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1. The familiar case of elliptic curves:
L(X,1)/Q2x 4+ €Q

2. Deligne’s conjecture: L(M,n)/2y, € Q
for n critical

3. Hypergeometric motives: H(«, 5,t)

4. Hypergeometric L-values: calculation of
L(H(a, B,t),n)

5. Hypergeometric periods: calculation of
QH(O&,B,t),n

6. Numerical verifications: examples going
beyond (k91 h1:0) = (1,1) from elliptic curves
to Hodge vectors (RO, ... AwO) = (1,1,1,1),
(1,1,1,1,1), (1,1,0,1,1) and (1,1,0,0,1,1).



1. Elliptic curves. Let X be an elliptic curve
defined by y2 = z(x — 1)(z — t) with t € Q- 1.
Associated are two rational vector spaces, each
with an extra structure

H1(X(C),Q) = H1(X(C),Q)T@H(X(C),Q),
HER(X) D FHEL(X).

Here complex conjugation acts on H1(X (C), Q)¢
with sign e and F1H} ,(X) is the subspace rep-
resented by everywhere regular differentials.

Choose, as below, the standard bases

o1 € H1(X(C),Q)T and o5 € H1(X(C),Q)".
Let wy = ”72‘2’”’ and wo dg so that {wi,ws} is a
basis for H},,(X) with wy lying in F1H} A(X).

The corresponding period matrix </ wj> IS
0;

/ x dx 1 dx
V@18 Jo Vae—1)(@—1)

/ T dx
Va(z—1)(z—t)
The Legendre relation says det(P) = —2mi.




The colored entries €2 | and are the real
and imaginary periods respectively. A proved
part of the Birch and Swinnerton-Dyer conjec-
ture is that

L(X,1) . .
IS rational.
QX)_‘_

This statement is also a special case of Deligne’s
conjecture.

©@,

Suppose L(X,s) = Z a—z and X has conduc-
n=1 n

tor N. Then, as a simple case of general ana-

lytic continuation techniques,

oo
L(X,1)=2Y e 27/VN,
n=1
For t = 3, the conductor is N = 96 and the
ratio is
L(X,1) . 1.00107738
Qx4+  2.00215476

For the twist Xp : Dy?2 = a2(z — 1)(z — t), the
ratio L(Xp, 1)/(V'DS2x sign(p)) is rational. So,
iNn a sense, QX;,_ and are equally involved.

1
= 0.50000000 = 5



2A. Period matrices. A motive M C H¥(X,Q)
has two associated rational vector spaces,

Mp C Hy(X(C),Q) and Mpgr C HEp(X).
T hese spaces have extra structures, as before:
Mg = M & My,

hO,w hl,w—l hw—l,l h’w,O
Mpgr = FO D F1 > ... D> F¥ O {0L

Integration of forms over cycles again gives a
non-degenerate pairing:

MBXMDR%(C:(O',M)I—)/Q}.
o

Choosing bases {o0;} and {w,;} respecting the
structures, one gets a block period matrix P,

£ Fl 2 Fs ) 2
e. g ) w1 w2 w3 w4 ws
_ o1 | P1p Pip P 3 Pia Pis
In MT: o3| Pa1 Poo P> 3 Py Pos
o3 | P31 Ps3p P33 P34 P3s
>~ 04 | Pa1 Fa> Fa3
In M os | Ps1 Pspo Ps 3

dim(M¢). In our example, the critical pairs
are (1,4+), (2,4), , and . Ongoing
notations: P, PT,I” of sized=d, +



2B. Ciritical pairs in terms of Hodge vec-
tors. Assuming at least two positive Hodge
numbers, there are four situations which can
give rise to critical pairs (n,e¢):

Types with Hodge vector

example (ROw .. . pw0)

1,3,5,7,... (...,%,0.0.0.0,0;0,%,...)
0,2,4,6,... (...,%,0.0.0,0;e, %, ...)
0t2t4t ... (...,,0000e,x%,...) h22 =0
052545... (...,*,0000,0,%,...) h2'2 =0

Here e indicates a positive Hodge number and
x Indicates an arbitrary Hodge number. The
punctuation marks are indexed by integers n.
The nt" mark has red if (n,+) is critical and
Familiar examples:

Example Type (ROw . . pwO)
hi(elliptic curve,Q) 1 (1,1)
h?2(K3 surface,Q) O (1,20,1)
h3(big 3-fold, Q) 1 (x, 00, %)
Previous page 4+ (2,0,1.0.2)

Ramanujan motive 11 (1,0,0,0,0,0,0,0,0.0,0,1)



2C. Notation. Let ¢ = det(FP:)/det(P). For
n an integer and D a square-free integer, let

e(n, D) = (—=1)""Lsign(D).

2D. Deligne’s conjecture (with twisting in-
corporated). Let M be a weight w motive.
Let n and D be as above with (n,e(n, D)) crit-
ical for M. Let Mp be the twist of M by the
quadratic character xp. Then

L(MD7 n) c
ey (VD 2y )

Q.

Note 1: One expects that always

det(P) = (27i)¥¥/2/s

for some rational number §. With this assump-
tion, the conjecture for L(Mp,n) is true if and
only if it is true for L(Mp,w + 1 —n).

Note 2: Deligne’s conjecture applies to M itself
at odd integers with red and



3. Hypergeometric motives. Let ay,...,q4
and B1,...,84 be in Q/Z with always «; #= (.
Let t € Q —{0,1}. Suppose the multisets

a={ay,...,aq} and B ={B;,..., B4}
are each stable under multiplication by ZX*.

Then there is a corresponding degree d mo-
tive

H(ay,...,aq 81,...,84t) € M(Q,Q).
The Hodge numbers depend on how the o

and the 3; intertwine on circle R/Z. The two
extremes are

—

h (d), (Complete intertwining),

h (1,1,...,1,1), (Complete separation).
In general, each «; and g; has an associated
Hodge filtration p € {0,...,w}. Also, in the

case w even, there are formulas giving the de-
composition hw/2w/2 — h"_‘lj_/z’w/2 4 pur2w/2

For this talk, we don't need the H(«, 3,t) them-
selves. All we need is procedures to pass from
(a, B,t) to L-values and structured period ma-
trices.



4A. Hypergeometric L-functions. In

1
L(H(a,B,t),8) =[[——— and N = [[p,
(H(a,5:0,9) = [T oy an 17

it is essential to distinguish three types of
primes:

e Primes dividing the denominator of an «; or 3; are
called wild because they are typically wildly rami-
fied.

e Non-wild primes dividing Num(¢), Num(¢t — 1), or
Denom(t) are called tame because they are at most
tamely ramified.

e T he remaining primes are unramified.

There are general formulas for L-factors and
conductors at tame and unramified primes.

Magma has implemented these formulas and
makes educated guesses at L-factors and con-
ductors at wild primes p. As time goes on, the
contexts where we expect our guesses to be
right increases!



4AB. Example. M = H(0,0,0,0;%,%,2,8;—1)
has Hodge vector (1,1;1,1). Some more local

invariants:
p Type c fo(x)

P
2 Tame 1 1+ x4+ 2-3zx°4+ 243

3 Unram 0 14 5z4+ 5-32224 5.33334 36,4
5 Wild &5 1

7 Unram 0 14 25z4 7-50z24 25-73z34 754

Put, following the standard definitions,
A(M,s) = 6250%2r¢c(s)Me(s — 1)L(M, s).
One should have the functional equation
ANM,4 —s) = N\(M,s)

Magma does everything:

H := HypergeometricData(
[0,0,0,0],[1/5,2/5,3/5,4/5]1);
L := LSeries(H,-1);
WARNING: Guessing wild prime information
CheckFunctionalEquation(L) ;
0.000000000000000000000000000000
Evaluate(L,2)
0.417801574320826941827293917960



5A. Hypergeometric period matrices. We
will work with period matrices P(t) of H(«, 8,t)
which deviate slightly from the previous con-
ventions to exploit particular features of the
hypergeometric situation.

Assume first that the §; are distinct and t €
(—1,0). For {i,c} € {1,...,w}, define
Fi,c(aaﬁat) —
N1-6; — (041_5i+k)!"'(an—5i+k)!tk.
(6) kgo(ﬁl_ﬁz_l'ky(ﬁn_ﬁz_l'k)'

Here ¢ = (—1)4~1 and lifts from Q/Z to Q are
chosen so that 5. € [0,1) and all the «;'s and

Bj's are in (Bc— 1, Bc].

Then P(t) has entries

— 2
Prielt) " Z; [Tgz£s SiN((B; — Be))
For general t, one analytically continues, get-
ting similar formulas. Mellin-Barnes integral
representations make the Pr,c(t) arise directly,
without assuming that the §; are distinct.

Fi,c(t)°



5B. Example. M = H(0,0,0,0;%,%,2,8;—1)
has period matrix P(—1) =
In FO In F! In F? In F3

0.44 +0.35: —-061+13: —-7.76—-127; —1572—-171.89:
—-0.02-0.08: 0.09 —0.43: 2.49 — 3.55¢ 125.39 — 75.23s
—0.02+0.087 0.09 +0.43: 2.49 125.39
0.44 -035: —-061-13: —-7.76 —15.72

5C. Structures on the period matrix. Com-
plex conjugation on Betti cohomology corre-
sponds to reversing the rows.

Each column belongs to FP where p is the
Hodge filtration associated to ge..

T he example illustrates how one picks out ma-
trices P, and in general. Here det(P) =
167°/25 and

cy ~ —1.5179706636828457100213,

There are many more structures in hypergeo-
metric period matrices P(t)!



6. Numerical verifications. Type 1 example.
Our example M = H(0,0,0,0; %, %, %, %; —1) has
Hodge vector (1,1;1,1) and hence Type 1. The

Deligne ratio is
L(M,2)

0.41780157432082694182729391796

Q

0.00032000000000000000000000000
1/5°.

While M has conductor 2-5° = 6250, the twist
M_1 has the much larger conductor 285° =
800000. Computations are still feasible on the
L-value side and we use the other submatrix
on the period side:

L(M_3,2)
C4 (27Ti)4
2.36582628105003864200091200332

—2365.82628105003864200091200382
—0.00100000000000000000000000000

—1/1000.

Y
Y

Q



Example with M of type 21. Let

1 3157
M = H(0,0,0,0,0;—,—,—,—,— —1)
8'8’2’8’8’
with period matrix
—0.1—-10z 19 -02: 16 +6.4: —356+223: 102.1 —4716.62
0.0+ 0.0z —-0.3 —1.7—-1.61 —5.2—-22.71 3284.9 —3130.5¢
0.0 0.2 1.8 19.7 4474 .3
0.0+ 0.0z —-0.3 —-1.74+1.6: —5.2 3284.9
—-0.14+10: 19+4+02: 16 —6.47 —35.6 102.1

Here M has h = (1,1,1.1,1) and hence no criti-
cal points. So we work instead with M_41 where
again the conductor increases:

219
1.

217, COﬂd(M_l)
1 — 4z, fo(M_1,x)

Cond(M)
fQ(Ma :C)

Deligne’s conjecture is again numerically veri-
fied:
L(M_q,3) 1.8212393432853

Q
\

223"



Example with M of type 2—. The family

has h = (1,1,1.1,1) for t € (—00,0) U (1,00),
as on the previous page. But for ¢t € (0,1),
h=(1,1.1,1,1) and no twisting is required to
have an opportunity to test Deligne’'s conjec-
ture. We take t =1/2.

Since t > 0, the structures on P are different
and we need to extract P and slightly dif-
ferently:

-0.1-3 22.1 —1714.3

1.2 0.0 3. 2
0.1 +0.0¢ 0.0+4+0.4: —2.2 —22.1 1714.3
0.04+0.0¢ 0.0—-0.2¢ 0.5 10.3 3832.6
0.0+0.0¢ 0.0+4+0.2: 05414 103 4+ 13.37 3832.6 + 1534.2;
0.14+0.0¢ 0.0-0.4: —22—-1.4¢ —22.1+ 8.2¢; 1714.3 4+ 3868.9:

The numerical verification is

L(M,2) _ 20.52960471086 _ —5
— Y 27 .




Example with M of type 2. Hypergeometric
motives at ¢ = 1 make sense after modifica-
tion. The Hodge numbers are the same except
hw/2:w/2 qrops by 1 if w is even and the two
middle Hodge numbers drop by 1 if w is odd.

Let M = H(0,0,0,0,0;%,3,5,3,4:1). Then
both M and M_1 have Hodge vector (1,1,0;1,1).
Invariants at 2 are (211,1) and (27,1 — 1622)
respectively. A period matrix for M is obtained
from the general formulas by crossing off a row
and a column:

x x x x x
r —0.1+4+0.6: -3.0+1.5t —26.6—-11.8; 1887.1 —4211.9;
x 00-02¢ 07 —-18: 129 —16.0¢ 4171.1 —1662.5¢
x 0.0+4+0.2¢: 0.7 +1.8¢ 12.9 4171.1
r —0.1-0.6: —-3.0—-15: —-26.6 1887.1

Deligne’s conjecture applies to both real and
imaginary twists of M. Two independent veri-
fications:
L(M,?2) 2.7r1501421952698 1
N 263’

L(M_1,2) _ 0.4799512414113 1
c1 (i(27i)2)2 ~ 1474.4102136156 2103’
+(i(2mi)




Example with M of type 3. Consider

111133
M :H07070707070;_7_7_7_7_7_;1
b ( 232244 D
for D € {1,2,—1,—2}. The Hodge vector is
(1,1,0,0:1,1). Conductors, wild L-factors, and

signs of functional equations are

D 1 2 -1 -2
cond(Mp) 2° 2l2 29 9ol2
fo(Mp,z) |14+42+3222 1 1 1
sign(Mp) 1 1 -1 -1

Deligne’s conjecture can be investigated with-
out periods as certain ratios are predicted to
be rational. Some numerical verifications:

L(M7,3) _ 0.5021130843546070283 1
L(Mg,3) —~ 2.0084523374184281133 4’
8

L(M1,4) _ 0.7430519972631319079 _
L(Mg,4) —~ 1.0216964962368063734 11

L(M_q1,4) _ 0.8259429178651303171 4
L(M_g,4)  1.0324286473314128965 5
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