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1. Warm up activity: a tree game. Con-

sider bipartite trees where each vertex is given

a weight and the total weight of the black ver-

tices is equal to the total weight of the white

vertices.

Example.
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Give all edges a weight in the unique way such

that the weight of each vertex is the sum of

the weights of its incident edges.

Note that, trivially, all edge-weights positive ⇒
all vertex-weights positive. The converse is far

from being true, as indicated by the example.



The tree game. You are given:

A positive number n.
Positive numbers a1, . . . , ar summing to n.
Positive numbers b1, . . . , bs summing to n.

A classical formula says that there are f(r, s) =
rs−1sr−1 bipartite trees with black vertices a1,
. . . , ar and white vertices b1, . . . , bs.

You are asked to find those bipartite trees for
which the induced weights on the edges are all
positive.

Easy example. Vertices are 10, 1, 2, 3, 4.
There is only f(1,4) = 1340 = 1 tree. It has
positive edge weights:
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In general, if r or s is 1 then there is one tree
and its edge weights are positive.



Three examples with (r, s) = (2,3) so that

there are f(2,3) = 2231 = 12 trees to con-

sider in each case:

Example A Example B Example C

6, 12, 5, 10, 3 6, 12, 3, 9, 6 6, 12, 1, 8, 9
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We’ve been working with abstract trees. Let’s

switch to planar trees, even though this does

not seem natural from the point of view of the

tree game. Suppose an abstract tree has ver-

tex degrees d1, . . . , dv. Then choosing a planar

embedding involves choices at each vertex of

degree ≥ 3. All together there are
∏

i(di − 1)!

embeddings.

As before there are f(r, s) = rs−1sr−1 bipartite

trees with r black and s white vertices. An-

other classical formula says there are

g(r, s) = rs−1sr−1

planar such trees (Pochhammer symbol, e.g.

r3 = r(r + 1)(r + 2) ≥ r3).

The tree game theorem. There are at most

(v−2)! planar trees which solve any given tree

game with v vertices. Equality holds if and

only if there are no planar trees with zero as

an edge weight.



2. Extreme rational functions and their
moduli algebras. Consider rational functions
F (x) = f(x)/g(x) of degree n, thought of geo-
metrically as maps P1

x → P1
y . Counting multi-

plicities, F (x) always has exactly 2n−2 critical
points in P1

x, the roots of

F ′(x) =
f ′(x)g(x)− f(x)g′(x)

g(x)2
.

Critical values are images of critical points and
so there are exactly 2n−2 of them in P1

y , count-
ing multiplicities. Generically, all critical points
are different and all critical values are different.

It is easy to write down rational functions such
that 0 and ∞ are critical values to high multi-
plicity: just make f(x) and g(x) have multiple
roots as desired. The most extreme case is
when there is only one other critical value, say
1. Then a natural invariant of F (x) is the par-
tition triple (λ0, λ1, λ∞) measuring multiplic-
ities in the singular fibers. Riemann–Hurwitz
says that λ0, λ1, and λ∞ together have exactly
n + 2 parts.



In fact, given such a triple (λ0, λ1, λ∞) there
are only finitely many corresponding rational
functions, up to pre-composition by Möbius
transformations of P1

x.

Let X(λ0, λ1, λ∞) be the set of such equiva-
lence classes. To identify it, one approach is
to solve equations to get an algebra

K(λ0, λ1, λ∞) = Q[z]/m(z).

The algebra itself is well-defined up to unique
isomorphism while the defining polynomial m(z)
depends on choices. The set X(λ0, λ1, λ∞)
is identified with the complex roots of m or,
more canonically, with the set of embeddings
K(λ0, λ1, λ∞) → C.

Random example from the ZIP code 56626:
K(56,615,2613) is given by m(z) =

z16 − 4z15 + 50z14 − 400z13 + 1315z12 + · · ·
The Galois group of m(z) is (unremarkably)
all of S16. The field discriminant of m(z) is
(remarkably!) 22931851779113.



3. Dessins d’enfants. A completely differ-

ent approach for identifying X(λ0, λ1, λ∞) is to

work diagrammatically.

Let F (x) ∈ C(x) with [F ] ∈ X(λ0, λ1, λ∞). Let

D be the preimage in P1
x of the real inter-

val [−∞,0] ⊂ P1
y . Viewing F−1(−∞) as black

vertices and F−1(0) as white vertices, the set

D = F−1([−∞,0]) has the structure of bipar-

tite graph.

Black valences are given by λ∞.

White valencies are given by λ0.

Face valencies are given by λ1.

The set X(λ0, λ1, λ∞) is in bijection with iso-

topy classes of such dessins.

ZIP code example again: One of the sixteen

dessins is



Another dessin is the mirror image of this graph.
There are six such chiral pairs and then four
achiral dessins (corresponding to the twelve
non-real and four real roots of m(z)).

Collapsing for efficiency. In general, the aver-
age valence of any dessin is 3n/(n + 2) ≈ 3.
There are various tricks for efficiently treating
vertices and faces of valence ≤ 2. Today we
will simply collapse faces of valence one to get
weighted planar graphs. The above example
becomes a weighted planar tree:
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All sixteen dessins can be obtained from the
tree game, although now the 1’s in λ∞ are
indistinguishable. (Connection with the tree
game theorem is (7−2)!/3!−4 = 20−4 = 16.)



4. The arboreal case. It is well-known that
both the algebraic approach and the geometric
approach become easier when λ1 is the trivial
partition n. On the dessin side, this is exactly
when the dessins D are trees.

In fact, the natural condition is that λ1 has
the shape of a hook, i.e. λ1 = e1n−e for some
e. On the dessin side, this is exactly when the
weighted graphs representing D are weighted
trees with e edges and v = e + 1 vertices.

For example, take v = 4 so that the partition
triples considered have the form

(a1 · · · ar,31n−3, b1, . . . , bs).

Write ar+i = −bi so that λ0 and λ∞ are cap-
tured by the vector (a1, a2, a3, a4) with a1 +
a2 + a3 + a4 = 0. The rational functions to be
considered are

F (x) =
4∏

i=1

(x− zi)
ai

with as yet unspecified z-values.



All the F (x) =
∏4

i=1(x−zi)
ai satisfy F (∞) = 1.

If say a3 and a4 are different from the other ai
we can normalize by setting z3 = 0 and z4 = 1
so that F (0), F (1) ∈ {0,∞}. Differentiating,
one has

F ′(x) =
u0 + u1x + u2x2

x(x− 1)(x− z1)(x− z2)

with

u0 = −a3z1z2
u1 = (a2 + a3)z1 + (a1 + a3)z2 − (a1 + a2)z1z2
u2 = a1z1 + a2z2 − (a1 + a2 + a3).

Already, F−1(1) contains ∞. To make F−1(1)
contain ∞ with multiplicity three, we need to
choose z1 and z2 so that u1 = u2 = 0. We
eliminate z1, set (z, a, b, c) = (z1, a1, b1, c1) and
find the moduli polynomial

m(a, b, c, z) = a(a + b)z2 − 2a(a + b + c)z

+(a + c)(a + b + c).

The discriminant of this polynomial is

D(a, b, c) = −4abc(a + b + c).



Similarly, for v = 5 one gets the universal mod-
uli polynomial m(a, b, c, d, z) =

d2(b + d)(c + d)(b + c + d)2z6

+6ad2(b + d)(c + d)(b + c + d)z5

+3ad2
(
b3 + ab2 + cb2 + 2db2 + c2b + d2b

+5acb + 6adb + 2cdb + c3 + ac2

+5ad2 + cd2 + 2c2d + 6acd
)
z4

+2ad
(
cb3 + 2c2b2 + 3acb2 + 6adb2 + 3cdb2

+c3b + 3ac2b + 6ad2b + 2cd2b + 2a2cb

+6a2db + 3c2db + 6acdb + 10a2d2

+6acd2 + 6ac2d + 6a2cd
)
z3

+3a2d
(
b3 + 2ab2 + cb2 + db2 + a2b + c2b+

2acb + 6adb + 5cdb + c3 + 2ac2 +
a2c + 5a2d + c2d + 6acd

)
z2

+6a2(a + b)(a + c)(a + b + c)dz

+a2(a + b)(a + c)(a + b + c)2

with discriminant D5(a, b, c, d) =

−2636a10b4c4d10

(a + b)(a + c)(b + c)(a + d)3(b + d)(c + d)

(a + b + c)3(a + b + d)(a + c + d)(b + c + d)3

(a + b + c + d)10(b− c)6.



Similarly, v = 6 yields m6(a, b, c, d, e, z) of de-

gree 4! = 24 in both the parameters {a, b, c, d, e}
and the variable z. It has 78184 terms. In gen-

eral mv(a1, . . . , ae, z) has degree (v−2)! in both

{a1, . . . , ae} and z.

Discriminant theorem. The polynomial dis-

criminant DI(a1, . . . , ar) has the form

±
∏

p≤v−2

p∗ ·
{1,...,e}∏

I 6=∅
(
∑
i∈I

ai)
∗ · F (a1, . . . , ae)

2.

The factor F (a1, . . . , ae) does not contribute to

field discriminants of specializations.



5. The discriminant arrangement. The set

of allowed indices for arboreal dessins with v

vertices and e = v − 1 edges is

Zv
0 = {(a1, . . . , ae, av) ∈ Zv :

∑
ai = 0}

∼= {(a1, . . . , ae)} ∼= Ze.

We consider this lattice inside of Rv
0
∼= Re.

For I a non-empty subset of {1, . . . , e}, let

HI = {(a1, . . . , ae) :
∑
i∈I

ai = 0}.

Then the singular indices are exactly those which

lie on one of these 2e − 1 hyperplanes.

Example of v = 3. Three lines in R2, permuted

transitively by S3:
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b=0
a+b=0
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Let Cv be the set of chambers of Rv
0 − ∪IHI.

Then the number of chambers |Cv| grows very

rapidly with v. Even the number of Sv-orbits

|Cv/Sv| grows rapidly. For v > 2, it is twice the

number of {±1}×Sv-orbits. These latter orbits

index essentially different generic tree games

with v vertices.

v |Cv| |Cv/Sv| Distribution by Signature (r, s)
2 2 1 1
3 6 2 1 1
4 32 4 1 2 1
5 370 12 1 5 5 1
6 11292 56 1 14 26 14 1
7 1066044 576 1 62 225 225 62 1
8 347326352 8320 1 566 4059 7388 4059 566 1

Compared to many classical arrangements, our

arrangement is a “thicket” of hyperplanes. For

small primes p, most points in (Fv
p)0 are on a

high-codimension stratum:



3 0 1
1 3p −3
2 p2 −3p 2

4 0 1
1 9p −9
2 7p2 −24p 17
3 p3 −7p2 15p −9

5 0 1
1 45p −45
2 55p2 −240p 185
3 15p3 −135p2 365p −245
4 p4 −15p3 80p2 −170p 104

6 0 1
1 625p −625
2 845p2 −5340p 4495
3 285p3−3705p2 14055p−10635
4 31p4−660p3 4990p2−14610p 10249
5p5−31p4 375p3−2130p2 5270p −3485

2
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There are many natural subspaces of Rv
0 as

one can demand symmetry relations and/or
degeneracy relations. For example, a natu-
ral ambient space for our ZIP code example
(56,615,2613) is (ab,615, cbd3). The bc-plane
corresponding to the d = 1 slice illustrates the
discriminant locus of a degree 16 polynomial:
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6. Complex monodromy. Let

a(0) = (a1(0), . . . , av(0))

and a(1) = (a1(1), . . . , av(1))

be in adjacent chambers of Rv
0 − ∪IHI. Let

a(t) = (1− t)a(0)+ ta(1) run over the segment
between them. Consider trying to move solu-
tions of the tree game at a(0) to solutions of
the tree game at a(1).

Typically, most solutions move without any
problem, meaning that edge weights stay pos-
itive for all t ∈ [0,1]. However some solu-
tions acquire zero as an edge weight on a sin-
gle edge. Nonetheless, monodromy gives two
bijections γ+, γ− : T0 → T1 corresponding to
transporting in Cv

0 either over or under the wall.

Monodromy Theorem. On degenerating trees,
γ+ acts by moving the degenerating edge coun-
terclockwise one spot on each component, as
indicated by the following pictures. Likewise,
γ− moves the degenerating edge clockwise one
spot.



γ+ in general:

γ+ in Examples A,B,C:

t < 1/2 : (3+6t)
3+6t
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3−6t
— (5−4t)

2+2t
— 12
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6
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— (5−4t) ∈ T0
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10−2t
— 12

5−4t
— (5−4t) ∈ T1



Now suppose V is a single chamber in Rv
0 con-

taining a point a(0) and HI is a hyperplane
bounding it. Then we can leave V via γ+, go
around HI, and come back via γ−1

− . This gives
a permutation γ = γ−1

− γ+ on T0.

Set i = |I| and j = v − i, with i, j > 1 to
simplify. Then at the boundary HI, there are
(i − 2)! possibilities for one component and
(j−2)! possibilities for the other. They can be
attached to each other in (i−1)(j−1) possible
ways. Let u = LCM(i − 1, j − 1). The mon-
odromy theorem says that the cycle structure
of γ is (i−1)!(j−1)!/u cycles of length u, and
the rest cycles of length 1.

One can also blow up strata of the arrange-
ment to get a divisor with normal crossings,
getting k commuting permutations on T0 cor-
responding to generating to a codimension k

corner of V . This is combinatorially compli-
cated and the explicit formulas involve Bell
numbers.



7. Tame ramification. For primes p ≤ v − 2,

ramification in the moduli algebras

K(λ0, e1n−e, λ∞)

is typically wild. For p ≥ v − 1, ramification

can be described combinatorially by transport-

ing the results from characteristic zero.

For example, the ZIP code field from the set-

ting v = 7 has degree sixteen and field discrim-

inant 22931851779113. Thus 2, 3, and 5 are

indeed wildly ramified, as is typical. The expo-

nent 9 on 7 comes from ramification partition

4314. The exponent 3 on 11 comes from the

ramification partition 4112.
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