Division polynomials with Galois group

$\mathrm{SU}_{3}\left(\mathbb{F}_{3}\right) \cdot 2=\mathrm{G}_{2}\left(\mathbb{F}_{2}\right)$
David P. Roberts
University of Minnesota, Morris

General Inverse Galois Problem. Given a finite group G, find number fields with Galois group G, preferably of small discriminant.

Our case today. $G=S U_{3}\left(\mathbb{F}_{3}\right) \cdot 2=G_{2}\left(\mathbb{F}_{2}\right)$ of order $12096=2^{6} \cdot 3^{3} \cdot 7$. We'll produce two related two-parameter polynomials:

$$
\begin{aligned}
& F_{1}(p, q, x)=x^{28}+\cdots \in \mathbb{Q}(p, q)[x], \\
& F_{2}(a, b, x)=x^{28}+\cdots \in \mathbb{Q}(a, b)[x] .
\end{aligned}
$$

Connections with:

1. Rigid four-tuples in G
2. Motives with Galois group $U_{3}, S p_{6}, G_{2}$
3. Three-point covers with Galois group G
4. Number fields with Galois group G

Some background. The twelfth smallest nonabelian simple group is

$$
G^{\prime}=S U_{3}\left(\mathbb{F}_{3}\right)=G_{2}\left(\mathbb{F}_{2}\right)^{\prime}
$$

of order $6048=2^{5} 3^{3} 7$. One has \mid Out $\left(G^{\prime}\right) \mid=2$ and the extended group

$$
G=S U_{3}\left(\mathbb{F}_{3}\right) \cdot 2=G_{2}\left(\mathbb{F}_{2}\right)
$$

embeds transitively into A_{28} and A_{36}.

Some information on conjugacy classes:

Classes in G^{\prime}			
C	$\|C\|$	λ_{28}	λ_{36}
$1 A$	1	1^{28}	1^{36}
$2 A$	63	$2^{12} 1^{4}$	$2^{12} 1^{12}$
$3 A$	56	$3^{9} 1$	3^{12}
$3 B$	672	$3^{9} 1$	$3^{11} 1^{3}$
$4 A B$	2.63	$4^{6} 1^{4}$	$4^{6} 2^{6}$
$4 C$	378	$4^{6} 2^{2}$	$4^{6} 2^{4} 1^{4}$
$6 A$	504	$6^{4} 31$	$6^{4} 3^{4}$
$7 A B$	2.864	7^{4}	$7^{5} 1$
$8 A B$	$2 \cdot 756$	$8^{3} 2^{1} 1^{2}$	$8^{3} 4^{3}$
$12 A B$	2.504	$12^{2} 31$	$12^{2} 6^{2}$

Classes in $G-G^{\prime}$				
C	$\|C\|$	λ_{28}	λ_{36}	
$2 b$	252	$2^{12} 1^{4}$	$2^{16} 1^{4}$	
$4 d$	252	$4^{6} 1^{4}$	$4^{6} 2^{6}$	
$6 b$	2016	$6^{4} 31$	$6^{5} 3^{1} 2^{1} 1$	
$8 c$	1512	$8^{3} 4$	$8^{3} 4^{2} 21^{2}$	
$12 c d$	$2 \cdot 1008$	$12^{2} 31$	$12^{2} 6^{2}$	

A standard way to construct number fields with prescribed Galois group is to use rigidity. For example, up to simultaneous G-conjugation, there is just one triple (g_{0}, g_{1}, g_{∞}) with

$$
\begin{array}{rlrl}
g_{0} & \in 4 d & g_{0} g_{1} g_{\infty} & =1 \\
g_{1} \in 2 b & \left\langle g_{0}, g_{1}, g_{\infty}\right\rangle & =G
\end{array}
$$

Malle and Matzat computed the corresponding degree 28 cover $\mathbb{P}_{x}^{1} \rightarrow \mathbb{P}_{t}^{1}$:

$$
\begin{aligned}
f(t, x) & =A(x)^{4} B(x)-t 2^{2} 3^{9}\left(x^{2}+4 x+1\right)^{12}(2 x+1) \\
A(x) & =x^{6}-6 x^{5}-435 x^{4}-308 x^{3}+15 x^{2}+66 x+19 \\
B(x) & =x^{4}+20 x^{3}+114 x^{2}+68 x+13
\end{aligned}
$$

The preimage of $[0,1]=\bullet$ in \mathbb{P}_{x}^{1} :

The remarkable nature of the Malle-Matzat cover is reflected in its discriminant:

$$
\operatorname{disc}_{x}(f(t, x))=2^{576} 3^{630} t^{18}(t-1)^{12}
$$

Plugging in $t=1 / 2$ gives a degree twentyeight field with Galois group G^{\prime} and discriminant $2^{84} 3^{42}$. Carefully chosen other $t \in \mathbb{Q}$ give 41 fields with Galois group G and discriminant $2^{j} 3^{k}$.

There is an extensive literature, both theoretical and computational, on rigid three-point covers.

Rigid z-point covers for larger z are known to exist, for example coming from Katz's rigid local systems with coefficients in \mathbb{F}_{ℓ}. However the literature is very sparse for them. This talk presents computational examples with $z=4$.

1. Rigid four-point covers. Mass formulas give five four-tuples of conjugacy classes in G^{\prime} giving rigid four-point covers of $\mathbb{P}^{1}(\mathbb{C})$:

$$
\begin{array}{ll}
(3 A, 3 A, 3 A, 4 B), & (4 A, 4 A, 4 A, 2 A), \\
(4 A, 4 A, 4 A, 4 B), & (4 A, 4 A, 3 A, 3 A), \\
(2 A, 2 A, 3 A, 4 A) . & (4)
\end{array}
$$

All other quadruples are far from rigid.
Let $M_{0,5}$ be the moduli space of five labeled points in the projective line. The left three four-tuples give the same cover of $M_{0,5}$ and this cover has S_{3} symmetry. The right two give a cover of $M_{0,5}$ having $S_{3} \times S_{2}$ symmetry:

Our covers descend to covers of bases

$$
\begin{aligned}
U_{3,1,1} & :=M_{0,5} / S_{3} \\
U_{3,2} & :=M_{0,5} /\left(S_{3} \times S_{2}\right)
\end{aligned}
$$

They are correlated by a cubic correspondence:

It is remarkable that the three fields upstairs are also rational.

We seek to algebraically describe π_{1} and π_{2} by polynomial relations

$$
\begin{aligned}
& F_{1}\left(p, q, x_{1}\right)=x_{1}^{28}+\cdots=0 \\
& F_{2}\left(a, b, x_{2}\right)=x_{2}^{28}+\cdots=0
\end{aligned}
$$

2A. Motives with Galois group U_{3}. Deligne and Mostow studied families of covers

$$
y^{d}=f\left(u_{1}, \ldots, u_{n}, x\right)
$$

of the x-line. Two of their first examples are

$$
\begin{aligned}
y^{4}= & (x-1)^{3} x^{2}\left(x^{2}+u x-v x-x+v\right) \\
& (\text { genus 4) } \\
y^{4}= & \left(x^{2}+2 x+1-4 u\right)^{2}\left(x^{2}-2 x+1-4 v\right) \\
& (\text { genus 3) }
\end{aligned}
$$

They prove that the Jacobian J_{2} of the second is a factor of the Jacobian J_{1} of the first.

The 3-torsion points of either cover correspond to our $\pi_{0}: X_{0} \rightarrow U$. There are natural descents to families of curves

$$
\Pi_{1}: C_{1} \rightarrow U_{3,1,1}, \quad \Pi_{2}: C_{2} \rightarrow U_{3,2}
$$

On 3-torsion, these become our

$$
\pi_{1}: X_{1} \rightarrow U_{3,1,1}, \quad \pi_{2}: X_{2} \rightarrow U_{3,2}
$$

We get explicit polynomials for the π_{i} via this connection; hundreds of terms in each case.

2B. Motives with Galois group $S p_{6}$. Shioda studied the family of degree four plane curves $x^{3}+\left(y^{3}+c y+e\right) x+\left(a y^{4}+b y^{3}+d y^{2}+f y+g\right)=0$ in the $x-y$ plane.

He obtained an explicit 1784-term polynomial with Galois group $\operatorname{Sp} p_{6}\left(\mathbb{F}_{2}\right)$ corresponding to their 2-torsion:
$S(a, b, c, d, e, f, g ; z)=z^{28}-8 a z^{27}+72 b z^{25}+\cdots$
This polynomial is universal for $S p_{6}\left(\mathbb{F}_{2}\right)$ and so, via $G=G_{2}\left(\mathbb{F}_{2}\right) \subset S p_{6}\left(\mathbb{F}_{2}\right)$, our polynomials must be specializations.

In fact, our π_{0} is given via $w=u-v+1$ by

$$
S\left(1, w,-3 u, 0,-u w,-u w,-u^{2} ; z\right)=0
$$

Our π_{1} and π_{2} are given by much more complicated formulas.

2C. Motives with Galois group G_{2}. Define matrices a, b, c, and d :

Then $a b c d=1$ and the Zariski-closure of the group $\langle a, b, c, d\rangle$ is the algebraic group G_{2}. This monodromy representation underlies a family of G_{2} motives appearing in a classification of similar families by Dettweiler and Reiter.

In $G L_{7}\left(\mathbb{F}_{2}\right)$, the matrices generate $G_{2}\left(\mathbb{F}_{2}\right)^{\prime}$ and (a, b, c, d) is in our rigid class ($2 A, 2 A, 3 A, 4 A$). Hence $\pi_{1}: X_{1} \rightarrow U_{3,1,1}$ also functions as a division polynomial for a family of G_{2} motives.

In all three cases, our explicit division polynomials aid in studying the source motives.
3. Specialization to three-point covers. A picture of $U_{3,1,1}(\mathbb{R})$ inside the $p-q$ plane and its complementary discriminant locus (thick):

To review, the drawn space is the base of our degree twenty-eight cover $\pi_{1}: X_{1} \rightarrow U_{3,1,1}$.

Preimages of the thin curves are three-point covers, all of positive genus. It would be hard to construct these three-point covers directly.

Table of three-point covers obtained from π_{1} and π_{2} by specialization. The last fourteen have monodromy group G^{\prime}, Galois group G, and bad reduction set $\{2,3\}$. The constant field extension is always $\mathbb{Q}(i) / \mathbb{Q}$.

X_{0}	X_{311}	X_{32}	C_{0}	C_{1}	C_{∞}	g_{28}	g_{36}	$\bar{\mu}$	μ
	$H^{\prime \prime}$		$4 A$	$4 B$	$3 B$	-	-	$0 . \overline{3}$	0
	$I^{\prime \prime}$		$4 A$	$12 A$	$2 A$	-	-	$0 . \overline{3}$	0
b	B^{*}	B	$6 A$	$2 A$	$8 A$	1	0	1	1
		M	$12 A$	$2 A$	$8 B$	2	2	1	1
	$H^{\prime}, G^{\prime \prime}$	G	$4 A$	$6 A$	$3 B$	2	2	1	1
e	L^{\prime}	E, K	$12 A$	$4 A$	$3 B$	2	5	1	1
a	G^{\prime}	H	$3 A$	$4 A$	$8 A$	3	3	1	1
K^{\prime}	A	$4 A$	$3 B$	3	5	1	1		
d	$K^{\prime \prime}$	C, I	$3 A$	$8 A$	$8 B$	4	7	1	1
d	$L^{\prime \prime}$		$6 A$	$4 A$	$6 A$	4	6	1	1
f	F^{*}, I^{\prime}	F	$4 A$	$8 B$	$12 B$	5	5	1	1
	J^{\prime}		$4 A$	$12 A$	$8 B$	5	8	1	1
		L	$12 A$	$3 A$	$8 A$	5	8	1	1
	M^{*}	J	$6 A$	$12 A$	$8 B$	7	10	5	1
	$J^{\prime \prime}$		$12 A$	$12 A$	$6 A$	8	11	$4.08 \overline{3}$	3

The degree 36 resolvent of the third cover:

$$
\begin{aligned}
f_{36}(t, x)= & \left(4 x^{4}-3\right)^{3}\left(4 x^{4}-12 x^{2}+12 x-3\right)^{6} \\
& -3^{9} t(x-1)^{4}\left(2 x^{2}-1\right)^{8}\left(2 x^{2}-2 x+1\right)^{4}
\end{aligned}
$$

In general, the one-parameter equations for specialization are much simpler than the twoparameter polynomials for the whole family.
4. Specialization to number fields. A similar picture of $U_{3,2}(\mathbb{R})$ inside the $a-b$ plane:

The drawn points $(a, b) \in U_{3,2}(\mathbb{Q}) \subset \mathbb{Q}^{2}$ are chosen so that $K=\mathbb{Q}[x] / F_{2}(a, b, x)$ has discriminant of the form $2^{j} 3^{k}$. Counting contributions from the first cover too, 376 such fields with Galois group $S U_{3}\left(\mathbb{F}_{3}\right) .2=G_{2}\left(\mathbb{F}_{2}\right)$ are obtained. It would be hard to construct these fields by purely number-theoretic methods.

Pairs (j, k) arising from discriminants $d=2^{j} 3^{k}$ from specializations of $F_{1}(p, q, x)$ and $F_{2}(a, b, x)$ to G number fields:

376 fields contribute to the picture, with multiplicities in discriminants indicated by area.

Considering the Malle-Matzat cover and other sources as well, there are at least 408 fields with Galois group G and discriminant $2^{j} 3^{k}$. The distribution by the quadratic field $\mathbb{Q}(\sqrt{-d})$ associated to G / G^{\prime} is

$$
\begin{array}{c|ccccccc}
\partial & -6 & -3 & -2 & -1 & 2 & 3 & 6 \\
\hline \# & 5 & 6 & 6 & 381 & 7 & 2 & 1
\end{array}
$$

A particular specialization. Eight specialization points

$$
\begin{aligned}
& (u, v)=(-4,-3),\left(-\frac{1}{2}, 1\right),\left(\frac{1}{2}, 3\right),(4,-3),(-32,1),\left(-\frac{32}{81}, \frac{49}{81}\right), \\
& (p, q)=\left(1, \frac{1}{2}\right), \\
& (a, b)=\left(-\frac{27}{4},-\frac{1}{2}\right)
\end{aligned}
$$

give rise to the same number field with Galois group $S U_{3}\left(\mathbb{F}_{3}\right) \cdot 2=G_{2}\left(\mathbb{F}_{2}\right)$ and the very small field discriminant $2^{66} 3^{46}$. A defining polynomial is

$$
\begin{aligned}
& x^{28}-4 x^{27}+18 x^{26}-60 x^{25}+165 x^{24}-420 x^{23} \\
& +798 x^{22}-14400^{21}+2040 x^{20}-2292 x^{19} \\
& +2478 x^{18}-756 x^{17}-657 x^{16}+1464 x^{15} \\
& -4920 x^{15}+3072 x^{13}-1068 x^{12}+3768 x^{11} \\
& +1752 x^{10}-4680 x^{9}-1116 x^{8}+662 x^{7}+1800 x^{6} \\
& -240 x^{5}-216 x^{4}-192 x^{3}+24 x^{2}+32 x+4 .
\end{aligned}
$$

Close 2- and 3 -adic analysis says that the root discriminant of the Galois closure is

$$
2^{43 / 16} 3^{125 / 72} \approx 43.39
$$

For comparison, extensive searches have been done on the smaller group S_{7} and the larger group S_{8}, with smallest known Galois root discriminants being 40.49 and 43.99, respectively.

Main reference. David P. Roberts. Division Polynomials with Galois group $S U_{3}\left(\mathbb{F}_{3}\right) .2=$ $G_{2}\left(\mathbb{F}_{2}\right)$. To appear in Proceedings of CNTAXIII. See this paper for other references.

References for the three parts of $\S 2$:
A. Pierre Deligne and George Daniel Mostow. Commensurabilities among lattices in $\operatorname{PU}(1, n)$. Annals of Mathematics Studies, 132. Princeton University Press, 1993. viii+183 pp.
B. Tetsuji Shioda. Plane quartics and MordellWeil lattices of type E7. Comment. Math. Univ. St. Paul. 42 (1993), no. 1, 61-79.
C. Michael Dettweiler and Stefan Reiter. The classification of orthogonally rigid G2-local systems and related differential operators. Trans. of the AMS 366 (2014) 5821-5851. (Relevant family is P5.1 in §6.4. Matrices from e-mail from Reiter)

