Numerical verification of Deligne's conjecture relating L-values and periods for hypergeometric motives

David P. Roberts University of Minnesota, Morris

1. The familiar case of elliptic curves: $L(X,1)/\Omega_{X,+} \in \mathbb{Q}$

2. Deligne's conjecture: $L(M,n)/\Omega_{M,n} \in \mathbb{Q}$ for *n* critical

3. Hypergeometric motives: $H(\alpha, \beta, t)$

4. Hypergeometric L-values: calculation of $L(H(\alpha, \beta, t), n)$

5. Hypergeometric periods: calculation of $\Omega_{H(\alpha,\beta,t),n}$

6. Numerical verifications: examples going beyond $(h^{0,1}, h^{1,0}) = (1, 1)$ from elliptic curves to Hodge vectors $(h^{0,w}, \ldots, h^{w,0}) = (1, 1, 1, 1)$, (1, 1, 1, 1), (1, 1, 0, 1, 1) and (1, 1, 0, 0, 1, 1).

1. Elliptic curves. Let X be an elliptic curve defined by $y^2 = x(x-1)(x-t)$ with $t \in \mathbb{Q}_{>1}$. Associated are two rational vector spaces, each with an extra structure

$$H_1(X(\mathbb{C}),\mathbb{Q}) = H_1(X(\mathbb{C}),\mathbb{Q})^+ \oplus H_1(X(\mathbb{C}),\mathbb{Q})^-, H_{DR}^1(X) \supset F^1 H_{DR}^1(X).$$

Here complex conjugation acts on $H_1(X(\mathbb{C}), \mathbb{Q})^{\epsilon}$ with sign ϵ and $F^1H_{DR}^1(X)$ is the subspace represented by everywhere regular differentials.

Choose, as below, the standard bases

 $\sigma_1 \in H_1(X(\mathbb{C}), \mathbb{Q})^+$ and $\sigma_2 \in H_1(X(\mathbb{C}), \mathbb{Q})^-$. Let $\omega_1 = \frac{x \, dx}{2y}$ and $\omega_2 = \frac{dx}{2y}$ so that $\{\omega_1, \omega_2\}$ is a basis for $H_{DR}^1(X)$ with ω_2 lying in $F^1 H_{DR}^1(X)$. The corresponding period matrix $\left(\int_{\sigma_i} \omega_j\right)$ is

$$P = \left(\begin{array}{c} \int_{0}^{1} \frac{x \, dx}{\sqrt{x(x-1)(x-t)}} & \int_{0}^{1} \frac{dx}{\sqrt{x(x-1)(x-t)}} \\ \int_{1}^{t} \frac{x \, dx}{\sqrt{x(x-1)(x-t)}} & \int_{1}^{t} \frac{dx}{\sqrt{x(x-1)(x-t)}} \end{array} \right)$$

The Legendre relation says $det(P) = -2\pi i$.

The colored entries $\Omega_{X,+}$ and $\Omega_{X,-}$ are the real and imaginary periods respectively. A proved part of the Birch and Swinnerton-Dyer conjecture is that

 $rac{L(X,1)}{\Omega_{X,+}}$ is rational.

This statement is also a special case of Deligne's conjecture.

Suppose
$$L(X,s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$
 and X has conductor.

tor N. Then, as a simple case of general analytic continuation techniques,

$$L(X, 1) = 2 \sum_{n=1}^{\infty} \frac{a_n}{n} e^{-2\pi/\sqrt{N}}.$$

For t = 3, the conductor is N = 96 and the ratio is

$$\frac{L(X,1)}{\Omega_{X,+}} \approx \frac{1.00107738}{2.00215476} = 0.50000000 = \frac{1}{2}.$$

For the twist $X_D : Dy^2 = x(x-1)(x-t)$, the ratio $L(X_D, 1)/(\sqrt{D}\Omega_{X, \text{sign}(D)})$ is rational. So, in a sense, $\Omega_{X,+}$ and $\Omega_{X,-}$ are equally involved.

2A. Period matrices. A motive $M \subseteq H^w(X, \mathbb{Q})$ has two associated rational vector spaces,

 $\check{M}_B \subseteq H_w(X(\mathbb{C}), \mathbb{Q})$ and $M_{DR} \subseteq H^w_{DR}(X)$. These spaces have extra structures, as before:

$$\begin{split} \check{M}_B &= \check{M}_B^+ \oplus \check{M}_B^-, \\ M_{DR} &= F^0 \stackrel{h^{0,w}}{\supseteq} F^1 \stackrel{h^{1,w-1}}{\supseteq} \cdots \stackrel{h^{w-1,1}}{\supseteq} F^w \stackrel{h^{w,0}}{\supseteq} \{0\}. \\ \text{Integration of forms over cycles again gives a non-degenerate pairing:} \end{split}$$

$$\check{M}_B \times M_{DR} \to \mathbb{C} : (\sigma, \omega) \mapsto \int_{\sigma} \omega.$$

Choosing bases $\{\sigma_i\}$ and $\{\omega_j\}$ respecting the structures, one gets a block period matrix P, e.g.

		ω_1	ω_2	ω_3	ω_3	ω_4	ω_5
	σ_1	$P_{1,1}$	$P_{1,2}$	$P_{1,3}$	$P_{1,3}$	$P_{1,4}$	$P_{1,5}$
In \check{M}^+ :	σ_2	$P_{2,1}$	$P_{2,2}$	$P_{2,3}$	$P_{2,3}$	$P_{2,4}$	$P_{2,5}$
	σ_3	$P_{3,1}$	$P_{3,2}$	$P_{3,3}$	$P_{3,3}$	$P_{3,4}$	$P_{3,5}$
In \check{M}^-	σ_4	$P_{4,1}$	$P_{4,2}$	P4,3	$P_{4,3}$	$P_{4,4}$	$P_{4,5}$
	σ_5	$P_{5,1}$	$P_{5,2}$	$P_{5,3}$	$P_{5,3}$	$P_{5,4}$	$P_{5,5}$

A pair (p, ϵ) is called **critical** for M if $\dim(F^p) = \dim(\check{M}^{\epsilon})$. In our example, the critical pairs are (1, +), (2, +), (3, -), and (4, -). Ongoing notations: P, P^+, P^- of size $d = d_+ + d_-$.

2B. Critical pairs in terms of Hodge vectors. Assuming at least two positive Hodge numbers, there are four situations which can give rise to critical pairs (n, ϵ) :

Types with	Hodge vector	
example	$(h^{0,w},\ldots,h^{w,0})$	
$1, 3, \underline{5}, 7, \ldots$	$(\ldots,*,\bullet;0;0;0;\bullet,*,\ldots)$	
$0, 2, \underline{4}, 6, \ldots$	$(\ldots,*,\bullet;0;0;0;\bullet,*,\ldots)$	
0 ⁺ , 2 ⁺ , <u>4</u> ⁺ ,	$(\ldots,*,\bullet,0,\bullet,0,\bullet,*,\ldots)$	$h_{\overline{w}\ w}^{\underline{w},\underline{w}} = 0$
0-, 2-, <u>4</u> -,	$(\ldots,*,\bullet,0,\bullet,0,\bullet,*,\ldots)$	$h_{+}^{\frac{\omega}{2},\frac{\omega}{2}} = 0$

Here • indicates a positive Hodge number and * indicates an arbitrary Hodge number. The punctuation marks are indexed by integers n. The n^{th} mark has red if (n, +) is critical and orange if (n, -) is critical. Familiar examples:

Example	Туре	$e \qquad (h^{0,w},\ldots,h^{w,0})$
$h^1(\text{elliptic curve}, \mathbb{Q})$	1	(1;1)
$h^2(K3 surface, \mathbb{Q})$	0	(1, 20, 1)
$h^{3}(big \ 3 ext{-fold}, \mathbb{Q})$	1	(*, ullet; ullet, *)
Previous page	4+	(2,0,1,0,2)
Ramanujan motive	11	(1;0;0;0;0;0;0;0;0;0;0;0;1)

2C. Notation. Let $c_{\epsilon} = \det(P_{\epsilon})/\det(P)$. For n an integer and D a square-free integer, let

$$\epsilon(n,D) = (-1)^{n-1} \operatorname{sign}(D).$$

2D. Deligne's conjecture (with twisting incorporated). Let M be a weight w motive. Let n and D be as above with $(n, \epsilon(n, D))$ critical for M. Let M_D be the twist of M by the quadratic character χ_D . Then

$$rac{L(M_D,n)}{c_{\epsilon(n,D)}(\sqrt{D}(2\pi i)^n)^{d_{-\epsilon(n,D)}}}\in\mathbb{Q}.$$

Note 1: One expects that always

$$\det(P) = (2\pi i)^{wd/2} \sqrt{\delta}$$

for some rational number δ . With this assumption, the conjecture for $L(M_D, n)$ is true if and only if it is true for $L(M_D, w + 1 - n)$.

Note 2: Deligne's conjecture applies to M itself at odd integers with red and even integers with orange. **3. Hypergeometric motives.** Let $\alpha_1, \ldots, \alpha_d$ and β_1, \ldots, β_d be in \mathbb{Q}/\mathbb{Z} with always $\alpha_i \neq \beta_j$. Let $t \in \mathbb{Q} - \{0, 1\}$. Suppose the multisets

 $\alpha = \{\alpha_1, \ldots, \alpha_d\}$ and $\beta = \{\beta_i, \ldots, \beta_d\}$

are each stable under multiplication by $\widehat{\mathbb{Z}}^{\times}.$ Then there is a corresponding degree d motive

 $H(\alpha_1,\ldots,\alpha_d;\beta_1,\ldots,\beta_d;t) \in M(\mathbb{Q},\mathbb{Q}).$

The Hodge numbers depend on how the α_i and the β_j intertwine on circle \mathbb{R}/\mathbb{Z} . The two extremes are

 $\vec{h} = (d),$ (Complete intertwining), $\vec{h} = (1, 1, ..., 1, 1),$ (Complete separation). In general, each α_i and β_j has an associated Hodge filtration $p \in \{0, ..., w\}$. Also, in the case w even, there are formulas giving the decomposition $h^{w/2, w/2} = h_+^{w/2, w/2} + h_-^{w/2, w/2}$.

For this talk, we don't need the $H(\alpha, \beta, t)$ themselves. All we need is procedures to pass from (α, β, t) to *L*-values and structured period matrices.

4A. Hypergeometric L-functions. In

$$L(H(\alpha,\beta,t),s) = \prod_{p} \frac{1}{f_p(p^{-s})} \text{ and } N = \prod_{p} p^{c_p},$$

it is essential to distinguish three types of primes:

- Primes dividing the denominator of an α_i or β_j are called **wild** because they are typically wildly ramified.
- Non-wild primes dividing Num(t), Num(t 1), or Denom(t) are called tame because they are at most tamely ramified.
- The remaining primes are **unramified**.

There are general formulas for L-factors and conductors at tame and unramified primes.

Magma has implemented these formulas and makes educated guesses at L-factors and conductors at wild primes p. As time goes on, the contexts where we expect our guesses to be right increases!

4B. Example. $M = H(0, 0, 0, 0; \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}; -1)$ has Hodge vector (1, 1; 1, 1). Some more local invariants:

p	Туре	c_p			$f_p(x)$		
2	Tame	1	1+	<i>x</i> +	$2 \cdot 3x^2 +$	2^4x^3	
3	Unram	0	1+	5x+	$5 \cdot 3^2 x^2 +$	$5 \cdot 3^3 x^3 +$	$3^{6}x^{4}$
5	Wild	5	1				
7	Unram	0	1+	25 <i>x</i> +	$7 \cdot 50x^2 +$	$25 \cdot 7^3 x^3 +$	$7^{6}x^{4}$

Put, following the standard definitions,

$$\Lambda(M,s) = 6250^{s/2} \Gamma_{\mathbb{C}}(s) \Gamma_{\mathbb{C}}(s-1) L(M,s).$$

One should have the functional equation

$$\Lambda(M, 4-s) = \pm \Lambda(M, s)$$

Magma does everything:

5A. Hypergeometric period matrices. We will work with period matrices P(t) of $H(\alpha, \beta, t)$ which deviate slightly from the previous conventions to exploit particular features of the hypergeometric situation.

Assume first that the β_j are distinct and $t \in (-1,0)$. For $\{i,c\} \in \{1,\ldots,w\}$, define $F_{i,c}(\alpha,\beta,t) = (\epsilon t)^{1-\beta_i} \sum_{k=0}^{\infty} \frac{(\alpha_1 - \beta_i + k)! \cdots (\alpha_n - \beta_i + k)!}{(\beta_1 - \beta_i + k)! \cdots (\beta_n - \beta_i + k)!} t^k.$

Here $\epsilon = (-1)^{d-1}$ and lifts from \mathbb{Q}/\mathbb{Z} to \mathbb{Q} are chosen so that $\beta_c \in [0, 1)$ and all the α_i 's and β_j 's are in $(\beta_c - 1, \beta_c]$.

Then P(t) has entries

$$P_{r,c}(t) = \pi^{\frac{w-1}{2}} \sum_{i=1}^{n} \frac{e^{-2\pi i r \beta_i}}{\prod_{\ell \neq i} \sin(\pi(\beta_i - \beta_\ell))} F_{i,c}(t).$$

For general t, one analytically continues, getting similar formulas. Mellin-Barnes integral representations make the $P_{r,c}(t)$ arise directly, without assuming that the β_j are distinct.

5B. Example. $M = H(0, 0, 0, 0; \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}; -1)$ has period matrix $P(-1) \approx$

In F^0	In F^1	In F^2	In F^3
0.44 + 0.35i	-0.61 + 1.3i	-7.76 - 1.27 <i>i</i>	-15.72 - 171.89 <i>i</i>
-0.02 - 0.08i	0.09 – 0.43 <i>i</i>	<mark>2.49</mark> – 3.55 <i>i</i>	<mark>125.39</mark> – 75.23 <i>i</i>
-0.02 + 0.08i	0.09 + 0.43i	2.49 +3.55 <i>i</i>	125.39 + 75.23 <i>i</i>
0.44 - 0.35i	-0.61 - 1.3i	-7.76+1.27 <i>i</i>	-15.72 + 171.89i

5C. Structures on the period matrix. Complex conjugation on Betti cohomology corresponds to reversing the rows.

Each column belongs to F^p where p is the Hodge filtration associated to β_c .

The example illustrates how one picks out matrices P_+ and P_- in general. Here det $(P) = 16\pi^6/25$ and

$c_+ \approx -1.5179706636828457100213,$ $c_- \approx -0.8377233492103101185147.$

There are many more structures in hypergeometric period matrices P(t)!

6. Numerical verifications. Type 1 example. Our example $M = H(0, 0, 0, 0; \frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}; -1)$ has Hodge vector (1, 1; 1, 1) and hence Type 1. The Deligne ratio is

While M has conductor $2 \cdot 5^5 = 6250$, the twist M_{-1} has the much larger conductor $2^85^5 = 800000$. Computations are still feasible on the L-value side and we use the other submatrix on the period side:

Example with M of type 2⁺. Let $M = H(0, 0, 0, 0, 0; \frac{1}{8}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{7}{8}, -1)$

with period matrix

-0.1 - 1.0i	1.9 - 0.2i	1.6 + 6.4i	-35.6 + 22.3i	102.1 - 4716.6 <i>i</i>
0.0 + 0.0i	-0.3	-1.7 - 1.6i	−5.2 − 22.7 <i>i</i>	3284.9 - 3130.5 <i>i</i>
0.0	0.2	1.8	19.7	4474.3
0.0 + 0.0i	-0.3	-1.7 + 1.6i	-5.2+22.7i	3284.9 + 3130.5<i>i</i>
-0.1+1.0i	1.9 + 0.2i	1.6 - 6.4i	-35.6-22.3 <i>i</i>	102.1 + 4716.6i

Here M has $\vec{h} = (1, 1, 1, 1, 1)$ and hence no critical points. So we work instead with M_{-1} where again the conductor increases:

Cond(M) = 2^{17} , Cond(M₋₁) = 2^{19} , $f_2(M,x) = 1-4x$, $f_2(M_{-1},x) = 1$.

Deligne's conjecture is again numerically verified:

$$\frac{L(M_{-1},3)}{c_{-}(i(2\pi i)^3)^3} = \frac{1.8212393432853}{5092554.3083328} \approx \frac{3}{2^{23}}.$$

Example with M of type 2^- . The family 1 3 1 5 7

$$H(0, 0, 0, 0, 0; \frac{1}{8}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{7}{8}; t)$$

has $\vec{h} = (1, 1, 1, 1, 1)$ for $t \in (-\infty, 0) \cup (1, \infty)$, as on the previous page. But for $t \in (0, 1)$, $\vec{h} = (1, 1, 1, 1, 1)$ and no twisting is required to have an opportunity to test Deligne's conjecture. We take t = 1/2.

Since t > 0, the structures on P are different and we need to extract P_+ and P_- slightly differently:

-0.1 - 31.2i	0.0 + 13.2i	2.2 - 12.9i	22.1 + 52.6i	-1714.3 - 4021.0i
0.1 + 0.0i	0.0 + 0.4i	-2.2+1.4i	-22.1 - 8.2i	1714.3 <i>-</i> 3868.9 <i>i</i>
0.0 + 0.0i	0.0 - 0.2i	0.5 - 1.4i	10.3 <i>-</i> 13.3 <i>i</i>	3832.6 <i>-</i> 1534.2 <i>i</i>
0.0 + 0.0i	0.0 + 0.2i	0.5 + 1.4i	10.3 + 13.3i	3832.6 + 1534.2i
0.1 + 0.0i	0.0 - 0.4i	-2.2 - 1.4i	-22.1 + 8.2i	1714.3 + 3868.9i

The numerical verification is

$$\frac{L(M,2)}{c_{-}(2\pi i)^4} = \frac{20.52960471086}{-525.557880598} \approx \frac{-5}{2^7}.$$

Example with M of type 2. Hypergeometric motives at t = 1 make sense after modification. The Hodge numbers are the same except $h^{w/2,w/2}$ drops by 1 if w is even and the two middle Hodge numbers drop by 1 if w is odd.

Let $M = H(0, 0, 0, 0, 0; \frac{1}{8}, \frac{3}{8}, \frac{1}{2}, \frac{5}{8}, \frac{7}{8}; 1)$. Then both M and M_{-1} have Hodge vector (1, 1; 0; 1, 1). Invariants at 2 are $(2^{11}, 1)$ and $(2^7, 1 - 16x^2)$ respectively. A period matrix for M is obtained from the general formulas by crossing off a row and a column:

x	x	x	x	x
x	-0.1 + 0.6i	-3.0 + 1.5i	-26.6 - 11.8i	1887.1 - 4211.9i
x	0.0 - 0.2i	0.7 - 1.8i	12.9 - 16.0 <i>i</i>	4171.1 - 1662.5i
x	0.0 + 0.2i	0.7 + 1.8i	12.9 + 16.0i	4171.1 + 1662.5i
x	-0.1 - 0.6i	-3.0 - 1.5i	-26.6 + 11.8i	1887.1 + 4211.9i

Deligne's conjecture applies to both real and imaginary twists of M. Two independent verifications:

Example with M of type 3. Consider

$$M_D = H(0, 0, 0, 0, 0, 0; \frac{1}{4}, \frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}; 1)_D$$

for $D \in \{1, 2, -1, -2\}$. The Hodge vector is (1, 1; 0; 0; 1, 1). Conductors, wild *L*-factors, and signs of functional equations are

D	1	2	-1	-2
$cond(M_D)$	2 ⁵	2^{12}	2 ⁹	2^{12}
$f_2(M_D, x)$	$1 + 4x + 32x^2$	1	1	1
$sign(M_D)$	1	1	-1	-1

Deligne's conjecture can be investigated without periods as certain ratios are predicted to be rational. Some numerical verifications:

$rac{L(M_1, 3)}{L(M_8, 3)}$	$\approx \frac{0.5021130843546070283}{2.0084523374184281133} \approx$	$\div \frac{1}{4},$
$\frac{L(M_1, 4)}{L(M_8, 4)}$	$\approx \frac{0.7430519972631319079}{1.0216964962368063734} \approx$	$\frac{8}{11},$
$\frac{L(M_{-1}, 4)}{L(M_{-8}, 4)}$	$\frac{0}{0} \approx \frac{0.8259429178651303171}{1.0324286473314128965} \approx$	÷ 4/5.

Some Principal References:

Deligne's Conjecture: Pierre Deligne. Valeurs de fonctions L et périodes d'intégrales. 1979. (Deligne's c^{ϵ} is our $c_{-\epsilon}$.)

Hodge numbers for hypergeometric motives: Alessio Corti and Vasily Golyshev. Hypergeometric equations and weighted projective spaces. 2011.

Good Euler factors for Hypergeometric Lfunctions: Nicholas Katz. Exponential Sums and Differential Equations. 1990. (Fast p-adic implementation due to Henri Cohen)

Bad Euler factors and conductors of Hypergeometric L-functions: Ongoing Work with Fernando Rodriguez Villegas and Mark Watkins. Analytic Computations with L-functions: Tim Dokchitser. Computing special values of motivic L-functions. 2004. (Fast implementation in Magma)

Hypergeometric period matrices: Frits Beukers. Notes on differential equations and hyper-geometric functions. 2009.

Vasily Golyshev and Anton Mellit. Gamma structures and Gauss's contiguity. 2014.

Hossein Movasati. Modular-type functions attached to mirror quintic Calabi-Yau varieties. 2012.