
FRACTALIZED CYCLOTOMIC POLYNOMIALS
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Abstract. For each prime power pm, we realize the classical cyclotomic poly-

nomial Φpm (x) as one of a collection of 3m different polynomials in Z[x]. We
show that the new polynomials are similar to Φpm (x) in many ways, including
that their discriminants all have the form ±pc. We show also that the new
polynomials are more complicated than Φpm (x) in other ways, including that
their complex roots are generally fractal in appearance.

1. Introduction

Cyclotomic polynomials Φd(x) and their associated number fields Q(e2πi/d) form
a substantial topic in algebraic number theory, represented by the books [3] and
[7]. Here we restrict attention to the particularly interesting case where the index
is a prime power, d = pm > 1. We realize

(1.1) Φpm(x) =
xpm − 1

xpm−1 − 1
=

p−1∑
j=0

xjpm−1

as one out of a collection of 3m different polynomials in Z[x]. Our new polynomials
are denoted Φp;τ1,...,τm

(x), where the τj are chosen independently from the set
{0, 1,∞}.

On the one hand, the Φp;τ1,...,τm(x) are very similar to the classical Φpm(x) =
Φp;1,...,1(x). They have degree φ(pm) = (p − 1)pm−1, are irreducible over the in-
tegers, have polynomial discriminant of the form ±pc, field discriminant equal to
their polynomial discriminant, and Galois group having size of the form (p− 1)pb.
Our proofs of these facts follow classical proofs.

On the other hand, the Φp;τ1,...,τm(x) are in general much more complicated than
the classical Φpm(x). Their roots are generally fractal in appearance, rather than
intelligibly spaced on a circle. For p = 2, there are often many real roots. The Galois
groups Gal(Φp;τ1,...,τm

(x)) are typically much larger than Gal(Φpm(x)) = (Z/pm)×

and moreover highly non-abelian.
Section 2 defines our analogs. Section 3 proves the statements in the second

paragraph. Section 4 communicates the complexity of our new polynomials; it
draws some root plots, counts real roots, and computes some Galois groups.

For related material we refer the reader as follows. First, the complex roots of
our fractalized cyclotomic polynomials Φp;τ1,...,τm

(x) are higher circular p-units in
the sense of Anderson and Ihara [2]. The general construction of [2] involves iter-

ated covers of the Riemann sphere, Ĉ
fm→ Ĉ

fm−1→ · · · f2→ Ĉ
f1→ Ĉ, with each step fj
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conjugate by fractional linear transformations to x 7→ xp and all critical values of
F1 ◦ · · · ◦Fm in {0, 1,∞}. We restrict the allowed fractional linear transformations
to the six permuting the cusps {0, 1,∞}. Our restriction keeps each fj defined over
Q; it keeps polynomial discriminants, not just field discriminants, of the form ±pc.
Second, our polynomials illustrate the general technique of using iteration to con-
struct infinite extensions of the rationals with only finitely many ramifying primes;
[1] provides a general introduction to this technique. Third, our field discriminant
formula provides a tool for studying higher ramification subgroups in the infinite
extension of Q obtained by considering all our polynomials belonging to a given
fixed prime at once; this application is pursued in the case p = 2 in [6].

2. Definition

Let p be a prime. Let Z[x]n be the additive group of polynomials in Z[x] of
degree ≤ n. Define linear operators R : Z[x]n → Z[x]n and Fp : Z[x]n → Z[x]pn by

(Rf)(x) = (x− 1)nf

(
1

1− x

)
,(2.1)

(Fpf)(x) = f(xp).(2.2)

A fractalized cyclotomic polynomial for the prime p is then by definition any poly-
nomial obtained from Φp(x) ∈ Z[x]p−1 by successive application of Fp and R in any
order. Note that (Fm−1

p Φp)(x) = Φp(xpm−1
) is just the classical cyclotomic poly-

nomial Φpm(x). Inserting R’s among the Fp’s “fractures” this construction process;
this is one reason we use the word “fractalized.”

Next, we give a unique name to each fractalized cyclotomic polynomial. As a
first step, note that R is related to the map g(01∞) : Ĉ → Ĉ : x 7→ 1/(1− x). The
map g(01∞) rotates the cusps of Ĉ, in the sense that 0 7→ 1, 1 7→ ∞, and ∞ 7→ 0.
One can check that signs have been chosen properly in (2.1) so that R, like g(01∞),
has order three. Thus, using R alone, one can only construct three polynomials
from Φp(x). We name them as follows.

Φp;0(x) = (RΦp)(x) = (−1)p−1

p−1∑
j=0

(
p

j + 1

)
(−x)j ,(2.3)

Φp;1(x) = Φp(x) =
p−1∑
j=0

xj ,(2.4)

Φp;∞(x) = (R−1Φp)(x) =
p−1∑
j=0

(
p

j

)
(−x)j .(2.5)

Passing from the summation in (2.4) to the summations in (2.3) and (2.5) is a simple
classical computation centering on expanding (x− 1)p by the binomial theorem.

As the second and main step, we bring in Fp. Note that the operator Fp is
related to the map fp = Ĉ → Ĉ : x 7→ xp. To treat 0, 1, and ∞ on an equal



FRACTALIZED CYCLOTOMIC POLYNOMIALS 3

footing, we define degree p maps

fp;0 = g−1
(01∞)fpg(01∞) : x 7→ 1− (1− x)p,(2.6)

fp;1 = fp : x 7→ xp,(2.7)

fp;∞ = g(01∞)fpg
−1
(01∞) : x 7→ xp

xp − (x− 1)p
.(2.8)

All three maps fix 0, 1, and ∞. The critical points of fp;τ are the two points of
{0, 1,∞}−{τ}, each with multiplicity p−1. Motivated by this discussion of rational
functions, we define

Fp;0 = RFpR
−1,(2.9)

Fp;1 = Fp,(2.10)

Fp;∞ = R−1FpR.(2.11)

Henceforth we will emphasize the three operators Fp;τ , rather than Fp and R.

Definition 2.1. Let p be a prime, m a positive integer, and τ1, . . . , τm elements of
{0, 1,∞}. Then the corresponding fractalized cyclotomic polynomial Φp;τ1,...,τm

(x)
is defined by (2.3), (2.4), (2.5) for m = 1 and by

(2.12) Φp;τ1,...,τm
= Fp;τm

· · ·Fp;τ2Φp;τ1 .

for m ≥ 2.

By construction, Φp;τ1,...,τm
(x) lies in the space Z[x]φ(pm). Clearly, the poly-

nomials Φp;τ1,...,τm
(x) just defined exhaust the fractalized cyclotomic polynomials:

one cannot get any other polynomials by applying R and Fp iteratively to Φp(x).
There is a basic symmetry among the fractalized cyclotomic polynomials which

we have not yet fully incorporated into our formalism. Define S : Z[x]n → Z[x]n by
(Sf)(x) = xnf (1/x) . Then S is related to the rational map g(0∞) : Ĉ → Ĉ : x 7→
1/x. In fact, the association (0∞) 7→ g∗(0∞) = S and (01∞) 7→ g∗(01∞) = R extends
to an homomorphism α 7→ g∗α from S3 to operators on Z[x]n. The basic symmetry
is then

(2.13) g∗αΦp;τ1,...,τm = Φp;α−1τ1,...,α−1τm
.

Thus the 3m different Φp;τ1,...,τm
(x) fall into the S3-orbit of Φpm(x) = Φp;1,...,1(x),

which contains three polynomials, and (3m − 3)/6 more S3-orbits, each with six
polynomials.

3. Similarities

The theorem of this paper gives various properties of the fractalized cyclotomic
polynomials. All of them are standard in the case of the cyclotomic polynomial
Φpm(x) = Φp;1,...,1(x). The proofs in the general case consist mostly of applying
standard general facts to our situation. To treat ∞ on the same footing as 0 and
1, we define f(∞) = a0 for f(x) = a0x

n + · · · ∈ Z[x]n.

Theorem 3.1. Let p be a prime, m a positive integer, and τ1, . . . , τm elements of
{0, 1,∞}. Let Φp;τ1,...,τm

(x) be the corresponding fractalized cyclotomic polynomial.
Then
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(Cuspidal values.) For σ ∈ {0, 1,∞} one has

(3.1) Φp;τ1,...,τm(σ) =
{
±p if σ = τ1,

±1 if σ 6= τ1,

with all signs positive if p is odd. In particular, Φp;τ1,...,τm(x) has degree φ(pm).

(Reduction modulo p.) Let Ψ0(x) = x, Ψ1(x) = −x + 1, and Ψ∞(x) = −1.
Then

(3.2) Φp;τ1,...,τm
(x) ≡ Ψτ1(x)φ(pm) modulo p.

(Irreducibility.) Φp;τ1,...,τm
is irreducible in Z[x].

(Polynomial discriminant.) The polynomial discriminant of Φp;τ1,...,τm
(x) is

D(Φp;τ1,...,τm
(x)) = ±pc with

c = p− 2 +
m∑

j=2

(p− 1)2pj−2j +
m∑

j=2

δ(τ1 6= τj)(p− 1)pm−j .(3.3)

Here δ(τ1 6= τj) is 1 if τ1 and τj are different, and otherwise 0.

(Field discriminant.) The field discriminant of Q[x]/Φp;τ1,...,τm
(x) is

d(Φp;τ1,...,τm
(x)) = D(Φp;τ1,...,τm

(x)).

(Galois group order.) The Galois group Φp;τ1,...,τm(x) has order of the form
(p− 1)pb.

Proof.

Cuspidal values. By inspection of (2.3), (2.4), and (2.5), one sees that (3.1) holds
when m = 1. In general, our operators preserve cuspidal values up to sign as
follows. First, by inspection one has

(Rf)(0) = (−1)nf(1), (Rf)(1) = (−1)nf(∞), (Rf)(∞) = f(0).(3.4)

Second, clearly (Fp,1f)(σ) = σ, for all σ = {0, 1,∞}. Using Fp,0 = RFp,1R
−1 and

Fp,∞ = R−1Fp,1R
−1 one finds

(Fp;τf)(σ) =
{

(−1)(p−1)nf(σ) if (τ, σ) = (0, 0), (0, 1), (∞, 1), (∞,∞),
f(σ) if σ 6= τ .

(3.5)

Here the factor (−1)(p−1)n arises in the first case when a sign (−1)n enters before
the application of Fp and then a second sign (−1)pn enters after the application of
Fp. By induction, (3.1) holds for general m, with all signs positive if p is odd.

Reduction modulo p. By inspection of (2.3), (2.4), and (2.5), one sees that the
congruence (3.2) holds for m = 1. Working in Fp[x] rather than Z[x], and consid-
ering Ψn

τ ∈ Fp[x]n, one has the general formulas RΨn
τ = Ψn

(0∞1)τ and FpΨn
τ = Ψpn

τ .
These two formulas prove the congruence (3.2) for general m by induction.

Irreducibility. A polynomial f(x) = a0x
n+· · ·+an in Z[x]n is called an p-Eisenstein

polynomial if and only if

ordp(a0) = 0,

ordp(ai) ≥ 1 (1 ≤ i ≤ n− 1),
ordp(an) = 1.
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A general fact about p-Eisenstein polynomials is that they are irreducible in Z[x],
because they are even irreducible in Zp[x], where Zp is the ring of p-adic integers.
If τ1 = 0, then Φp;τ1,...,τm(x) is p-Eisenstein by the results on cuspidal values and
reduction modulo p, hence irreducible. Irreducibility in the case τ1 6= 0 then follows
by transformation to the τ1 = 0 case, via (2.13).

Polynomial discriminant. In general, for f(x) = a0x
n + · · · ∈ Z[x]n with roots α1,

. . . , αn ∈ C, its discriminant is

(3.6) D(f) = a2n−2
0

∏
i<j

(αi − αj)2.

Standard facts about discriminants include its equivariance with respect to frac-
tional linear transformations. In particular,

(3.7) D(g∗αf) = D(f)

for α ∈ S3. Equality (3.7) can be proved directly from the definition (3.6) for the
cases α = (01) and α = (0∞), and the case of general α, including R = g∗(01∞)

then follows. Likewise, a standard fact is D(Fpf) = ±pnpf(0)p−1f(∞)p−1D(f)p.
Combining this fact with (3.4) and (3.7) gives

(3.8) D(Fp;τf) = ±pnpf(τ ′)p−1f(τ ′′)p−1D(f)p,

where {τ, τ ′, τ ′′} = {0, 1,∞}. For m = 1, Equation (3.3) reduces to the known
formula D(Φp) = ±pp−2. The general case of (3.3) then follows from induction,
using (2.12) and (3.8). In particular, in the expression for D(Fp;τj

f) given by
(3.8) with f = Φp;τ1,...,τj−1 , one has {f(τ ′), f(τ ′′)} = {±1,±1} if τj = τ1 and
{f(τ ′), f(τ ′′)} = {±1,±p} if τj 6= τ1, by (3.1). In the latter case one gets a
contribution of pp−1 to D(Fp;τj

f). In each of the remaining m − j applications of
(3.8), this contribution accumulates in the D(f) factor on the right of (3.8), being
raised to the pth power each time. This accounts for the term δ(τ1 6= τj)(p−1)pm−j

in (3.3).

Field discriminant. In general, an irreducible polynomial f(x) ∈ Z[x] determines
a number field Q[x]/f(x). The discriminant D(f) ∈ Z of the polynomial and the
discriminant d(f) ∈ Z of the field are related by d(f) = D(f)/i(f)2, for i(f)
a positive integer. Also, in general, if f(x) is a p-Eisenstein polynomial then
ordp(i(f)) = 0. These generalities apply directly to Φp;τ1,...,τm

(x) when τ1 = 0
and, since D(Φp;τ1,...,τm

(x)) has the form ±pc, yield the equality of the polynomial
and field discriminants. Equality in the case τ1 6= 0 then follows by transformation
to the τ1 = 0 case, via (2.13).

Galois group size. Let αm be a complex root of Φp;τ1,...,τm(x). Inductively define
αm−1, . . . , α1 by αj−1 = fp;τj

(αj) so that αj is a root of Φp;τ1,...,τj
(x). In C, we

have the tower of fields Kj = Q(α1, . . . , αj). We have K1 = Q(e2πi/p) and the pth

power of either αj , g(01∞)(αj), or g−1
(01∞)(αj) is in Kj−1. By Kummer theory, for

j = 2, . . . , m, the extension Kj/Kj−1 is Galois with group Z/p. Let Kg
j be the

Galois closure of Kj . Our discussion shows that each Kg
j /K1 is Galois with group

of order a power of p, and so the Galois group Gal(Φp;τ1,...,τm
(x)) = Gal(Kg

m/Q)
has order of the form (p− 1)pb. �
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4. Differences

Root plots. The set Xp;τ1,...,τm
of complex roots of any Φp;τ1,...,τm

(x) is easily
obtained by iteratively applying the formulas

Xp;τ1 = f−1
p;τ1

(τ1)− {τ1},
Xp;τ1,...,τm

= f−1
p;τm

(Xp;τ1,...,τm−1) (m ≥ 2).

Explicitly, the inverse image operators are given by

f−1
p;0 (x) =

{
1− ε(1− x)1/p

}
,

f−1
p;1 (x) =

{
εx1/p

}
,

f−1
p;∞(x) =

{
1

1− ε(1− 1/x)1/p

}
,

with ε running over the pth roots of unity in each case.

Figure 4.1. Roots of Φ2;1,0,1,0,1,0,1,0,1,0,1,0,1(x) on the top left
and Φ2;1,0,∞,0,1,0,∞,0,1,0,∞,0,1(x) on the top right, each in the
window [−1.7, 1.7] × [−1, 1] of the complex plane. Roots of
Φ2;1,0,∞,1,0,∞,1,0,∞,1,0,∞,1(x) on the bottom, drawn to the same
scale, now in the larger window [−2.4, 2.4] × [−1.6, 1.6]. There
are 4096 roots in each case, with the number of real roots being
respectively 2, 338, and 466.
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If the last k indices τm−k+1, . . . , τm are all the same, then the root set Xp;τ1,...,τm

is stable under a group µpk,τm
of pk fractional linear transformations. These trans-

formations take the nicest algebraic form when τm = 1, as then they are given by
multiplication by pkth roots of unity. Independently, Xp;τ1,...,τm is invariant under
complex conjugation σ. All together, Xp;τ1,...,τm

is stable under a dihedral group
µpk,τm

o {1, σ}.
Figure 4.1 shows the roots of three fractalized cyclotomic polynomials with p = 2.

Figure 4.2 likewise shows the roots of two fractalized polynomials with p = 3. In
each case we have taken τm = 1 and k = 1, so the symmetry groups have order 4
and 6 respectively and are clearly visible. The top left image in Figure 4.1 appears
commonly in the popular fractal literature, as it approximates the Julia set for the
quadratic polynomial x2 − 1.

Figure 4.2. Roots of Φ3;1,0,0,1,1,0,0,1(x) on the left and
Φ3;1,0,∞,1,1,∞,0,1 on the right, each drawn in the window
[−1.7, 1.7] × [−1.4, 1.4], using the same scale as Figure 4.1. Both
polynomials here have φ(38) = 2 · 37 = 4374 roots, all non-real.

Real roots. For m ≥ 2, the roots of Φp;τ1,...,τm
(x) map p-to-1 to the roots of

Φp;τ1,...,τm−1(x) under fp;τm . The mapping is Gal(Q/Q)-equivariant and in partic-
ular Gal(C/R)-equivariant. Thus a root α can be real only if fp;τm(α) is real. If
p is odd then no Φp;τ1,...,τm(x) has real roots simply because no Φp;τ1(x) has real
roots. Henceforth, we restrict to p = 2 and derive a simple recursive formula for
sτ1,...,τm

, the number of real roots of Φ2;τ1,...,τm
(x).

Consider the real circle R̂ = R ∪ {∞} in the Riemann sphere Ĉ. For σ ∈
{0, 1,∞}, let Iσ be the component of R̂ − {0, 1,∞} which does not have σ in its
closure. Thus I0 = (1,∞), I1 = (−∞, 0), and I∞ = (0, 1). For σ ∈ {0, 1,∞}, let
sτ1,...,τm

(σ) be the number of roots of Φ2;τ1,...,τm
(x) in the interval Iσ. Clearly,

(4.1) sτ1,...,τm
=

∑
σ∈{0,1,∞}

sτ1,...,τm
(σ).

In the case m = 1, we have Φ2;0(x) = x−2, Φ2;1(x) = x+1, and Φ2;∞(x) = −2x+1.
Thus

(4.2) sτ1(σ) =
{

1 if σ = τ1,
0 if σ 6= τ1.
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So (4.1) recovers the simple fact sτ1 = 1 in all three cases.
Under the map f2;τ : R̂ → R̂, an element in Iτ has no preimages. For σ 6= τ , an

element in Iσ has two preimages, one in Iσ and the other in Iτ . These statements
are completely clear in the case of f2;1 and then follow for the other two maps. Our
discussion proves the following result.

Proposition 4.1. The number sτ1,...,τm
of real roots of Φ2;τ1,...,τm

(x) is given by
(4.1), (4.2), and the recursion

sτ1,...,τm
(σ) =

{
sτ1,...,τm−1(σ

′) + sτ1,...,τm−1(σ
′′) if σ = τm,

sτ1,...,τm−1(σ) if σ 6= τm,

with {σ, σ′, σ′′} = {0, 1,∞}.

One can be completely explicit about sτ1,...,τm
in three special cases as follows.

First, note that if τ1 = τ2 then already all three sτ1,τ1(σ) are 0, giving the general
formula sτ1,τ1,τ3,...,τm

= 0. Second, if τ1 6= τ2 and all the other τ3, . . . , τm are
in {τ1, τ2} then inductively one has sτ1,...,τm = 2. This case is represented by the
upper left plot in Figure 4.1. Third, suppose that τ1 6= τ2 and each index τ3, . . . ,
τm is taken to be the unique index different from its two immediate predecessors.
Then inductively for m ≥ 2 one has sτ1,...,τm

= 2sτ1,...,τm
(τm) = 2Fm, where the

Fm is the mth Fibonacci number.
In fact, Fibonacci-like behavior can be seen in the root plot of any Φ2;τ1,...,τm

(x)
having real roots. For example, if τm = 1 then by the x 7→ −x symmetry, the
number of roots in (−∞, 0) is equal to the number of roots in (0, 1) plus the number
of roots in (1,∞). In the three plots in Figure 4.1, this equation is 1 = 0 + 1,
169 = 70 + 99, and 233 = 144 + 89.

Galois groups. The Galois group of Φpm(x) is the group (Z/pm)×, of order
φ(pm) = (p − 1)pm−1. While in general G = Gal(Φp;τ1,...,τm

(x)) also has order
of the form (p− 1)pb, computation shows that the isomorphism type of G and even
its order can depend subtly on the indices τ1, . . . , τm.

General theorems give one some control over the possibilities for G. For example,
for p = 2 the result of [4] says that a finite Galois 2-extension of Q ramified at 2 only
has Galois group generated by complex conjugation and a single other element. So
while the Sylow 2-subgroup P of S2m−1 has size 22m−1−1, any Gal(Φ2;τ1,...,τm

(x))
must be smaller when m ≥ 4, as P requires m− 1 elements to generate it.

τ1τ2τ3τ4 ord2(|G|) G τ1τ2τ3τ4 ord2(|G|) G

aaaa 3 T2 abac 6 T28
aaab 5 T21 abba 6 T30
aaba 5 T19 abbb 4 T8
aabb 5 T17 abbc 6 T28
aabc 4 T6 abca 6 T27
abaa 4 T8 abcb 6 T27
abab 6 T30 abcc 5 T16

Table 4.1. Galois groups G = Gal(Φ2;τ1,...,τ4(x)), with a, b, and
c representing distinct elements of {0, 1,∞}.
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Table 4.1 presents all possibilities for the case (p,m) = (2, 4) of octic polynomials.
Galois groups were computed using [5], with Tn indicating that G is the nth group
on the standard list of fifty octic groups. A much more elaborate computation for
(p, m) = (2, 5) found that while ord2(|G|) is 4 in the cyclotomic case, it ranges from
6 to 11 in the forty other cases, with in total twenty-eight isomorphism classes of
degree 16 permutation groups G represented. This situation for general (p, m) is
quite unusual for Galois theory, as one has a collection of explicit polynomials but
no generic expectation for their Galois groups.
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