Division polynomials with Galois group

 ${f SU}_3({\Bbb F}_3).2={f G}_2({\Bbb F}_2)$ David P. Roberts University of Minnesota, Morris

General Inverse Galois Problem. Given a finite group G, find number fields with Galois group G, preferably of small discriminant.

Our case today. $G = SU_3(\mathbb{F}_3).2 = G_2(\mathbb{F}_2)$ of order 12096 = $2^6 \cdot 3^3 \cdot 7$. We'll produce two related two-parameter polynomials:

$$F_1(p,q,x) = x^{28} + \dots \in \mathbb{Q}(p,q)[x],$$

$$F_2(a,b,x) = x^{28} + \dots \in \mathbb{Q}(a,b)[x].$$

Connections with:

- **1.** Rigid four-tuples in G
- **2.** Motives with Galois group U_3 , Sp_6 , G_2
- **3.** Three-point covers with Galois group G
- **4.** Number fields with Galois group G

Some background. The twelfth smallest nonabelian simple group is

$$G' = SU_3(\mathbb{F}_3) = G_2(\mathbb{F}_2)'.$$

of order 6048 = $2^5 3^3 7$. One has |Out(G')| = 2and the extended group

$$G = SU_3(\mathbb{F}_3).2 = G_2(\mathbb{F}_2)$$

embeds transitively into A_{28} and A_{36} .

Some information on conjugacy classes:

Classes in G'				Classes in $G - G'$			
C	C	λ_{28}	λ_{36}	C	C	λ_{28}	λ_{36}
1A	1	1^{28}	1^{36}		· · ·		
2A	63	$2^{12}1^4$	$2^{12}1^{12}$	2 <i>b</i>	252	$2^{12}1^4$	$2^{16}1^4$
3 A	56	3 ⁹ 1	3 ¹²				
3 <i>B</i>	672	3 ⁹ 1	$3^{11}1^3$				
4AB	2 · 63	$4^{6}1^{4}$	4 ⁶ 2 ⁶	4 <i>d</i>	252	4 ⁶ 1 ⁴	4 ⁶ 2 ⁶
4 <i>C</i>	378	$4^{6}2^{2}$	4 ⁶ 2 ⁴ 1 ⁴				
6 <i>A</i>	504	6 ⁴ 31	6 ⁴ 3 ⁴	6 <i>b</i>	2016	6431	$6^{5}3^{1}2^{1}1$
7AB	2 · 864	7 ⁴	7 ⁵ 1			0	
8 <i>AB</i>	$2 \cdot 756$	$8^{3}2^{1}1^{2}$	8 ³ 4 ³	8c	1512	8 ³ 4	8 ³ 4 ² 21 ²
12AB	2 · 504	12 ² 31	$12^{2}6^{2}$	12cd	$2 \cdot 1008$	$12^{2}31$	$12^{2}6^{2}$

A standard way to construct number fields with prescribed Galois group is to use *rigidity*. For example, up to simultaneous *G*-conjugation, there is just one triple (g_0, g_1, g_∞) with

$$g_{0} \in 4d \qquad g_{0}g_{1}g_{\infty} = 1$$

$$g_{1} \in 2b \qquad \langle g_{0}, g_{1}, g_{\infty} \rangle = G$$

$$g_{\infty} \in 12AB$$

Malle and Matzat computed the corresponding degree 28 cover $\mathbb{P}^1_x \to \mathbb{P}^1_t$:

$$f(t,x) = A(x)^{4}B(x) - t2^{2}3^{9} (x^{2} + 4x + 1)^{12} (2x + 1)$$

$$A(x) = x^{6} - 6x^{5} - 435x^{4} - 308x^{3} + 15x^{2} + 66x + 19$$

$$B(x) = x^{4} + 20x^{3} + 114x^{2} + 68x + 13$$

The preimage of $[0,1] = \bullet \multimap$ in \mathbb{P}^1_x :

The remarkable nature of the Malle-Matzat cover is reflected in its discriminant:

$$\operatorname{disc}_{x}(f(t,x)) = 2^{576} 3^{630} t^{18} (t-1)^{12}.$$

Plugging in t = 1/2 gives a degree twentyeight field with Galois group G' and discriminant $2^{84}3^{42}$. Carefully chosen other $t \in \mathbb{Q}$ give 41 fields with Galois group G and discriminant $2^{j}3^{k}$.

There is an extensive literature, both theoretical and computational, on rigid three-point covers.

Rigid *z*-point covers for larger *z* are known to exist, for example coming from Katz's rigid local systems with coefficients in \mathbb{F}_{ℓ} . However the literature is very sparse for them. This talk presents computational examples with z = 4.

1. Rigid four-point covers. Mass formulas give five four-tuples of conjugacy classes in G' giving rigid four-point covers of $\mathbb{P}^1(\mathbb{C})$:

(3A, 3A, 3A, 4B),	(4A, 4A, 4A, 2A),
(4A, 4A, 4A, 4B),	
(2A, 2A, 3A, 4A).	(4A, 4A, 3A, 3A),

All other quadruples are far from rigid.

Let $M_{0,5}$ be the moduli space of five labeled points in the projective line. The left three four-tuples give the same cover of $M_{0,5}$ and this cover has S_3 symmetry. The right two give a cover of $M_{0,5}$ having $S_3 \times S_2$ symmetry:

Our covers descend to covers of bases

$$U_{3,1,1} := M_{0,5}/S_3,$$

 $U_{3,2} := M_{0,5}/(S_3 \times S_2).$

They are correlated by a cubic correspondence:

It is remarkable that the three fields upstairs are also rational.

We seek to algebraically describe π_1 and π_2 by polynomial relations

$$F_1(p,q,x_1) = x_1^{28} + \dots = 0,$$

$$F_2(a,b,x_2) = x_2^{28} + \dots = 0.$$

6

2A. Motives with Galois group U_3 . Deligne and Mostow studied families of covers

$$y^d = f(u_1, \ldots, u_n, x)$$

of the x-line. Two of their first examples are

$$y^4 = (x-1)^3 x^2 (x^2 + ux - vx - x + v)$$

(genus 4),

$$y^4 = (x^2 + 2x + 1 - 4u)^2 (x^2 - 2x + 1 - 4v)$$

(genus 3).

They prove that the Jacobian J_2 of the second is a factor of the Jacobian J_1 of the first.

The 3-torsion points of either cover correspond to our π_0 : $X_0 \rightarrow U$. There are natural descents to families of curves

 $\Pi_1 : C_1 \to U_{3,1,1}, \quad \Pi_2 : C_2 \to U_{3,2}.$

On 3-torsion, these become our

 $\pi_1: X_1 \to U_{3,1,1}, \quad \pi_2: X_2 \to U_{3,2}.$ We get explicit polynomials for the π_i via this connection; hundreds of terms in each case. **2B. Motives with Galois group** Sp_6 . Shioda studied the family of degree four plane curves

 $x^{3}+(y^{3}+cy+e)x+(ay^{4}+by^{3}+dy^{2}+fy+g) = 0$ in the *x*-*y* plane.

He obtained an explicit 1784-term polynomial with Galois group $Sp_6(\mathbb{F}_2)$ corresponding to their 2-torsion:

 $S(a, b, c, d, e, f, g; z) = z^{28} - 8az^{27} + 72bz^{25} + \cdots$

This polynomial is universal for $Sp_6(\mathbb{F}_2)$ and so, via $G = G_2(\mathbb{F}_2) \subset Sp_6(\mathbb{F}_2)$, our polynomials must be specializations.

In fact, our π_0 is given via w = u - v + 1 by

$$S(1, w, -3u, 0, -uw, -uw, -u^2; z) = 0.$$

Our π_1 and π_2 are given by much more complicated formulas.

2C. Motives with Galois group G_2 . Define matrices a, b, c, and d:

$\begin{pmatrix} 1 & & \\ & 1 & & \\ & & 1 & & \end{pmatrix}$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
$ \begin{bmatrix} -3 & 1 & 1 \\ 3 & -1 & 1 \\ 9 & -3 & 1 \end{bmatrix} $	$-\overline{9}$ $\overline{4}$ 1 1
$\begin{pmatrix} -1 & 3 & -1 & 2 & -1 & 1 \\ 1 & -1 & & -3 \\ 3 & -2 & & & -3 \end{pmatrix}$	$\begin{pmatrix} -3 & 1 & 1 \\ 10 & -5 & 9 & -5 & -6 \\ 15 & -8 & 18 & -9 & -9 \end{pmatrix}$
$ \begin{bmatrix} 3 & -2 \\ 1 & -1 & 3 \\ 3 & -2 & 6 \\ 1 & 1 & 2 \end{bmatrix} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\left(\begin{array}{ccc} & 1 & -1 & -3 \\ & 3 & -2 & \\ & & & 1 \end{array}\right)$	$ \begin{pmatrix} 9 & -5 & 10 & -5 & -6 \\ 18 & -9 & 15 & -8 & -9 \\ -2 & 1 & -2 & 1 & 1 \end{pmatrix} $

Then abcd = 1 and the Zariski-closure of the group $\langle a, b, c, d \rangle$ is the algebraic group G_2 . This monodromy representation underlies a family of G_2 motives appearing in a classification of similar families by Dettweiler and Reiter.

In $GL_7(\mathbb{F}_2)$, the matrices generate $G_2(\mathbb{F}_2)'$ and (a, b, c, d) is in our rigid class (2A, 2A, 3A, 4A). Hence $\pi_1 : X_1 \to U_{3,1,1}$ also functions as a division polynomial for a family of G_2 motives.

In all three cases, our explicit division polynomials aid in studying the source motives. **3.** Specialization to three-point covers. A picture of $U_{3,1,1}(\mathbb{R})$ inside the *p*-*q* plane and its complementary discriminant locus (thick):

To review, the drawn space is the base of our degree twenty-eight cover $\pi_1 : X_1 \to U_{3,1,1}$.

Preimages of the thin curves are three-point covers, all of positive genus. It would be hard to construct these three-point covers directly.

Table of three-point covers obtained from π_1 and π_2 by specialization. The last fourteen have monodromy group G', Galois group G, and bad reduction set $\{2,3\}$. The constant field extension is always $\mathbb{Q}(i)/\mathbb{Q}$.

X_0	X ₃₁₁	X_{32}	C_{O}	C_1	C_∞	g_{28}	g_{36}	$ $ $\bar{\mu}$	μ
	H''		4 <i>A</i>	4 <i>B</i>	3 <i>B</i>	_	_	0.3	0
	I''		4 <i>A</i>	12A	2 A	_	_	0.3	0
b	B^*	В	6 <i>A</i>	2 <i>A</i>	8A	1	0	1	1
		M	12 <i>A</i>	2 A	8 <i>B</i>	2	2	1	1
		G	4 <i>A</i>	6 <i>A</i>	3 B	2	2	1	1
	H',G''		12A	4 <i>A</i>	3 B	2	5	1	1
e	L'	E, K	4 <i>C</i>	4 <i>A</i>	8A	3	3	1	1
	G'	H	3 A	12A	3 B	3	5	1	1
\overline{a}	K'	A	4 <i>A</i>	8A	8 <i>B</i>	4	7	1	1
c	K''	C, I	3 A	8A	6 <i>A</i>	4	6	1	1
d	L''		6 <i>A</i>	4 <i>A</i>	6 <i>A</i>	4	5	1	1
f	F^*, I'	F	4 <i>A</i>	8 <i>B</i>	12 <i>B</i>	5	8	1	1
-	J'		4 <i>A</i>	12A	8 <i>B</i>	5	8	1	1
		L	12A	3А	8 <i>A</i>	5	8	1	1
	M^*	J	6 <i>A</i>	12A	8 <i>B</i>	7	10	5	5
	J''		12 <i>A</i>	12 <i>A</i>	6 <i>A</i>	8	11	4.083	3

The degree 36 resolvent of the third cover:

$$f_{36}(t,x) = (4x^4 - 3)^3 (4x^4 - 12x^2 + 12x - 3)^6 -3^9 t(x-1)^4 (2x^2 - 1)^8 (2x^2 - 2x + 1)^4$$

In general, the one-parameter equations for specialization are much simpler than the twoparameter polynomials for the whole family. **4.** Specialization to number fields. A similar picture of $U_{3,2}(\mathbb{R})$ inside the *a*-*b* plane:

The drawn points $(a,b) \in U_{3,2}(\mathbb{Q}) \subset \mathbb{Q}^2$ are chosen so that $K = \mathbb{Q}[x]/F_2(a,b,x)$ has discriminant of the form $2^j 3^k$. Counting contributions from the first cover too, 376 such fields with Galois group $SU_3(\mathbb{F}_3).2 = G_2(\mathbb{F}_2)$ are obtained. It would be hard to construct these fields by purely number-theoretic methods. Pairs (j,k) arising from discriminants $d = 2^j 3^k$ from specializations of $F_1(p,q,x)$ and $F_2(a,b,x)$ to G number fields:

376 fields contribute to the picture, with multiplicities in discriminants indicated by area.

Considering the Malle-Matzat cover and other sources as well, there are at least 408 fields with Galois group G and discriminant $2^j 3^k$. The distribution by the quadratic field $\mathbb{Q}(\sqrt{-d})$ associated to G/G' is

13

A particular specialization. Eight specialization points

 $(u,v) = (-4,-3), (-\frac{1}{2},1), (\frac{1}{2},3), (4,-3), (-32,1), (-\frac{32}{81},\frac{49}{81}),$ $(p,q) = (1,\frac{1}{2}),$ $(a,b) = (-\frac{27}{4},-\frac{1}{2})$

give rise to the same number field with Galois group $SU_3(\mathbb{F}_3).2 = G_2(\mathbb{F}_2)$ and the very small field discriminant $2^{66}3^{46}$. A defining polynomial is

$$\begin{array}{l} x^{28}-4x^{27}+18x^{26}-60x^{25}+165x^{24}-420x^{23}\\+798x^{22}-1440x^{21}+2040x^{20}-2292x^{19}\\+2478x^{18}-756x^{17}-657x^{16}+1464x^{15}\\-4920x^{14}+3072x^{13}-1068x^{12}+3768x^{11}\\+1752x^{10}-4680x^9-1116x^8+672x^7+1800x^6\\-240x^5-216x^4-192x^3+24x^2+32x+4. \end{array}$$

Close 2- and 3-adic analysis says that the root discriminant of the Galois closure is

$$2^{43/16}3^{125/72} \approx 43.39$$

For comparison, extensive searches have been done on the smaller group S_7 and the larger group S_8 , with smallest known Galois root discriminants being 40.49 and 43.99, respectively. Main reference. David P. Roberts. Division Polynomials with Galois group $SU_3(\mathbb{F}_3).2 = G_2(\mathbb{F}_2)$. To appear in Proceedings of CNTA-XIII. See this paper for other references.

References for the three parts of \S 2:

A. Pierre Deligne and George Daniel Mostow. Commensurabilities among lattices in PU(1,n). Annals of Mathematics Studies, 132. Princeton University Press, 1993. viii+183 pp.

B. Tetsuji Shioda. *Plane quartics and Mordell-Weil lattices of type E7.* Comment. Math.
Univ. St. Paul. 42 (1993), no. 1, 61–79.

C. Michael Dettweiler and Stefan Reiter. The classification of orthogonally rigid G2-local systems and related differential operators. Trans. of the AMS 366 (2014) 5821-5851. (Relevant family is P5.1 in $\S6.4$. Matrices from e-mail from Reiter)