B 10A 10B 4411 82C 82D
1 2 2 2 2 3 3 3

Table 8.2. Information on conjugacy classes in A6 and conjugacy
classes not in A6 of its three overgroups S6 = A6.21, PGL2(9) = A6.22,
and M10 = A6.23. The last row gives the number of classes in G̃
mapping to the given class in G.

In the case (5a, 5b), one has Hh
∼= Z/6 and Out(G,C) has order two. The

non-trivial element of Out(G,C) acts by negation, so that H∗h has order four. The
natural action of Gal(Q/Q) on Hh is trivial, and one would generally expect four
rational components. In this case, the natural map π0(X∗h) → H∗h is injective but
not surjective, and X∗h has only three components. The cases (42, 51a) and (51b, 42)

are similar to (5a, 5b) but now all components are defined over Q(
√

10). The two
degree 24 components have their dessin drawn in the website associated to [1].

A blank in the (C1, C2) slot means that covers belonging to this slot are iso-
morphic to those of (Cα1 , C

α
2 ) for some α in Out(G)−Out(G,C). For example the

(411, 6) slot is left blank because the cover is the same as that represented by the
(411, 321) slot. It is this non-triviality of Out(G)−Out(G,C) that makes some of
the covers involving 51a and/or 51b rational, even though the classes 51a and 51b
are conjugate to each other. Among the further things to note on Table 8.3 are
two isomorphic unforced decompositions of the form 46 = 42 + 4. Also the cover
96b is unexpectedly nonfull. Finally, a second instance of Serre’s theorem (8.10) is
(C1, C2) = (3111, 51a), so that X∗−h is forced to be empty.

8.3. The simple group W (E6)+ ∼= PSp4(3) ∼= PSU4(2). The group W (E6) =
W (E6)+.2 has twenty-five conjugacy classes. As for all Weyl groups, all the classes
are rational. Ten classes are in W (E6) − W (E6)+ and ten classes stay rational
classes in W (E6)+. The remaining five conjugacy classes of W (E6), namely 3ab,
6ab, 6cd, 9ab, and 12ab, split into two classes in W (E6)+. If we were presenting
complete tables for ν = (1, 1, 1, 1), there would thousands of lines. Even complete
tables for (3, 1) would have hundreds of lines. Accordingly, Table 8.4 presents just
some of Hurwitz-Belyi covers in a self-explanatory format.

One of the new covers has the remarkably small degree nine:

(8.12) f5,4(j, x) = 52
(
10x3 + 15x2 + 48x− 100

)3
+ 315jx4.

The other three new covers are

f9,6,5,4(j, x)

=
(
9x8 − 72x7 + 180x6 − 104x5 − 26x4 − 568x3 + 1620x2 − 1944x+ 729

)3
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C1\C2 2211 33 42 51b
2211 • 0 12 10a;15

3111 12 0 16 10a
6 0

42 9; 48 108 • 60 ;40
60 ;40

51a 60; 0
45 24 ; 40 9; 45
54 24 ; 40 0; 42

C1\C2 21111 411 321 6
21111 • 0 0 0
411 10a • 252

321 84 544 • 396
396

6 88 •

C1\C2 22222 811B 10B
22222 • 16 10b

811A 96a
96b 100
108 100

10A 4, 42
64 4, 42
64 54

C1\C2 4411 82D
4411 • 656;672 ;672
82C 164;168 ;168 66; 90 ; 90

# M g β0 β1 β∞ Eqn.
2+A4 0 3 1 22 3 1 (7.1)
1+A6 0 32 2212 5 1 (8.6)
2+A9 0 33 24 1 5 3 1 (8.1)
3+S10a 0 331 25 5 3 2 (8.2)
1+S10b 0 33 1 25 5 4 1 (8.4)
2+S12 0 34 25 12 5 4 3 (8.3)
1+S15 0 35 271 5 4 32 (8.5)
2+A16 0 35 1 28 52 4 2 (8.7)
3 S42 0 314 221 10 82 42 32 12

2 A45 0 315 222 1 82 53 42 32

1+A48 0 316 222 14 10 82 6 5 42 3 (8.8)
2 S54 0 318 227 10 82 52 42 33 1
1 S60 0 320 229 12 10 82 54 42 32

1 S66 0 321 13 233 102 83 63 21 12

1+A84 0 327 13 242 103 82 63 5 43 2 1
1 A88 0 328 14 244 103 84 6 52 33 1
1 A96a 1 332 248 102 83 63 54 42 32

1 G96b 1 332 248 102 83 63 54 42 32

2+A108 0 336 254 102 84 62 52 44 32

1 A164 0 353 1 282 106 85 65 48 12

1 A252 0 384 2126 104 89 66 510 48 35 1
1 A544 3 3181 2272 1018 818 615 510 413 38 14

1 A656 7 3217 15 2328 1026 820 625 421 12

A pair defined over Q(
√

10)
1 A24 0 38 212 8 5 4 32 1

Table 8.3. Left: Degrees of components of Hurwitz-Belyi covers
with parameters (G, (C1, C2), (3, 1)) with G = A6, S6, PGL2(9), or
M10. Right: further information on these covers.

+216j(x− 3)4x6(2x− 3)5,(8.13)

f54,4,3(j, x)

= (1024x9 − 13824x8 + 81360x7 − 272928x6 + 585144x5 − 879336x4

+1012365x3 − 896832x2 + 516096x− 131072)3

−54j(72x4 − 508x3 + 1350x2 − 1629x+ 768)5x3,(8.14)

f10,9,5,22(j, x)

=
(
3125x9 − 9375x8 + 7500x7 − 6500x6 + 9150x5 − 4410x4 − 2484x3

−2916x2 − 2187x+ 6561
)3

(x− 3)

+22233jx9(5x− 6)5
(
3x2 + 2x+ 3

)2
.(8.15)
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C1 C2 M g β0 β1 β∞ Eqn.

Full low degree covers
3d 4a A6 0 32 22 12 5 1 (8.6)
3C 9A A9 0 33 24 1 5 3 1 (8.1)

S9 0 33 23 13 5 4 (8.12)
S10 0 33 1 25 5 3 2 (8.2)
S12 0 34 25 12 5 4 3 (8.3)

6a 4a A16 0 35 1 28 52 4 2 (8.7)
6a 2b A24 0 38 210 14 9 6 5 4 (8.13)
3c 9a S27 0 39 213 1 54 4 3 (8.14)
4a 2b S28 0 39 1 213 12 10 9 5 22 (8.15)

Agreement with covers coming from A6

4a 3c1 A48 0 316 222 14 10 82 6 5 42 3 (8.8)
6e 6a A84 0 327 13 242 103 82 63 5 43 2 1
4a 6a A108 0 336 254 102 83 63 54 44 33 1

Large degree genus zero examples of spin separation
3d 5a A165 0 355 28015 124 94 67 52 42 36 21 1
3d 5a S225 0 375 2109 17 124 97 67 57 46 33 22

3d 9b S189 0 363 29313 124 96 67 54 44 39

3d 9b S234 0 378 2117 124 96 67 57 47 38 2 1

An example where all allowed bases appear in β∞
4D 6G S3186 82 31062 21593 246 1827 1243 1078 927 854

624 548 428 323 29 12

Table 8.4. Invariants of some covers with G = W (E6)+ or W (E6)

In the entire table for T = W (E6)+, there are only twelve integers which can appear
as parts for β∞. The last line of Table 8.4 gives the smallest degree cover where all
these integers actually appear.

9. Hurwitz-Belyi maps with |G| = 2a3b7 and ν = (3, 1)

This section is very parallel in structure to the previous one, and presents a sys-
tematic collection of Hurwitz-Belyi maps having bad reduction at exactly {2, 3, 7}.

Cross-group agreement. Again we present equations for covers involved in cross-
group agreement before getting to the individual groups. Now we have only two:

f4,3(j, x) = 4(x− 12)
(
9x2 − 20x− 27

)3
+ 3 · 77jx3,(9.1)

f7,4,32,1(j, x) =
(
9x6 − 126x4 + 252x3 − 63x2 − 252x+ 196

)3(9.2)

+26j(3x− 2)4
(
3x2 − 9x+ 7

)3
(3x+ 14).

The cover f7,4,32,1(j, x) was first found by Malle [12] in connection with the group
PGL2(7).
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9.1. The simple group PSL2(7) ∼= SL3(2). Equations for the first three Hurwitz-
Belyi maps have been given already. For the fourth, an equation is

C1\C2 2a 3a 4a 7b
2a • 0 0 7

3a 60 • 64 70
64 63

4a 18b
36 • 28
36 28

7a 4
0 16 0

18a 16 4

C1\C2 2B 6A
2B • 18a
6A 70 •

# M g β0 β1 β∞ Eqn.
1+ A4 0 3 1 22 3 1 (7.1)
1+ S7 0 321 231 4 3 (9.1)
2+ S18a 0 36 29 7 4 32 1 (9.2)
1 S18b 0 36 29 7 6 3 12 (9.3)
1 S60 1 320 229 12 14 82 7 62 423
1 A63 1 321 2321 14 82 7 62 42 32

2 S70 0 323 1 235 14 82 7 62 42 34 1

Two pairs defined over Q(
√

2)
1 A16 0 35 1 28 7 4 3 2 (9.4)
1 A28 0 39 1 214 8 7 6 32 1

Table 9.1. Left: Degrees of components of Hurwitz-Belyi covers
with parameters (G, (C1, C2), (3, 1)) and G ∈ {PSL2(7), PGL2(7)}.
Right: further information on the covers.

f7,6,3,12(j, x) =
(
9x6 − 102x5 + 295x4 − 212x3 + 39x2 + 90x+ 9

)3
−214jx6(2x− 3)3

(
9x2 − 66x− 7

)
.(9.3)

Remark. A conjugate pair of irrational covers. The left half of Table 9.1 refers to
four pairs of irrational covers. Letting s = ±

√
2, equations for the smallest degree

pair are

f7,4,3,2(j, x) =

(−7x+ 19s+ 27)
(
−49x5 + x4(217s− 63) + x3(332s− 478)+

x2(154s− 658) + x(196s+ 147) + 441s+ 637
)3

−216jx4(35123s+ 49688)(−2x+ s− 4)2(7s− 4x)3.(9.4)

9.2. The simple group SL2(8). The group T = SL2(8) has outer automorphism
group A of order 3. All the corresponding Hurwitz parameters h satisfying the
conditions of §7.1 have G = T , as those of the form (T.3, (C1, C2), (3, 1)) have at
least Q(

√
−3) in their field of definition and hence break the rationality restriction

in §7.1.
Since the Schur multiplier of SL2(8) is trivial, there is no spin separation. How-

ever Table 9.2 exhibits so many Galois degeneracies that it seems likely that at
least some of them are forced by deeper reasons. We describe some of these degen-
eracies here. Our conventions follow the Atlas: if g ∈ 7a, then g2 ∈ 7b and g4 ∈ 7c;
similarly, if g ∈ 9a, then g2 ∈ 9b and g4 ∈ 9c.

For the case h = (SL2(8), (7b, 7c), (3, 1)), the mass and degree from the mass
formula [22, (3.6)] are m = m = 97. A braid calculation gives two degeneracies;
first there are two orbits, of size 7 and 90 respectively. Second, the monodromy
group for the degree 90 orbit is imprimitive, with image inside the wreath produce
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C1\C2 2a 3a 7c 9c
2a • 18a 70 54
3a 16 • 49 33
7a 84 18b, 63 4, 84 81
7b 7, 90
9a 4, 36 4, 36 49 33
9b 33

# M g β0 β1 β∞ Eqn.
3+ A4 0 3 1 22 3 1 (7.1)
1+ S7 0 321 231 4 3 (9.1)
1 A16 0 3414 28 9 7 (9.5)
1 S18a 0 3513 29 9 7 2 (9.6)
1+ S18b 0 36 29 7 4 32 1 (9.2)
3 A33 0 311 216 1 9 73 13 (9.7)
2 A36 1 312 218 9 73 32

1 A49 1 316 1 224 1 93 73 1
1 S54 0 318 227 92 73 33 23

1 S63 0 320 13 231 1 93 73 43 3
1 S70 0 3231 235 93 74 33 23

2 A84 1 328 242 93 75 44 32

1 G90 0 330 245 93 76 43 32 13 (9.8)

Table 9.2. Left: Degrees of components of Hurwitz-Belyi covers
with parameters (SL2(8), (C1, C2), (3, 1)). Right: further information
on these covers.

m |〈gi〉| M g1 ∈ 7b g2 ∈ 7b g3 ∈ 7b g4 ∈ 7c
7 504 S7 (359467182) (287516439) (236478159) (127698453)
90 504 G90 (318954762) (978436512) (978436512) (127698453)

m |〈gi〉| M g1 ∈ 7a g2 ∈ 7a g3 ∈ 7a g4 ∈ 7c
4 504 A4 (132674598) (863972514) (832465917) (124835697)
84 504 A84 (396482715) (685427319) (853716942) (127698453)
9 56 SL2(8) (329518746) (124835697) (827153964) (127698453)
9 56 SL2(8) (136927485) (124835697) (185294736) (127698453)

1/7 7 S1 (136927485) (136927485) (136927485) (149375286)

Table 9.3. Top: Representatives for braid orbits of HBr3,1 on Fh,
for h = (SL2(8), (7a, 7c), (3, 1)). Bottom: Representatives for braid
orbits of HBr3,1 on Fh for h = (SL2(8), (7b, 7c), (3, 1)), followed rep-
resentatives of three degenerate orbits

S3 o S30. Representatives in Gh of the two braid orbits on Fh are given in the top
part of Table 9.3.

The the case h = (SL2(8), (7a, 7c), (3, 1)), the mass ism = 106 1
7 and the degree is

m = 88. The degree decomposes, m = 4+84, and the degenerate piece decomposes
as well, m −m = 9 + 9 + 1

7 . The two components with 〈gi〉 = 56 have the same
monodromy group SL2(8), with the rigid braid partition triple (33, 24 1, 7 12).
Representatives in G4 are given in the bottom part of Table 9.3 for all five orbits.
Note that the representative of the orbit with mass 1/7 has the very simple form
(g, g, g, g4). All the braid computations in this paper involve r-tuples of permuta-
tions like the ones exhibited in Table 9.3.
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Given how differently behaved the last two parameters are, one might expect
that the parameters (SL2(8), (9a, 9c), (3, 1)) and (SL2(8), (9b, 9c), (3, 1)) would be
differently behaved as well. However here the Galois degeneracy is in the other
direction: not only is m = m = 33 in each case, but the two degree 33 covers are
isomorphic. Moreover, these covers are also isomorphic to the cover arising from
(SL2(8), (3a, 9c), (3, 1)).

It is because of the 3-element outer automorphism group that the covers consid-
ered above are all rational, despite the fact that 7a, 7b, 7c and 9a, 9b, 9c are defined
only over the cyclic cubic fields Q(cos(2π/7)) and Q(cos(2π/9)) respectively. In con-
trast, the three-element group Out(SL2(8)) is not large enough to make the covers
indexed by (SL2(8), (9a, 7c), (3, 1)) and (SL2(8), (7a, 9c), (3, 1)) rational. They are
each defined over a cyclic cubic field ramified at both 7 and 9. As reported by
Table 9.2, their degrees are 49 and 81 respectively. Like most of the covers in the
upper right of Table 9.2, they are full of genus zero.

Equations for three covers coming only from SL2(8) are

f9,7(j, x) =
(
441x4 + 1764x3 + 702x2 − 140x+ 49

)3(9.5) (
343x4 + 2940x3 + 6594x2 − 468x+ 63

)
− 242jx7,

f9,7,2(j, x) =
(
74x5 − 441x4 − 3366x3 + 2430x2 − 37x+ 37

)3(9.6) (
49x2 + 6x+ 9

)
(x+ 3)− 23039jx9(x− 1)2,

f9,73,13(j, x) =
(
16x11 + 256x10 + 1312x9 + 2208x8(9.7)

−1248x7 − 6720x6 − 1512x5 + 5652x4

−6147x3 − 3912x2 + 11712x− 1536
)3

+ 108j(x− 1)(x+ 2)(x+ 8)
(
8x3 + 15x2 − 9x− 8

)7
.

The cover f9,7,2(j, x) was found by Hallouin [3]. For h = (SL2(8), (7a, 7b), (3, 1)),
an equation for the degree thirty intermediate cover is

f9,72,4,3,12(j, x) =(
11664x10 + 31104x9 − 38880x8 − 276960x7 − 458528x6 − 245952x5

+244440x4 + 549396x3 + 475389x2 + 225504x+ 46656
)3(9.8)

−223277j
(
8x2 + 15x+ 9

)7
x4(x− 3)

(
3x2 + 6x+ 4

)
.

9.3. The simple group G2(2)′ ∼= PSU3(3). In parallel with the §8.3, the third
simple group of order 2a3b7 is substantially larger than the first and second group.
Again we present only some sample Hurwitz-Belyi maps, following the format used
in §8.3.

The first block on Table 9.4 represents cases where the Hurwitz-Belyi map has
degree 1 and hence is uninteresting in the present context. These three rigid cases
are closely related and are studied in detail in [18], starting from Proposition 3.1
there. These three cases serve as a reminder that non-trivial Hurwitz-Belyi maps
measure a failure of rigidity.

The last two genus zero covers on Table 9.4 come only from T = PSU3(3).
Equations are

f8,7,6,3(j, x) =
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C1 C2 M g β0 β1 β∞ Eqn.

Degree one covers corresponding to rigid Hurwitz parameters
3a 4a S1 0 1 1 1 x− j
4a 4b S1 0 1 1 1 x− j
4a 2a S1 0 1 1 1 x− j

Genus zero covers of small degree
4a 6a G4 0 32 23 4 12 (7.1)
4c 2a S7 0 32 1 23 1 4 3 (9.1)
4a 3b G9 0 33 24 1 4 3 2 (7.2)
4c 3a S18 0 36 29 7 4 32 1 (9.2)
4D 2B A24 0 37 13 212 8 7 6 3 (9.9)
2B 4D A40 0 312 14 220 12 82 7 3 2 (9.10)

An unforced splitting to two full covers
6a 4b S135 1 343 16 265 15 142 124 82 66 4 3
6a 4b S180 3 360 287 16 142 124 87 72 64 32 22

An example where all allowed bases appear in β∞
8b 2a S750 25 3248 16 2375 245 1610 1412 129 88 72

613 45 32 25 12

Table 9.4. Invariants of some covers with G = G′2(2) or G2(2)

4
(
4x7 + 22x6 − 60x5 − 166x4 + 236x3 + 858x2 − 3626x+ 2401

)3
(2x− 1)

(
2x2 + 16x− 49

)
(9.9)

+318jx7(x− 2)6(x+ 4)3,

f12,82,7,3,2(j, x) =(
64x12 − 576x11 + 2400x10 − 5696x9 + 7344x8 − 3168x7 − 4080x6

+8640x5 − 7380x4 − 1508x3 + 8982x2 − 7644x+ 2401
)3(

4x4 − 20x3 + 78x2 − 92x+ 49
)

(9.10)

−28312j
(
2x2 − 4x+ 3

)8
x7(x− 2)3(x+ 1)2.

10. Some 5-point Hurwitz-Belyi maps

All the explicit Hurwitz-Belyi maps presented in the paper so far have had ram-
ification number r = 4. This section presents some examples with r = 5, as a first
indication of how things look when r increases.

10.1. A Belyi pencil for ν = (4, 1) yielding 3-2-∞ maps. Sections 7-9 built
many Hurwitz-Belyi maps from the single Belyi pencil u3,1 into Conf3,1. This pencil
has the remarkable property that it produces braid permutation triples (b0, b1, b∞)
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in Sm with b0 and b1 of order 3 and 2 respectively. This property kept genera very
low in §7-9.

Abbreviating k = j − 1, let

(10.1) s(j, t) = k2t4 − 6jkt2 − 8jkt− 3j2.

Define u : P1
j − {0, 1,∞} → Conf4,1 by j 7→ (D1(j), {∞}), with D1(j) ⊂ P1

t the
roots of s(j, t). Let

B0 = σ1σ2σ
2
3 , B1 = (σ1σ2σ3)2.(10.2)

A braid calculation says that the abstract braid triple of the Belyi pencil u is
(B0, B1, B

−1
1 B−1

0 ), and that B0 and B1 likewise have orders 3 and 2 in HBr4,1

respectively.
Two Hurwitz-Belyi maps built from u are considered in [21]. First, for h =

(S5, (2111, 5), (4, 1)) the Hurwitz-Belyi map πh,u is full and an equation is given
in §4.1 there. This Hurwitz-Belyi map reappears in Table 10.1 here. For h =
(SL3(2), (22111, 421), (4, 1)) the degree is 192. After quotienting by the natural
action of Out(SL3(2)), one gets a full degree 96 map with equation given in [21,
§8.2].

10.2. A table of 3-2-∞ maps from T = A5. We begin with the small-
est nonabelian simple group T = A5 and build our Hurwitz parameters from
G ∈ {A5, S5}. Table 10.1 gives all Hurwitz-Belyi maps π∗h,u : X∗h,u → P1

j with
h = (G, (C1, C2), (4, 1)) and u the Belyi pencil (10.1). The complications described
at the end of §3.3 arising in the passage from (3, 1) to (4) do not arise when one
passes from (4, 1) to (5). Accordingly, Table 10.1 also includes cases of the form
h = (G, (C1), (5)), written on the table as h = (G, (C1, C1), (4, 1)). Otherwise,
Table 10.1 has a format very similar to the first two tables in each of Sections 8
and 9.

There is one instance of cross-parameter agreement: the Belyi map for
(A5, (5a), (5)) and (A5, (221), (5)) are isomorphic; this Belyi maps occurs for a third
time in the next section, where we get an equation for it. Spin separation is near
generic as follows. If (C1, C2) contains either 221 or 2111, then the Belyi cover
X∗h,u is always connected. Otherwise both C1 and C2 split in the Schur double
cover and one has the spin separation Xh,u = X∗+h,u

∐
X∗−h,u. In all cases X∗εh,u has

one component except that X∗+h,u is empty for (C1, C2) = (5a, 5a) and X∗−h,u has two
components for (C1, C2) = (5a, 5b).

Several patterns in Table 10.1 merit comments. First, the first two monodromy
groups under the header M are odd, being S3 and H9a = 9T13. However, from the
left half of Table 10.1, they arise together as an even intransitive dodecic group.
With this packaging, all monodromy groups are even, including H9b = 9T11. Sec-
ond, just like in all the tables in the previous two sections, the exponent on 1 in
β0 is always very small; however, in contrast to these previous tables, the exponent
on 1 in β1 is not always small. Finally, a phenomenon present in the tables of the
previous two sections is more visible here because of the different organization: the
general nature of β∞ depends on whether G is A5 or S5.

10.3. Two unexpectedly similar 3-2-∞ maps built from T = A6. Consider
the two Hurwitz parameters on the left:

h96 = (A6, (3111), (5)), (β0, β1, β∞) = (336, 244 18, 153 93 5 36 1),
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C1\C2 221 311 5b
221 96 135 150

311 288 126 225
216 300

5a 64 9b 45
108 3b, 9a

5b
0
96

C1\C2 221 311 5
21111 0 0 25

41 1440 1107 1275
1089 1225

32 336 255 225
192 300

M gX β0 β1 β∞
S3b 0 3 2 1 2 1
H9a 0 33 23 13 6 3
H9b 0 33 24 1 6 2 1
A45 0 315 222 1 93 6 33 2 12

A64 1 3211 232 15 93 62 5 22 1
A96 0 332 244 18 153 93 5 36 1
A108 1 336 248 112 154 93 6 52 3 2
A126 0 342 258 110 153 92 68 5 33 1
A135 0 345 260 115 153 96 64 5 32 1
A150 1 350 270 110 153 96 66 5 32 22

A216 3 372 2102 112 155 99 68 34

A225 7 375 2112 11 158 94 610 5 22

A288 7 396 2140 18 158 911 610 5 22

A300 4 3100 2140 120 158 912 610 5 3 22

A25 0 381 210 15 12 9 4
A192 1 364 288 116 182 1210 42 39 1
A225 7 375 2112 11 18212106104211

A255 7 385 2122 111 186 1210 42 36 1
A300 6 3100 2140 120 186 1210 610 42 3 1
A336 9 3112 2160 116 188 1210 610 42 3 1
A1089 34 3363 2528 133 1824 1237 634 4 22 1
A1107 36 3369 2540 127 1824 1238 634 42 3 22

A1225 46 34081 2612 1 1824 1247 635 43 23 1
A1275 40 3425 2620 135 1824 1251 635 43 3 23

A1440 40 3480 2704 132 1824 1260 634 44 321 22 1

Table 10.1. Invariants of πh,u for h = (G, (C1, C2), (4, 1)) and u the
five-point pencil (10.1). Top: G = A5 Bottom: G = S5

h192 = (A6, (3111, 2211), (4, 1)), (β0, β1, β∞) = (364, 284 124, 153 125 93 68 5 4 3).

These cases are amenable to a standard calculation because the five-point covers
Yx → P1 all have genus zero. A mass formula calculation says that the two param-
eters have their indicated degrees.

Since the Yx have genus zero, Serre’s theorem (8.10) applies and the degree 96
cover X∗96 := X∗h96,u

does not exhibit spin separation, as X∗96 = X∗−96 . The braid
monodromy computation using (10.2) shows that in fact the monodromy group is
A96. The braid partition triple is as indicated above, and so X∗96 also has genus
zero. The standard computation eventually yields f153,93,5,36,1(j, x) =(

3x8 − 6x7 − 60x6 + 202x5 − 110x4 − 74x3 − 52x2 − 10x− 1
)3(

729x24 − 10206x23 + 15552x22 − 2045790x21 + 52397442x20 − 543319218x19

+3209261832x18 − 12210163074x17 + 31525143435x16 − 55955395164x15

+66094935696x14 − 43882703964x13 − 2654708692x12 + 42096515820x11

−51857004992x10 + 37353393228x9 − 17942013057x8 + 5711207034x7



38 DAVID P. ROBERTS

Figure 10.1. Dessins in X∗h,u for h = (A6, (3111), (5)) on the left
and h = (A6, (3111, 2211), (4, 1)) on the right, illustrating the com-
mon locations of the three 9’s and the three 15’s. The real axis runs
vertically through the center of both pictures.

−1071984720x6 + 65222394x5 + 12734514x4 − 1277306x3 − 182088x2

−3850x− 3)
3

+ 210j
[
3x3 − 7x2 + 11x− 1

]15 [
3x3 − 9x2 + 3x+ 1

]9
[x− 3]

5
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x4 + 8x3 − 36x2 + 17x+ 1

)3
[x− 1]

3
[x] .

The case h = h192 has monodromy group A192, braid partition triple as above,
and genus zero. There is a remarkable and unexpected similarity between the
coefficients of j in the two defining equations, symbolized by

153
A 93

B 53 34 3 31 10 ∼ 153
A 125 93

B 68 53 40 31.

Here the subscripts 3, 1, and 0 indicate that we are normalizing so that the coordi-
nates induced on X∗96 and X∗192 have some similarity. The unexpected similarity is
that the cubic polynomials corresponding to the two A’s coincide and likewise the
cubic polynomials corresponding to the two B’s coincide. All these agreeing factors
are bracketed in the two displayed polynomials. The second polynomial is too large
to print, but an excerpt containing the part relevant for the current discussion is
f153,125,93,68,5,4,3(j, x) =(

14659268544x64 − 1012884030720x63 + 33879848424192x62 + · · ·

+40857490944x5 − 1245316608x4 + 28200960x3 − 569088x2 + 11008x− 64
)3

− 2436j
[
3x3 − 7x2 + 11x− 1

]15 (
6x5 − 36x4 + 72x3 − 64x2 + 23x− 4

)12[
3x3 − 9x2 + 3x+ 1

]9(
9x8 − 72x7 + 240x6 − 444x5 + 474x4 − 280x3 + 72x2 − 12x+ 1

)6
[x− 3]

5
[x]

4
[x− 1]

3
.

Our situation presents many challenges. For example, we have not worked out
equations for the four covers of largest degree on Table 10.1 with gX = 0. From the
degrees given in the table, 45, 96, 126, and 135, the last three are certainly beyond
current implementations of the braid-triple method. However, if some part of these
equations could be determined ahead of time, perhaps by understanding better how
parts of f96(j, x) repeat in f192(j, x) as just discussed, these computations might
be brought into the range of feasibility.

As a second example of a challenge, it would be interesting to build analogs of
Table 10.1 both for other simple groups T and other Belyi pencils u. The braid
monodromy programs described in [9] would allow one to go quite far. For example,
consider the Hurwitz parameter h = (S6, (6, 51), (4, 1)). Both classes split in the
double cover S̃6, so one has a decomposition Xh,u = X+

h,u

∐
X−h,u. The mass formula

applied to the group S̃6 says that the degrees are 49275 and 65400 respectively.
Magaard has verified that indeed both Xεh,u are full over P1

j , with monodromy
groups A49275 and A65400.

11. Expectations in large degree

In [22] with Venkatesh and then in the sequel [21], we formulated and supported
an unboundedness conjecture for number fields. This final section transposes these
considerations from number fields to Belyi maps, with emphasis on phenomena
particular to the Belyi map setting.

11.1. Full Belyi maps with at most two bad primes. Consider Belyi maps
defined over Q with bad reduction within a given set of primes P. For any prime
p and any exponent k, it is elementary to get 3k different degree pk such Belyi
maps P1 → P1 with monodromy group a p-group and bad reduction set {p} [17].
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For any two distinct primes p, ` and certain k, mod `-reductions of hypergeometric
monodromy representations give degree (`2k−1)/(`−1) Belyi maps with primitive
monodromy group PSp2k(`) and bad reduction set {p, `}. Fixing {p, `}, the number
of such Belyi maps for a given k can be arbitrarily large.

In contrast, it seems very difficult to construct full Belyi maps defined over Q
with bad reduction within a two-element set P. Returning to the inverse problem of
§1.3, write BP(m) for the number of isomorphism classes of full Belyi maps defined
over Q with bad reduction within P. If π contributes to BP(m), then typically the
compositions σ ◦ π for σ ∈ 〈t 7→ 1 − t, t 7→ 1/t〉 = Sym({0, 1,∞}) all contribute
separately, so in a sense the numbers BP(m) are inflated by a factor of six. However
the BP(m) enter the unboundedness conjecture below only in a qualitative way, and
so this duplication is not important to us.

To provide context for the unboundedness conjecture and support the discussion
afterwards, we summarize here what we know about the numbers BP(m) for |P| ≤
2. The trinomial equation yk − kty + (k − 1)t = 0 gives a Belyi map ramified
exactly at the set Pk of prime divisors of k(k−1). Thus, as an interesting example,
P9 = {2, 3}. Otherwise one has only the possibilities involving Mersenne primes
Mr = 2r − 1 and the Fermat primes Fr = 22r

+ 1, namely (k− 1, k) = (Mr, 2
r) and

(k − 1, k) = (22r

, Fr). In [15], we are giving two more sequences of covers Tk−1,k

and Uk−1,k, also ramified exactly at Pk. Degrees are now larger, being k(k − 1)/2
and (k − 1)2 respectively. Our initial degree 64 example (1.1) is U8,9.

From [14] we know also that B{2,3}(m) is positive for m ∈ {28, 33}. Otherwise
we do not currently know of any instances with |P| ≤ 2 and m ≥ 20 with BP(m)
positive beyond the three sequences just described.

11.2. An unboundedness conjecture. The following conjecture is a direct ana-
log of Conjecture 1.1 of [21]:

Conjecture 11.1. Let BP(m) be the number of full degree m Belyi maps defined
over Q with bad reduction within P. Suppose that P contains the set of primes
dividing the order of a finite nonabelian simple group. Then the numbers BP(m)
can be arbitrarily large.

Our heuristic argument for Conjecture (11.1) is essentially the same as the ar-
gument made in [22] and [21] for its number field analog. Namely we expect that
Hurwitz-Belyi maps πh,u already give enough maps to make BP(m) arbitrarily
large.

In more detail, given P as in the conjecture, there is at least one nonabelian
finite simple group T with PT ⊆ P. From Hurwitz parameters h = (G,C, ν),
with G of the form T k.A as in [22, §5.1], supplemented if necessary by rational
lifting invariants `, there are infinitely many full covers Hur∗`h → Confν defined
over Q with bad reduction within P. From [19, §8] or [17], there are infinitely
many appropriately matching rational Belyi pencils, even with bad reduction set
consisting of a single prime. For Conjecture 11.1 to be false, there would be have
to be a systematic drop from fullness when one specializes from the full family to
the Belyi pencil. We have seen occasional drops from fullness in [21, §6] and on
some of the tables in §8-10 here. However these seem to represent a low degree
phenomenon, and there is no evidence of systematic drops in asymptotically large
degrees.
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We have already noted an important difference between Hurwitz number fields
and Hurwitz-Belyi maps in §3.2. Namely for the former, the specialization step
is arithmetic, as the ground field becomes Q, but for the latter, the specialization
step stays within geometry, as the ground field becomes only C(v). In particular,
it seems to us that Conjecture 11.1 is more within reach than its analog, as it may
be possible to prove it using braid groups.

11.3. Complements. To conclude very speculatively, say that P is anabelian if it
contains the set of primes dividing the order of a finite nonabelian simple group, and
abelian otherwise. This terminology seems appropriate to us because we suspect
that there are connections between the material in this paper and investigations
into anabelian geometry as defined in [2].

Conjecture 11.1 gives a partial qualitative response to the inverse problem set
up in §1.3. One could ask for a more complete qualitative response. A guess we
find attractive is

• If P is abelian, then BP(m) is eventually zero.
• If P is anabelian, then BP(m) is unbounded because of Hurwitz-Belyi maps,

but still zero for m in a set of density one.
We put forward the analogous guess for number fields in [21, §4.6].

The first bulleted statement is supported by the extreme paucity of known Belyi
maps contributing to B{p,`}(m), as reported in §11.1. The second part of the second
bulleted statement is motivated by the exponential dependence of the asymptotic
mass formula [22, (3-7)] on the multiplicities νi. Evidence either supporting or
opposing this vision would be most welcome.
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