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1. Definition of Galois groups. Let Q be a

field and let F be a degree n separable algebra

over Q.

For concreteness, we work with a presentation

F = Q[x]/f(x) for f(x) ∈ Q[x] a monic sepa-

rable polynomial (such a presentation may not

exist for Q finite and F a non-field; if one is

interested in this case, one can translate back

to the more abstract language).

Let C be a field extension of Q in which f(x)

has n distinct roots. Let X ⊂ C be this set of

roots. Fgal be the subalgebra of C generated

by X. Then G = Gal(Fgal/Q) is the group of

automorphisms of Fgal which fix Q.

One normally views G as inside the symmetric

group Sym(X) of permutations of X.



2. The Trinks polynomial and C = C. For
x7 − 7x− 3 and C = C, the roots are:

α3 ≈ −0.62 + 1.21i α6 ≈ 0.76 + 1.21i
α1 ≈ −1.29 α4 ≈ −0.43 α7 ≈ 1.44

α2 ≈ −0.62− 1.21i α5 ≈ 0.76− 1.21i

Form the resolvent

g(x) =
∏

i<j<k

(x− (αi+αj +αk)) = g7(x)g28(x).

Working in sixteen digit precision, all coeffi-
cients of g(x) ∈ Z[x] are approximated within
0.00003. Identifying roots of g7(x) as lines in
P2(F2), the Galois group becomes the symme-
try group of a projective plane:
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3. The Trinks polynomial and C = Q1879.
For x7 − 7x − 3 and C = Q1879, the roots are
(β1, β2, β3, β4, β5, β6, β7) ≈

(−508, −194, 82, 298, 407, 883, 911).

Working mod 18793 suffices to correctly iden-
tify g35(x). The seven roots of g7(x) are β1 +
β2 + β6, . . . . Again the Galois group becomes
the symmetry group of a projective plane:
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The pairings (α1, β1), (α2, β5), (α3, β3), (α4, β6),
(α5, β4), (α6, β7), (α7, β2) give one of the 168
structure-preserving correspondences with the
previous slide.



4. Comparing two choices of auxiliary fields.
If one works with two auxiliary fields Cv and Cw,
one has two Galois groups

Gv = Gal(Fgal,v/Q) ⊆ Sym(Xv),

Gw = Gal(Fgal,w/Q) ⊆ Sym(Xw).

Galois theory says that Fgal,v and Fgal,w are
isomorphic and hence Gv and Gw are isomor-
phic. Different isomorphisms

i1, i2 : Fgal,v → Fgal,w

induce different bijections Xv
∼→ Xw. They in-

duce typically different isomorphisms Gv
∼→ Gw.

However these isomorphisms Gv
∼→ Gw are al-

ways conjugate. Thus one has unambiguous
agreement on things like conjugacy classes,
complex characters, abelianizations, and co-
homology groups. Notationally, one has un-
ambiguous objects G\, Ĝ, Gab, and H∗(G,Z).
One can expect to compute them purely alge-
braically, never leaving Q, with no reference to
explicit roots anywhere.



5. Decomposition groups for Q = Q. Work-
ing with C as the auxiliary field gives an im-
portant piece of structure for free: a homo-
morphism from Gal(C/Q) = {Id, σ∞} to G∞
or equivalently a complex conjugation element
σ∞ ∈ G∞.

Taking Qp gives much more, as it gives a ho-
momorphism Gal(Qp/Qp) → Gp. The image is
the decomposition group Dp ⊆ Gp. It comes
with a decreasing filtration measuring ramifi-
cation and its wildness. In particular if p is un-
ramified, one gets a canonical element σp ∈ Gp,
the Frobenius element. If it is tamely ramified,
one gets a canonical element τp ∈ Gp.

At the level of conjugacy classes, these ele-
ments σv and τp all sit in the same set G\.
At the level of the ambient symmetric groups
they all become partitions. Thus Galois the-
ory coordinates the local invariants of number
fields.



6. T -numbers. Let Tn be the set of conju-
gacy classes of transitive subgroups of Sn. As
examples,

T4 = {4T1,4T2,4T3,4T4,4T5} = {C4, V,D4, A4, S4}

T5 = {5T1,5T2,5T3,5T4,5T5} = {C5, D5, F5, A5, S5}

n 1 2 3 4 5 6 7 8 9 10 11 12 13
|Tn| 1 1 2 5 5 16 7 50 34 45 8 301 9

The fine problem of computing Galois groups
of number fields has an irreducible f(x) ∈ Q[x]
and a place v of Q as input. As output it has
the root-set Xv and the Galois group Gv ⊆
Sym(Xv).

The coarse problem of computing Galois groups
has just f(x) ∈ Q[x] as input. As output it has
the corresponding nTj.

The fine and the coarse level each have their
own advantages. The next slides cover ele-
mentary coarse-level techniques. Friday will
include fine-level computations.



7. Use Magma!

>PR<x> := PolynomialRing(Integers());

>GaloisGroup(x^7-7*x-3);

Permutation group acting on a set of cardinality 7

Order = 168 = 2^3 * 3 * 7

(2, 4)(3, 7)

(1, 6, 4, 3)(5, 7)

[ 31615*$.1^6 - 21962*$.1^5 + 31333*$.1^4

- 24197*$.1^3 + 7399*$.1^2

+ 42492*$.1 - 75664 + O(11^5), ... ]

GaloisData over Z_11

>G, r, S := GaloisGroup(x^7-7*x-3: Prime:=13);

>G;

Order = 168 = 2^3 * 3 * 7

(2, 5)(6, 7)

(1, 7)(2, 6, 3, 4)

>r;

[ -61424*$.1^3 + 47369*$.1^2 - 26589*$.1

+ 178417 + O(13^5), ...]

> TransitiveGroupDescription(G);

L(7) = L(3,2)



8. Frobenius partitions. To get lower bounds
on Galois groups one can use Frobenius parti-
tions. For example,

x12 − 6x11 − 6x10 + 40x9 + 105x8 + 120x7

−1790x6 + 2070x5 + 885x4 + 480x3

−2520x2 − 1440x− 240

has field discriminant the perfect square D =
218 318 512 and thus G ⊆ A12. Factorization
patterns begin

(λ7, λ11, λ13, λ17) = (6 6, 11 1, 8 2 1 1, 8 4).

This is more than enough to reduce the 301
possibilities to G ∈ {M12, A12}.

There is a canonical Bayesian formula for guess-
ing G based on say an a priori assumption of
1-to-1 odds for M12. Each appearance of a
partition λ either definitively proves G = A12
or increases the odds for M12 by the ratio
r(λ) = prob(M12, λ)/prob(A12, λ), as in e.g.
r(8 2 1 1) = (1/8)/(1/16) = 2. After 100 good
primes, the odds are about 6.05×1034-to-1 for
M12.



9. Lower bounds from bad primes. There
are many ways to use the bad primes to get
lower bounds on Galois groups. For example F
from the last slide has discriminant 218 318 512.
Since all exponents are ≥ 12, all bases are
wildly ramified. Thus |G| is divisible by 2, 3,
and 5.

In a more elementary way, another polynomial
defining F , with coefficients factored, is

x12 x11 x10 x9 x8 x7 x6 x5 x4 x3 x2 x 1
2 : 1 4 8 8 8 4 8 8 8 16 8
3 : 1 9 1 3 3 1 3 3 9 9 3
5 : 1 1 5 5 5 5 25 25 125 25 25

rest : 1 0 −1 −1 1 7 149 11 17 1 1 0 −1

The nonzero slopes of the Newton polygon at
p = 2, 3, and 5 are 1/4, 1/6, and 1/5. Thus
there are p-adic roots of the form (unit)21/4,
(unit)31/6, and (unit)51/5. Thus |G| is divisible
by 4, 6, and 5, and hence 60 (still leaving the
possibilities at M12 and A12).



10. Resolvents. To compute Galois groups
exactly, one can use constructions canonically
building new sets from n-element sets X and
their corresponding resolvents. For example,
the passage from X to X×X−∆ corresponds
to passing from a polynomial with roots αi to
one with roots αi−αj, with i 6= j. Algebraically,
this is achieved by

f(x) 7→ Resy(f(y), f(y + x))/yn.

The general resolvent from X 7→ Subsets3(X)
nearly distinguishes all possibilities for n = 7:

C7 D7 F+
7 F7 L3(2) A7 S7

7T1 7T2 7T3 7T4 7T5 7T6 7T7
75 14 73 21 73 21 14 28 7 35 35

To distinguish M12 from A12, the lowest de-
gree absolute resolvent is Partitions6,6(X) with
degree 1

2

(
12
6

)
= 462 = 2·3·7·11. For A12 fields

it is irreducible, while for M12 fields it factors
as 396+66 = 22 ·32 ·11+2 ·3 ·11. In our case,
the coefficients average 313 digits and Magma
factors the polynomial in about a second.


