Numerical verification of Deligne's conjecture relating L-values and periods for hypergeometric motives

David P. Roberts
University of Minnesota, Morris

1. The familiar case of elliptic curves: $L(X, 1) / \Omega_{X,+} \in \mathbb{Q}$
2. Deligne's conjecture: $L(M, n) / \Omega_{M, n} \in \mathbb{Q}$ for n critical
3. Hypergeometric motives: $H(\alpha, \beta, t)$
4. Hypergeometric L-values: calculation of $L(H(\alpha, \beta, t), n)$
5. Hypergeometric periods: calculation of $\Omega_{H(\alpha, \beta, t), n}$
6. Numerical verifications: examples going beyond ($h^{0,1}, h^{1,0}$) $=(1,1)$ from elliptic curves to Hodge vectors $\left(h^{0, w}, \ldots, h^{w, 0}\right)=(1,1,1,1)$, ($1,1,1,1,1$), ($1,1,0,1,1$) and ($1,1,0,0,1,1$).
7. Elliptic curves. Let X be an elliptic curve defined by $y^{2}=x(x-1)(x-t)$ with $t \in \mathbb{Q}_{>1}$. Associated are two rational vector spaces, each with an extra structure

$$
\begin{aligned}
H_{1}(X(\mathbb{C}), \mathbb{Q}) & =H_{1}(X(\mathbb{C}), \mathbb{Q})^{+} \oplus H_{1}(X(\mathbb{C}), \mathbb{Q})^{-} \\
H_{D R}^{1}(X) & \supset F^{1} H_{D R}^{1}(X)
\end{aligned}
$$

Here complex conjugation acts on $H_{1}(X(\mathbb{C}), \mathbb{Q})^{\epsilon}$ with sign ϵ and $F^{1} H_{D R}^{1}(X)$ is the subspace represented by everywhere regular differentials.

Choose, as below, the standard bases

$$
\sigma_{1} \in H_{1}(X(\mathbb{C}), \mathbb{Q})^{+} \text {and } \sigma_{2} \in H_{1}(X(\mathbb{C}), \mathbb{Q})^{-}
$$

Let $\omega_{1}=\frac{x d x}{2 y}$ and $\omega_{2}=\frac{d x}{2 y}$ so that $\left\{\omega_{1}, \omega_{2}\right\}$ is a basis for $H_{D R}^{1}(X)$ with ω_{2} lying in $F^{1} H_{D R}^{1}(X)$. The corresponding period matrix $\left(\int_{\sigma_{i}} \omega_{j}\right)$ is

$$
P=\left(\begin{array}{cc}
\int_{0}^{1} \frac{x d x}{\sqrt{x(x-1)(x-t)}} & \int_{0}^{1} \frac{d x}{\sqrt{x(x-1)(x-t)}} \\
\int_{1}^{t} \frac{x d x}{\sqrt{x(x-1)(x-t)}} & \int_{1}^{t} \frac{d x}{\sqrt{x(x-1)(x-t)}}
\end{array}\right)
$$

The Legendre relation says $\operatorname{det}(P)=-2 \pi i$.

The colored entries $\Omega_{X,+}$ and $\Omega_{X,-}$ are the real and imaginary periods respectively. A proved part of the Birch and Swinnerton-Dyer conjecture is that

$$
\frac{L(X, 1)}{\Omega_{X,+}} \text { is rational. }
$$

This statement is also a special case of Deligne's conjecture.
Suppose $L(X, s)=\sum_{n=1}^{\infty} \frac{a_{n}}{n^{s}}$ and X has conductor N. Then, as a simple case of general analytic continuation techniques,

$$
L(X, 1)=2 \sum_{n=1}^{\infty} \frac{a_{n}}{n} e^{-2 \pi / \sqrt{N}} .
$$

For $t=3$, the conductor is $N=96$ and the ratio is

$$
\frac{L(X, 1)}{\Omega_{X,+}} \approx \frac{1.00107738}{2.00215476}=0.50000000=\frac{1}{2} .
$$

For the twist $X_{D}: D y^{2}=x(x-1)(x-t)$, the ratio $L\left(X_{D}, 1\right) /\left(\sqrt{D} \Omega_{X, \operatorname{sign}(D)}\right)$ is rational. So, in a sense, $\Omega_{X,+}$ and $\Omega_{X,-}$ are equally involved.

2A. Period matrices. A motive $M \subseteq H^{w}(X, \mathbb{Q})$ has two associated rational vector spaces,

$$
\check{M}_{B} \subseteq H_{w}(X(\mathbb{C}), \mathbb{Q}) \quad \text { and } \quad M_{D R} \subseteq H_{D R}^{w}(X)
$$

These spaces have extra structures, as before:

$$
\check{M}_{B}=\check{M}_{B}^{+} \oplus \check{M}_{B}^{-},
$$

$M_{D R}=F^{0} \stackrel{h^{0, w}}{\supseteq} F^{1} \stackrel{h^{1, w-1}}{\supseteq} \cdots \stackrel{h^{w-1,1}}{\supseteq} F^{w} \stackrel{h^{w, 0}}{\supseteq}\{0\}$. Integration of forms over cycles again gives a non-degenerate pairing:

$$
\check{M}_{B} \times M_{D R} \rightarrow \mathbb{C}:(\sigma, \omega) \mapsto \int_{\sigma} \omega .
$$

Choosing bases $\left\{\sigma_{i}\right\}$ and $\left\{\omega_{j}\right\}$ respecting the structures, one gets a block period matrix P, e.g.
$\begin{array}{lllll}F^{0} & F^{1} & F^{2} & F^{3} & F^{4}\end{array}$

A pair (p, ϵ) is called critical for M if $\operatorname{dim}\left(F^{p}\right)=$ $\operatorname{dim}\left(\breve{M}^{\epsilon}\right)$. In our example, the critical pairs are $(1,+),(2,+),(3,-)$, and $(4,-)$. Ongoing notations: P, P^{+}, P^{-}of size $d=d_{+}+d_{-}$.

2B. Critical pairs in terms of Hodge vectors. Assuming at least two positive Hodge numbers, there are four situations which can give rise to critical pairs (n, ϵ) :
 Here • indicates a positive Hodge number and * indicates an arbitrary Hodge number. The punctuation marks are indexed by integers n. The $n^{\text {th }}$ mark has red if $(n,+)$ is critical and orange if $(n,-)$ is critical. Familiar examples:

Example	Type	$\left(h^{0, w}, \ldots, h^{w, 0}\right)$
$h^{1}($ elliptic curve, $\mathbb{Q})$	1	$(1 ; 1)$
$h^{2}(\mathrm{~K} 3$ surface, $\mathbb{Q})$	0	$(1,20,1)$
$h^{3}($ big 3-fold, $\mathbb{Q})$	1	$(*, \bullet ; \bullet, *)$
Previous page	4^{+}	$(2,0,1,0,2)$
Ramanujan motive	11	$(1 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 1)$

2C. Notation. Let $c_{\epsilon}=\operatorname{det}\left(P_{\epsilon}\right) / \operatorname{det}(P)$. For n an integer and D a square-free integer, let

$$
\epsilon(n, D)=(-1)^{n-1} \operatorname{sign}(D) .
$$

2D. Deligne's conjecture (with twisting incorporated). Let M be a weight w motive. Let n and D be as above with ($n, \epsilon(n, D)$) critical for M. Let M_{D} be the twist of M by the quadratic character χ_{D}. Then

$$
\frac{L\left(M_{D}, n\right)}{c_{\epsilon(n, D)}\left(\sqrt{D}(2 \pi i)^{n}\right)^{d_{-\epsilon(n, D)}}} \in \mathbb{Q} .
$$

Note 1: One expects that always

$$
\operatorname{det}(P)=(2 \pi i)^{w d / 2} \sqrt{\delta}
$$

for some rational number δ. With this assumption, the conjecture for $L\left(M_{D}, n\right)$ is true if and only if it is true for $L\left(M_{D}, w+1-n\right)$.

Note 2: Deligne's conjecture applies to M itself at odd integers with red and even integers with orange.
3. Hypergeometric motives. Let $\alpha_{1}, \ldots, \alpha_{d}$ and $\beta_{1}, \ldots, \beta_{d}$ be in \mathbb{Q} / \mathbb{Z} with always $\alpha_{i} \neq \beta_{j}$. Let $t \in \mathbb{Q}-\{0,1\}$. Suppose the multisets

$$
\alpha=\left\{\alpha_{1}, \ldots, \alpha_{d}\right\} \text { and } \beta=\left\{\beta_{i}, \ldots, \beta_{d}\right\}
$$

are each stable under multiplication by $\widehat{\mathbb{Z}}^{\times}$. Then there is a corresponding degree d motive

$$
H\left(\alpha_{1}, \ldots, \alpha_{d} ; \beta_{1}, \ldots, \beta_{d} ; t\right) \in M(\mathbb{Q}, \mathbb{Q})
$$

The Hodge numbers depend on how the α_{i} and the β_{j} intertwine on circle \mathbb{R} / \mathbb{Z}. The two extremes are

$$
\begin{array}{ll}
\vec{h}=(d), & \text { (Complete intertwining) }, \\
\vec{h}=(1,1, \ldots, 1,1), & (\text { Complete separation }) .
\end{array}
$$

In general, each α_{i} and β_{j} has an associated Hodge filtration $p \in\{0, \ldots, w\}$. Also, in the case w even, there are formulas giving the decomposition $h^{w / 2, w / 2}=h_{+}^{w / 2, w / 2}+h_{-}^{w / 2, w / 2}$.

For this talk, we don't need the $H(\alpha, \beta, t)$ themselves. All we need is procedures to pass from (α, β, t) to L-values and structured period matrices.

4A. Hypergeometric L-functions. In

$$
L(H(\alpha, \beta, t), s)=\prod_{p} \frac{1}{f_{p}\left(p^{-s}\right)} \text { and } N=\prod_{p} p^{c_{p}},
$$

it is essential to distinguish three types of primes:

- Primes dividing the denominator of an α_{i} or β_{j} are called wild because they are typically wildly ramified.
- Non-wild primes dividing $\operatorname{Num}(t)$, $\operatorname{Num}(t-1)$, or Denom (t) are called tame because they are at most tamely ramified.
- The remaining primes are unramified.

There are general formulas for L-factors and conductors at tame and unramified primes.

Magma has implemented these formulas and makes educated guesses at L-factors and conductors at wild primes p. As time goes on, the contexts where we expect our guesses to be right increases!

4B. Example. $M=H\left(0,0,0,0 ; \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} ;-1\right)$ has Hodge vector (1,$1 ; 1,1$). Some more local invariants:

p	Type	c_{p}	$f_{p}(x)$				
2	Tame	1	$1+$	$x+$	$2 \cdot 3 x^{2}+$	$2^{4} x^{3}$	
3	Unram	0	$1+$	$5 x+$	$5 \cdot 3^{2} x^{2}+$	$5 \cdot 3^{3} x^{3}+$	$3^{6} x^{4}$
5	Wild	5	1				
7	Unram	0	$1+$	$25 x+$	$7 \cdot 50 x^{2}+$	$25 \cdot 7^{3} x^{3}+$	$7^{6} x^{4}$

Put, following the standard definitions,

$$
\Lambda(M, s)=6250^{s / 2} \Gamma_{\mathbb{C}}(s) \Gamma_{\mathbb{C}}(s-1) L(M, s)
$$

One should have the functional equation

$$
\wedge(M, 4-s)= \pm \wedge(M, s)
$$

Magma does everything:
H := HypergeometricData(

$$
[0,0,0,0],[1 / 5,2 / 5,3 / 5,4 / 5]) ;
$$

L := LSeries(H,-1);
WARNING: Guessing wild prime information
CheckFunctionalEquation(L);
0.00000000000000000000000000000

Evaluate(L, 2)
0.417801574320826941827293917960

5A. Hypergeometric period matrices. We will work with period matrices $P(t)$ of $H(\alpha, \beta, t)$ which deviate slightly from the previous conventions to exploit particular features of the hypergeometric situation.

Assume first that the β_{j} are distinct and $t \in$ $(-1,0)$. For $\{i, c\} \in\{1, \ldots, w\}$, define

$$
F_{i, c}(\alpha, \beta, t)=
$$

$$
(\epsilon t)^{1-\beta_{i}} \sum_{k=0}^{\infty} \frac{\left(\alpha_{1}-\beta_{i}+k\right)!\cdots\left(\alpha_{n}-\beta_{i}+k\right)!}{\left(\beta_{1}-\beta_{i}+k\right)!\cdots\left(\beta_{n}-\beta_{i}+k\right)!} t^{k}
$$

Here $\epsilon=(-1)^{d-1}$ and lifts from \mathbb{Q} / \mathbb{Z} to \mathbb{Q} are chosen so that $\beta_{c} \in[0,1)$ and all the α_{i} 's and β_{j} 's are in ($\beta_{c}-1, \beta_{c}$].

Then $P(t)$ has entries

$$
P_{r, c}(t)=\pi^{\frac{w-1}{2}} \sum_{i=1}^{n} \frac{e^{-2 \pi i r \beta_{i}}}{\prod_{\ell \neq i} \sin \left(\pi\left(\beta_{i}-\beta_{\ell}\right)\right)} F_{i, c}(t)
$$

For general t, one analytically continues, getting similar formulas. Mellin-Barnes integral representations make the $P_{r, c}(t)$ arise directly, without assuming that the β_{j} are distinct.

5B. Example. $M=H\left(0,0,0,0 ; \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} ;-1\right)$ has period matrix $P(-1) \approx$

In F^{0}	In F^{1}	In F^{2}	In F^{3}
$0.44+0.35 i$	$-0.61+1.3 i$	$-7.76-1.27 i$	$-15.72-171.89 i$
$-0.02-0.08 i$	$0.09-0.43 i$	$2.49-3.55 i$	$125.39-75.23 i$
$-0.02+0.08 i$	$0.09+0.43 i$	$2.49+3.55 i$	$125.39+75.23 i$
$0.44-0.35 i$	$-0.61-1.3 i$	$-7.76+1.27 i$	$-15.72+171.89 i$

5C. Structures on the period matrix. Complex conjugation on Betti cohomology corresponds to reversing the rows.

Each column belongs to F^{p} where p is the Hodge filtration associated to β_{c}.

The example illustrates how one picks out matrices P_{+}and P_{-}in general. Here $\operatorname{det}(P)=$ $16 \pi^{6} / 25$ and

$$
\begin{aligned}
& c_{+} \approx-1.5179706636828457100213, \\
& c_{-} \approx-0.8377233492103101185147 .
\end{aligned}
$$

There are many more structures in hypergeometric period matrices $P(t)$!
6. Numerical verifications. Type 1 example. Our example $M=H\left(0,0,0,0 ; \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5} ;-1\right)$ has Hodge vector (1,$1 ; 1,1$) and hence Type 1. The Deligne ratio is

While M has conductor $2 \cdot 5^{5}=6250$, the twist M_{-1} has the much larger conductor $2^{8} 5^{5}=$ 800000. Computations are still feasible on the L-value side and we use the other submatrix on the period side:

```
L(M-1,2)
    c+}(2\pii\mp@subsup{)}{}{4
            2.36582628105003864200091200382
            -2365.82628105003864200091200382
    \approx -0.001000000000000000000000000000
    = -1/1000.
```

Example with M of type 2^{+}. Let

$$
M=H\left(0,0,0,0,0 ; \frac{1}{8}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{7}{8},-1\right)
$$

with period matrix

$-0.1-1.0 i$	$1.9-0.2 i$	$1.6+6.4 i$	$-35.6+22.3 i$	$102.1-4716.6 i$
$0.0+0.0 i$	-0.3	$-1.7-1.6 i$	$-5.2-22.7 i$	$3284.9-3130.5 i$
0.0	1.8	19.7	4474.3	0
$0.0+0.0 i$	-0.3	$-1.7+1.6 i$	$-5.2+22.7 i$	$3284.9+3130.5 i$
$-0.1+1.0 i$	$1.9+0.2 i$	$1.6-6.4 i$	$-35.6-22.3 i$	$102.1+4716.6 i$

Here M has $\vec{h}=(1,1,1,1,1)$ and hence no critical points. So we work instead with M_{-1} where again the conductor increases:

$$
\begin{aligned}
\operatorname{Cond}(M) & =2^{17}, & \operatorname{Cond}\left(M_{-1}\right) & =2^{19} \\
f_{2}(M, x) & =1-4 x, & f_{2}\left(M_{-1}, x\right) & =1
\end{aligned}
$$

Deligne's conjecture is again numerically verified:

$$
\begin{aligned}
\frac{L\left(M_{-1}, 3\right)}{c_{-}\left(i(2 \pi i)^{3}\right)^{3}} & =\frac{1.8212393432853}{5092554.3083328} \\
& \approx \frac{3}{2^{23}} .
\end{aligned}
$$

Example with M of type 2^{-}. The family

$$
H\left(0,0,0,0,0 ; \frac{1}{8}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{7}{8} ; t\right)
$$

has $\vec{h}=(1,1,1,1,1)$ for $t \in(-\infty, 0) \cup(1, \infty)$, as on the previous page. But for $t \in(0,1)$, $\vec{h}=(1,1,1,1,1)$ and no twisting is required to have an opportunity to test Deligne's conjecture. We take $t=1 / 2$.

Since $t>0$, the structures on P are different and we need to extract P_{+}and P_{-}slightly differently:

$-0.1-31.2 i$	$0.0+13.2 i$	$2.2-12.9 i$	$22.1+52.6 i$	$-1714.3-4021.0 i$
$0.1+0.0 i$	$0.0+0.4 i$	$-2.2+1.4 i$	$-22.1-8.2 i$	$1714.3-3868.9 i$
$0.0+0.0 i$	$0.0-0.2 i$	$0.5-1.4 i$	$10.3-13.3 i$	$3832.6-1534.2 i$
$0.0+0.0 i$	$0.0+0.2 i$	$0.5+1.4 i$	$10.3+13.3 i$	$3832.6+1534.2 i$
$0.1+0.0 i$	$0.0-0.4 i$	$-2.2-1.4 i$	$-22.1+8.2 i$	$1714.3+3868.9 i$

The numerical verification is

$$
\frac{L(M, 2)}{c_{-}(2 \pi i)^{4}}=\frac{20.52960471086}{-525.557880598} \approx \frac{-5}{2^{7}} .
$$

Example with M of type 2. Hypergeometric motives at $t=1$ make sense after modification. The Hodge numbers are the same except $h^{w / 2, w / 2}$ drops by 1 if w is even and the two middle Hodge numbers drop by 1 if w is odd.

Let $M=H\left(0,0,0,0,0 ; \frac{1}{8}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{7}{8} ; 1\right)$. Then both M and M_{-1} have Hodge vector (1,$1 ; 0 ; 1,1$). Invariants at 2 are $\left(2^{11}, 1\right)$ and $\left(2^{7}, 1-16 x^{2}\right)$ respectively. A period matrix for M is obtained from the general formulas by crossing off a row and a column:

x	x	x	x		x
x	$-0.1+0.6 i$	$-3.0+1.5 i$	$-26.6-11.8 i$	$1887.1-4211.9 i$	
x	$0.0-0.2 i$	$0.7-1.8 i$	$12.9-16.0 i$	$4171.1-1662.5 i$	
x	$0.0+0.2 i$	$0.7+1.8 i$	$12.9+16.0 i$	$4171.1+1662.5 i$	
x	$-0.1-0.6 i$	$-3.0-1.5 i$	$-26.6+11.8 i$	$1887.1+4211.9 i$	

Deligne's conjecture applies to both real and imaginary twists of M. Two independent verifications:

$$
\begin{aligned}
& \frac{L(M, 2)}{c_{-}\left((2 \pi i)^{2}\right)^{2}} \approx \frac{2.71501421952698}{521.28273014918} \approx \frac{1}{2^{6} 3}, \\
& \frac{L\left(M_{-1}, 2\right)}{c_{+}\left(i(2 \pi i)^{2}\right)^{2}} \approx \frac{0.4799512414113}{1474.4102136156} \approx \frac{1}{2^{103}} .
\end{aligned}
$$

Example with M of type 3. Consider

$$
M_{D}=H\left(0,0,0,0,0,0 ; \frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4} ; 1\right)_{D}
$$

for $D \in\{1,2,-1,-2\}$. The Hodge vector is (1,$1 ; 0 ; 0 ; 1,1$). Conductors, wild L-factors, and signs of functional equations are

D	1	2	-1	-2
$\operatorname{cond}\left(M_{D}\right)$	2^{5}	2^{12}	2^{9}	2^{12}
$f_{2}\left(M_{D}, x\right)$	$1+4 x+32 x^{2}$	1	1	1
$\operatorname{sign}\left(M_{D}\right)$	1	1	-1	-1

Deligne's conjecture can be investigated without periods as certain ratios are predicted to be rational. Some numerical verifications:

$$
\begin{aligned}
& \frac{L\left(M_{1}, 3\right)}{L\left(M_{8}, 3\right)} \approx \frac{0.5021130843546070283}{2.0084523374184281133} \approx \frac{1}{4}, \\
& \frac{L\left(M_{1}, 4\right)}{L\left(M_{8}, 4\right)} \approx \frac{0.7430519972631319079}{1.0216964962368063734} \approx \frac{8}{11}, \\
& \frac{L\left(M_{-1}, 4\right)}{L\left(M_{-8}, 4\right)} \approx \frac{0.8259429178651303171}{1.0324286473314128965} \approx \frac{4}{5} .
\end{aligned}
$$

Some Principal References:

Deligne's Conjecture: Pierre Deligne. Valeurs de fonctions L et périodes d'intégrales. 1979. (Deligne's c^{ϵ} is our $c_{-\epsilon}$.)

Hodge numbers for hypergeometric motives: Alessio Corti and Vasily Golyshev. Hypergeometric equations and weighted projective spaces. 2011.

Good Euler factors for Hypergeometric Lfunctions: Nicholas Katz. Exponential Sums and Differential Equations. 1990. (Fast p-adic implementation due to Henri Cohen)

Bad Euler factors and conductors of Hypergeometric L-functions: Ongoing Work with Fernando Rodriguez Villegas and Mark Watkins.

Analytic Computations with L-functions: Tim Dokchitser. Computing special values of motivic L-functions. 2004. (Fast implementation in Magma)

Hypergeometric period matrices: Frits Beukers. Notes on differential equations and hypergeometric functions. 2009.

Vasily Golyshev and Anton Mellit. Gamma structures and Gauss's contiguity. 2014.

Hossein Movasati. Modular-type functions attached to mirror quintic Calabi-Yau varieties. 2012.

