Number Fields Ramified at One Prime

John W. Jones, Arizona State University David P. Roberts, University of Minnesota Morris

May 18, 2008

Definitions and Problems

Definitions

Given G a finite group with $|G|>1$

Definitions and Problems

Definitions

Given G a finite group with $|G|>1$ and p a prime,

Definitions and Problems

Definitions

Given G a finite group with $|G|>1$ and p a prime, a $G-p$ field is a Galois number field $K \subset \mathbf{C}$ satisfying

Definitions and Problems

Definitions

Given G a finite group with $|G|>1$ and p a prime, a $G-p$ field is a Galois number field $K \subset \mathbf{C}$ satisfying

- $\operatorname{Gal}(K / \mathbf{Q}) \cong G$,

Definitions and Problems

Definitions

Given G a finite group with $|G|>1$ and p a prime, a $G-p$ field is a Galois number field $K \subset \mathbf{C}$ satisfying

- $\operatorname{Gal}(K / \mathbf{Q}) \cong G$,
- $\operatorname{disc}(K / \mathbf{Q})= \pm p^{a}$ for some positive integer a.

Definitions and Problems

Definitions

Given G a finite group with $|G|>1$ and p a prime, a $G-p$ field is a Galois number field $K \subset \mathbf{C}$ satisfying

- $\operatorname{Gal}(K / \mathbf{Q}) \cong G$,
- $\operatorname{disc}(K / \mathbf{Q})= \pm p^{a}$ for some positive integer a.
$\mathcal{K}_{G, p}$ is the finite (and often empty) set of $G-p$ fields.

Definitions and Problems

Definitions

Given G a finite group with $|G|>1$ and p a prime, a $G-p$ field is a Galois number field $K \subset \mathbf{C}$ satisfying

- $\operatorname{Gal}(K / \mathbf{Q}) \cong G$,
- $\operatorname{disc}(K / \mathbf{Q})= \pm p^{a}$ for some positive integer a.
$\mathcal{K}_{G, p}$ is the finite (and often empty) set of G-p fields. \mathcal{P}_{G} is the list of primes, with each p listed $\left|\mathcal{K}_{G, p}\right|$ times.

Definitions and Problems

Definitions

Given G a finite group with $|G|>1$ and p a prime, a $G-p$ field is a Galois number field $K \subset \mathbf{C}$ satisfying

- $\operatorname{Gal}(K / \mathbf{Q}) \cong G$,
- $\operatorname{disc}(K / \mathbf{Q})= \pm p^{a}$ for some positive integer a.
$\mathcal{K}_{G, p}$ is the finite (and often empty) set of $G-p$ fields.
\mathcal{P}_{G} is the list of primes, with each p listed $\left|\mathcal{K}_{G, p}\right|$ times.

Problems

For given G, determine

Definitions and Problems

Definitions

Given G a finite group with $|G|>1$ and p a prime, a $G-p$ field is a Galois number field $K \subset \mathbf{C}$ satisfying

- $\operatorname{Gal}(K / \mathbf{Q}) \cong G$,
- $\operatorname{disc}(K / \mathbf{Q})= \pm p^{a}$ for some positive integer a.
$\mathcal{K}_{G, p}$ is the finite (and often empty) set of $G-p$ fields.
\mathcal{P}_{G} is the list of primes, with each p listed $\left|\mathcal{K}_{G, p}\right|$ times.

Problems

For given G, determine

- a non-empty initial segment of \mathcal{P}_{G} and its associated fields,

Definitions and Problems

Definitions

Given G a finite group with $|G|>1$ and p a prime, a $G-p$ field is a Galois number field $K \subset \mathbf{C}$ satisfying

- $\operatorname{Gal}(K / \mathbf{Q}) \cong G$,
- $\operatorname{disc}(K / \mathbf{Q})= \pm p^{a}$ for some positive integer a.
$\mathcal{K}_{G, p}$ is the finite (and often empty) set of $G-p$ fields.
\mathcal{P}_{G} is the list of primes, with each p listed $\left|\mathcal{K}_{G, p}\right|$ times.

Problems

For given G, determine

- a non-empty initial segment of \mathcal{P}_{G} and its associated fields,
- the density (if it exists!) of \mathcal{P}_{G}.
(1) Abelian Groups
(2) Length Two Solvable Groups
(3) General Solvable Groups: The Case $G=S_{4}$
(4) Non-Solvable Groups: $A_{5}, S_{5}, A_{6}, S_{6}, G_{168}, A_{7}, S_{7}$
(5) $P G L_{2}(7)$
(6) Groups of the Forms 2^{r}. G and $3 . G$ for Non-Solvable G
(7) Groups of the Form 2.G
(8) A Density Conjecture

1. Abelian Groups

The classical theory of cyclotomic fields gives complete results here.

1. Abelian Groups

The classical theory of cyclotomic fields gives complete results here.

Classical fact

$$
\left|\mathcal{K}_{G, 2}\right|= \begin{cases}3 & \text { if } G \cong C_{2} \\ 2 & \text { if } G \cong C_{2^{a}} \text { with } a \geq 2 \\ 1 & \text { if } G \cong C_{2} \times C_{2^{a}} \text { with } a \geq 1 \\ 0 & \text { else. }\end{cases}
$$

1. Abelian Groups

The classical theory of cyclotomic fields gives complete results here.

Classical fact

$$
\left|\mathcal{K}_{G, 2}\right|= \begin{cases}3 & \text { if } G \cong C_{2} \\ 2 & \text { if } G \cong C_{2^{a}} \text { with } a \geq 2 \\ 1 & \text { if } G \cong C_{2} \times C_{2^{a}} \text { with } a \geq 1 \\ 0 & \text { else. }\end{cases}
$$

If $p>2$,

1. Abelian Groups

The classical theory of cyclotomic fields gives complete results here.

Classical fact

$$
\left|\mathcal{K}_{G, 2}\right|= \begin{cases}3 & \text { if } G \cong C_{2} \\ 2 & \text { if } G \cong C_{2^{a}} \text { with } a \geq 2 \\ 1 & \text { if } G \cong C_{2} \times C_{2^{a}} \text { with } a \geq 1 \\ 0 & \text { else }\end{cases}
$$

If $p>2$,

$$
\left|\mathcal{K}_{G, p}\right|= \begin{cases}1 & \text { if } G \text { is cyclic of order } m p^{a} \text { with } m \text { dividing } p-1 \\ 0 & \text { else. }\end{cases}
$$

1. Abelian Groups

The classical theory of cyclotomic fields gives complete results here.

Classical fact

$$
\left|\mathcal{K}_{G, 2}\right|= \begin{cases}3 & \text { if } G \cong C_{2} \\ 2 & \text { if } G \cong C_{2^{a}} \text { with } a \geq 2 \\ 1 & \text { if } G \cong C_{2} \times C_{2^{a}} \text { with } a \geq 1 \\ 0 & \text { else. }\end{cases}
$$

If $p>2$,

$$
\left|\mathcal{K}_{G, p}\right|= \begin{cases}1 & \text { if } G \text { is cyclic of order } m p^{a} \text { with } m \text { dividing } p-1 \\ 0 & \text { else. }\end{cases}
$$

Thus e.g. $\mathcal{P}_{C_{10}}=5 ; 11,31,41,61,71, \ldots$

2. Length Two Solvable Groups

A length two solvable group has the form $G=G^{\prime} . G^{\mathrm{ab}}$ with G^{\prime} abelian,

2. Length Two Solvable Groups

A length two solvable group has the form $G=G^{\prime} . G^{\mathrm{ab}}$ with G^{\prime} abelian, e.g. the quaternions $Q=C_{2} . C_{2}^{2}$.

If $G^{a b}$ is cyclic, then one has a semi-direct product $G=G^{\prime}: G^{a b}$,

2. Length Two Solvable Groups

A length two solvable group has the form $G=G^{\prime} . G^{\text {ab }}$ with G^{\prime} abelian, e.g. the quaternions $Q=C_{2} . C_{2}^{2}$.
If G^{ab} is cyclic, then one has a semi-direct product $G=G^{\prime}: G^{a b}$, e.g. the alternating group $A_{4}=C_{2}^{2}: C_{3}$.

Proposition

Let K be a $G-p$ field with G solvable of length two. If $p \neq 2$ and $p \backslash\left|G^{\prime}\right|$, then K is unramified over its maximal abelian subfield $K^{G^{\prime}}$.

2. Length Two Solvable Groups

A length two solvable group has the form $G=G^{\prime} . G^{\text {ab }}$ with G^{\prime} abelian, e.g. the quaternions $Q=C_{2} . C_{2}^{2}$.
If G^{ab} is cyclic, then one has a semi-direct product $G=G^{\prime}: G^{\mathrm{ab}}$, e.g. the alternating group $A_{4}=C_{2}^{2}: C_{3}$.

Proposition

Let K be a $G-p$ field with G solvable of length two. If $p \neq 2$ and $p \backslash\left|G^{\prime}\right|$, then K is unramified over its maximal abelian subfield $K^{G^{\prime}}$.

Moral: For G solvable of length two, the study of $G-p$ fields mostly reduces to the classical theory of class numbers of abelian fields.

Initial segments of some \mathcal{P}_{G}

G	$G^{a b}$	p_{w}	Tame Primes
S_{3}	2	3	$23,31,59,83,107,139,199,211,229,239,257,283,307,331$
D_{5}	2		$47,79,103,127,131,179,227,239,347,401,439,443,479,523$
D_{7}	2	7	$71,151,223,251,431,463,467,487,503,577,587,743,811,827$
D_{11}	2	11	$167,271,659,839,967,1283,1297,1303,1307,1459,1531,1583$
D_{13}	2		$191,263,607,631,727,1019,1439,1451,1499,1667,1907,2131$
A_{4}	3		$163,277,349,397,547,607,709,853,937,1009,1399,1699$
$7: 3$	3		$313,877,1129,1567,1831,1987,2437,2557,3217,3571,4219$
F_{5}	4	$5^{(2)}$	$101,157,173,181,197,349,373,421,457,461,613,641,653^{(2)}$
$3^{2}: 4$	4		$149,293,661,733,1373,1381,1613,1621,1733,1973,2861$
F_{7}	6	7	$211,463,487,619,877,907,991,1069,1171,1231,1303,1381$

3. General Solvable Groups: The Case $G=S_{4}$

3. General Solvable Groups: The Case $G=S_{4}$

For general solvable groups, calculations involve iterative use of ray class groups.

3. General Solvable Groups: The Case $G=S_{4}$

For general solvable groups, calculations involve iterative use of ray class groups.

In general, it is best to divide up the fields considered according to behavior at ∞ and behavior at p.

3. General Solvable Groups: The Case $G=S_{4}$

For general solvable groups, calculations involve iterative use of ray class groups.

In general, it is best to divide up the fields considered according to behavior at ∞ and behavior at p.
For $G=S_{4}=C_{2}^{2}: C_{3}: C_{2}$, the six parts of \mathcal{P}_{G} start like this:

3. General Solvable Groups: The Case $G=S_{4}$

For general solvable groups, calculations involve iterative use of ray class groups.
In general, it is best to divide up the fields considered according to behavior at ∞ and behavior at p.
For $G=S_{4}=C_{2}^{2}: C_{3}: C_{2}$, the six parts of \mathcal{P}_{G} start like this:

$\lambda \backslash s$	0	1	2
4	$2713,2777^{(2)}, 2857$	$59,107,139,283^{(2)}$	$229^{(2)}, 733,1373$
211	$2777,7537,8069$	$283,331,491,563$	$229,257,761$

3. General Solvable Groups: The Case $G=S_{4}$

For general solvable groups, calculations involve iterative use of ray class groups.
In general, it is best to divide up the fields considered according to behavior at ∞ and behavior at p.
For $G=S_{4}=C_{2}^{2}: C_{3}: C_{2}$, the six parts of \mathcal{P}_{G} start like this:

$\lambda \backslash s$	0	1	2
4	$2713,2777^{(2)}, 2857$	$59,107,139,283^{(2)}$	$229^{(2)}, 733,1373$
211	$2777,7537,8069$	$283,331,491,563$	$229,257,761$

Experimentally, the density depends on s in a $1: 6: 3$ ratio but does not depend on λ.

4. Non-Solvable $G: A_{5}, S_{5}, A_{6}, S_{6}, G_{168}, A_{7}, S_{7}$

4. Non-Solvable $G: A_{5}, S_{5}, A_{6}, S_{6}, G_{168}, A_{7}, S_{7}$

Initial segments of \mathcal{P}_{G} established by extensive search over candidate defining polynomials.

4. Non-Solvable $G: A_{5}, S_{5}, A_{6}, S_{6}, G_{168}, A_{7}, S_{7}$

Initial segments of \mathcal{P}_{G} established by extensive search over candidate defining polynomials. Results for A_{6} :

4. Non-Solvable $G: A_{5}, S_{5}, A_{6}, S_{6}, G_{168}, A_{7}, S_{7}$

Initial segments of \mathcal{P}_{G} established by extensive search over candidate defining polynomials. Results for A_{6} :

Theorem

There are exactly two $A_{6}-p$ fields with $p \leq 1677$. Moreover, the minimal prime for an $A_{6}-p$ field with $\lambda=2211$ is $p=3929$.

p	λ	s	$f_{A_{6}, p}(x)$	$\operatorname{cl}_{p}\left(F_{6}\right)$	$\mathrm{cl}_{p}\left(F_{6}^{t}\right)$	cl_{p}
1579	42	2	$x^{6}-x^{5}+41 x^{4}-349 x^{3}$ $+12 x^{2}+3099 x+2851$	$2 \cdot 3 \cdot 3$	$2 \cdot 2 \cdot 3 \cdot 3$	$2 \cdot 3$
1667	42	2	$x^{6}-2 x^{5}-39 x^{4}+60 x^{3}$ $+380 x^{2}+1267 x+100$	$2 \cdot 3$	$2 \cdot 2 \cdot 3$	2
\vdots						
6929	2211	2	$x^{6}-x^{5}-3 x^{4}+9 x^{3}$ $-8 x^{2}+2 x-1$	$8 \cdot 8 \cdot 3$	$8 \cdot 2 \cdot 3$	8

5. $P G L_{2}(7)$

The Klüners-Malle website contains the polynomial

$$
f_{0}(x)=x^{8}-x^{7}+3 x^{6}-3 x^{5}+2 x^{4}-2 x^{3}+5 x^{2}+5 x+1
$$

defining a $P G L_{2}(7)-p$ field K for the remarkably small prime $p=53$ (and ramification partition $\lambda=611$).

5. $P G L_{2}(7)$

The Klüners-Malle website contains the polynomial

$$
f_{0}(x)=x^{8}-x^{7}+3 x^{6}-3 x^{5}+2 x^{4}-2 x^{3}+5 x^{2}+5 x+1
$$

defining a $P G L_{2}(7)-p$ field K for the remarkably small prime $p=53$ (and ramification partition $\lambda=611$).

Proposition

Assuming the generalized Riemann hypothesis, K is the only $P G L_{2}(7)-p$ field with $p \leq 53$.

5. $P G L_{2}(7)$

The Klüners-Malle website contains the polynomial

$$
f_{0}(x)=x^{8}-x^{7}+3 x^{6}-3 x^{5}+2 x^{4}-2 x^{3}+5 x^{2}+5 x+1
$$

defining a $P G L_{2}(7)-p$ field K for the remarkably small prime $p=53$ (and ramification partition $\lambda=611$).

Proposition

Assuming the generalized Riemann hypothesis, K is the only $P G L_{2}(7)-p$ field with $p \leq 53$.

Proof uses GRH bounds to eliminate all $p \leq 53$ except $p=7$ which is eliminated unconditionally via Khare's proof of the Serre conjecture.

5. $P G L_{2}(7)$

The Klüners-Malle website contains the polynomial

$$
f_{0}(x)=x^{8}-x^{7}+3 x^{6}-3 x^{5}+2 x^{4}-2 x^{3}+5 x^{2}+5 x+1
$$

defining a $P G L_{2}(7)-p$ field K for the remarkably small prime $p=53$ (and ramification partition $\lambda=611$).

Proposition

Assuming the generalized Riemann hypothesis, K is the only $P G L_{2}(7)-p$ field with $p \leq 53$.

Proof uses GRH bounds to eliminate all $p \leq 53$ except $p=7$ which is eliminated unconditionally via Khare's proof of the Serre conjecture.
(Could try to prove unconditionally by octic searches.)

6. Groups 2^{r}.G and 3.G for Non-Solvable G

Assorted results with base group $G=A_{5}, S_{5}, A_{6}$, and S_{6}.

6. Groups 2^{r}.G and 3.G for Non-Solvable G

Assorted results with base group $G=A_{5}, S_{5}, A_{6}$, and S_{6}. For example, consider the non-split extension 3. A_{6}.

6. Groups 2^{r}.G and 3.G for Non-Solvable G

Assorted results with base group $G=A_{5}, S_{5}, A_{6}$, and S_{6}. For example, consider the non-split extension 3. A_{6}.

Proposition

$\mathcal{P}_{3 . A_{6}}$ begins $1579,1579,1579,1667, \ldots$ The first three fields are given by

$$
\begin{aligned}
& f_{3 . A_{6}, 1579, a}(x)= \\
& \quad x^{18}-6 x^{17}-23 x^{16}+211 x^{15}-283 x^{14}-115 x^{13}-2146 x^{12}+ \\
& \quad 6909 x^{11}-3119 x^{10}+9687 x^{9}-35475 x^{8}-3061 x^{7}+47135 x^{6}+ \\
& \quad 14267 x^{5}-13368 x^{4}-19592 x^{3}-10421 x^{2}-4728 x-297
\end{aligned}
$$

and its two cubic twists $f_{3 . A_{6}, 1579, b}(x)$ and $f_{3 . A_{6}, 1579, c}(x)$.

7. Groups of the Form 2.G

7. Groups of the Form 2.G

Let K be a $G-p$ field and let $\tilde{G}=2 . G$ be a double cover of G.

7. Groups of the Form 2.G

Let K be a $G-p$ field and let $\tilde{G}=2 . G$ be a double cover of G. Then K embeds in a $\tilde{G}-p$ field \tilde{K} if and only if complex conjugation $c \in G$ lifts to an order two element in \tilde{G}.

7. Groups of the Form 2.G

Let K be a $G-p$ field and let $\tilde{G}=2 . G$ be a double cover of G. Then K embeds in a $\tilde{G}-p$ field \tilde{K} if and only if complex conjugation $c \in G$ lifts to an order two element in \tilde{G}. Instead of working with this obstruction $\epsilon_{\infty} \in\{-1,1\}$,

7. Groups of the Form 2.G

Let K be a $G-p$ field and let $\tilde{G}=2 . G$ be a double cover of G. Then K embeds in a $\tilde{G}-p$ field \tilde{K} if and only if complex conjugation $c \in G$ lifts to an order two element in \tilde{G}. Instead of working with this obstruction $\epsilon_{\infty} \in\{-1,1\}$, one could work with $\epsilon_{p} \in\{-1,1\}$,

7. Groups of the Form 2.G

Let K be a $G-p$ field and let $\tilde{G}=2 . G$ be a double cover of G. Then K embeds in a $\tilde{G}-p$ field \tilde{K} if and only if complex conjugation $c \in G$ lifts to an order two element in \tilde{G}. Instead of working with this obstruction $\epsilon_{\infty} \in\{-1,1\}$, one could work with $\epsilon_{p} \in\{-1,1\}$, as $\epsilon_{\infty} \epsilon_{p}=1$.

7. Groups of the Form 2.G

Let K be a $G-p$ field and let $\tilde{G}=2 . G$ be a double cover of G. Then K embeds in a $\tilde{G}-p$ field \tilde{K} if and only if complex conjugation $c \in G$ lifts to an order two element in \tilde{G}. Instead of working with this obstruction $\epsilon_{\infty} \in\{-1,1\}$, one could work with $\epsilon_{p} \in\{-1,1\}$, as $\epsilon_{\infty} \epsilon_{p}=1$.

For example, take $G=P G L_{2}(11)$. Then \mathcal{P}_{G} begins at $p=11$ with a field K going back to at least 1888 (Kiepert).

7. Groups of the Form 2.G

Let K be a $G-p$ field and let $\tilde{G}=2 . G$ be a double cover of G. Then K embeds in a $\tilde{G}-p$ field \tilde{K} if and only if complex conjugation $c \in G$ lifts to an order two element in \tilde{G}. Instead of working with this obstruction $\epsilon_{\infty} \in\{-1,1\}$, one could work with $\epsilon_{p} \in\{-1,1\}$, as $\epsilon_{\infty} \epsilon_{p}=1$.

For example, take $G=P G L_{2}(11)$. Then \mathcal{P}_{G} begins at $p=11$ with a field K going back to at least 1888 (Kiepert). Likewise,

Proposition

$\mathcal{P}_{S_{11}^{\prime}}$ begins $11, \ldots$ with the first field given by

$$
\begin{aligned}
& f_{S L_{2}^{ \pm}(11), 11}(x)= \\
& \quad x^{24}+90 p^{2} x^{12}-640 p^{2} x^{8}+2280 p^{2} x^{6}-512 p^{2} x^{4}+2432 p x^{2}-p^{3} .
\end{aligned}
$$

8. A Density Conjecture

Conjecture

Let G be a finite group with $|G|>1$ and G^{ab} cyclic. Then the ratio $\sum_{p \leq x}\left|\mathcal{K}_{G, p}\right| / \sum_{p \leq x} 1$ tends to a positive limit δ_{G} as $x \rightarrow \infty$.

8. A Density Conjecture

Conjecture

Let G be a finite group with $|G|>1$ and G^{ab} cyclic. Then the ratio $\sum_{p \leq x}\left|\mathcal{K}_{G, p}\right| / \sum_{p \leq x} 1$ tends to a positive limit δ_{G} as $x \rightarrow \infty$.

Simple example: The conjecture is certainly true if G is the cyclic group C_{m}. In fact, $\mathcal{P}_{C_{m}}^{\text {tame }}$ is the set of primes congruent to 1 modulo m, and so $\delta_{C_{m}}=1 / \phi(m)$.

8. A Density Conjecture

Conjecture

Let G be a finite group with $|G|>1$ and G^{ab} cyclic. Then the ratio $\sum_{p \leq x}\left|\mathcal{K}_{G, p}\right| / \sum_{p \leq x} 1$ tends to a positive limit δ_{G} as $x \rightarrow \infty$.

Simple example: The conjecture is certainly true if G is the cyclic group C_{m}. In fact, $\mathcal{P}_{C_{m}}^{\text {tame }}$ is the set of primes congruent to 1 modulo m, and so $\delta_{C_{m}}=1 / \phi(m)$.
There is a natural candidate for δ_{G} in general.

8. A Density Conjecture

Conjecture

Let G be a finite group with $|G|>1$ and G^{ab} cyclic. Then the ratio $\sum_{p \leq x}\left|\mathcal{K}_{G, p}\right| / \sum_{p \leq x} 1$ tends to a positive limit δ_{G} as $x \rightarrow \infty$.

Simple example: The conjecture is certainly true if G is the cyclic group C_{m}. In fact, $\mathcal{P}_{C_{m}}^{\text {tame }}$ is the set of primes congruent to 1 modulo m, and so $\delta_{C_{m}}=1 / \phi(m)$.
There is a natural candidate for δ_{G} in general. For $G=S_{n}$, it is

$$
\delta_{n}=\frac{1}{2} \frac{1}{1+\delta_{n 6}} P_{n}^{\text {odd }} \sum_{s=0}^{\lfloor n / 2\rfloor} \frac{1}{(n-2 s)!s!2^{s}}
$$

8. A Density Conjecture

Conjecture

Let G be a finite group with $|G|>1$ and G^{ab} cyclic. Then the ratio $\sum_{p \leq x}\left|\mathcal{K}_{G, p}\right| / \sum_{p \leq x} 1$ tends to a positive limit δ_{G} as $x \rightarrow \infty$.

Simple example: The conjecture is certainly true if G is the cyclic group C_{m}. In fact, $\mathcal{P}_{C_{m}}^{\text {tame }}$ is the set of primes congruent to 1 modulo m, and so $\delta_{C_{m}}=1 / \phi(m)$.
There is a natural candidate for δ_{G} in general. For $G=S_{n}$, it is

$$
\delta_{n}=\frac{1}{2} \frac{1}{1+\delta_{n 6}} P_{n}^{\text {odd }} \sum_{s=0}^{\lfloor n / 2\rfloor} \frac{1}{(n-2 s)!s!2^{s}}
$$

with a reason for each factor:

8. A Density Conjecture

Conjecture

Let G be a finite group with $|G|>1$ and G^{ab} cyclic. Then the ratio $\sum_{p \leq x}\left|\mathcal{K}_{G, p}\right| / \sum_{p \leq x} 1$ tends to a positive limit δ_{G} as $x \rightarrow \infty$.

Simple example: The conjecture is certainly true if G is the cyclic group C_{m}. In fact, $\mathcal{P}_{C_{m}}^{\text {tame }}$ is the set of primes congruent to 1 modulo m, and so $\delta_{C_{m}}=1 / \phi(m)$.
There is a natural candidate for δ_{G} in general. For $G=S_{n}$, it is

$$
\delta_{n}=\frac{1}{2} \frac{1}{1+\delta_{n 6}} P_{n}^{\text {odd }} \sum_{s=0}^{\lfloor n / 2\rfloor} \frac{1}{(n-2 s)!s!2^{s}}
$$

with a reason for each factor: $\epsilon_{p} \epsilon_{\infty}=1$,

8. A Density Conjecture

Conjecture

Let G be a finite group with $|G|>1$ and G^{ab} cyclic. Then the ratio $\sum_{p \leq x}\left|\mathcal{K}_{G, p}\right| / \sum_{p \leq x} 1$ tends to a positive limit δ_{G} as $x \rightarrow \infty$.

Simple example: The conjecture is certainly true if G is the cyclic group C_{m}. In fact, $\mathcal{P}_{C_{m}}^{\text {tame }}$ is the set of primes congruent to 1 modulo m, and so $\delta_{C_{m}}=1 / \phi(m)$.
There is a natural candidate for δ_{G} in general. For $G=S_{n}$, it is

$$
\delta_{n}=\frac{1}{2} \frac{1}{1+\delta_{n 6}} P_{n}^{\text {odd }} \sum_{s=0}^{\lfloor n / 2\rfloor} \frac{1}{(n-2 s)!s!2^{s}}
$$

with a reason for each factor: $\epsilon_{p} \epsilon_{\infty}=1,\left|\operatorname{Out}\left(S_{n}\right)\right|=1+\delta_{n 6}$,

8. A Density Conjecture

Conjecture

Let G be a finite group with $|G|>1$ and G^{ab} cyclic. Then the ratio $\sum_{p \leq x}\left|\mathcal{K}_{G, p}\right| / \sum_{p \leq x} 1$ tends to a positive limit δ_{G} as $x \rightarrow \infty$.

Simple example: The conjecture is certainly true if G is the cyclic group C_{m}. In fact, $\mathcal{P}_{C_{m}}^{\text {tame }}$ is the set of primes congruent to 1 modulo m, and so $\delta_{C_{m}}=1 / \phi(m)$.
There is a natural candidate for δ_{G} in general. For $G=S_{n}$, it is

$$
\delta_{n}=\frac{1}{2} \frac{1}{1+\delta_{n 6}} P_{n}^{\text {odd }} \sum_{s=0}^{\lfloor n / 2\rfloor} \frac{1}{(n-2 s)!s!2^{s}}
$$

with a reason for each factor: $\epsilon_{p} \epsilon_{\infty}=1,\left|\operatorname{Out}\left(S_{n}\right)\right|=1+\delta_{n 6}$, the number of possibilities for λ,

8. A Density Conjecture

Conjecture

Let G be a finite group with $|G|>1$ and G^{ab} cyclic. Then the ratio $\sum_{p \leq x}\left|\mathcal{K}_{G, p}\right| / \sum_{p \leq x} 1$ tends to a positive limit δ_{G} as $x \rightarrow \infty$.

Simple example: The conjecture is certainly true if G is the cyclic group C_{m}. In fact, $\mathcal{P}_{C_{m}}^{\text {tame }}$ is the set of primes congruent to 1 modulo m, and so $\delta_{C_{m}}=1 / \phi(m)$.
There is a natural candidate for δ_{G} in general. For $G=S_{n}$, it is

$$
\delta_{n}=\frac{1}{2} \frac{1}{1+\delta_{n 6}} P_{n}^{\mathrm{odd}} \sum_{s=0}^{\lfloor n / 2\rfloor} \frac{1}{(n-2 s)!s!2^{s}}
$$

with a reason for each factor: $\epsilon_{p} \epsilon_{\infty}=1,\left|\operatorname{Out}\left(S_{n}\right)\right|=1+\delta_{n 6}$, the number of possibilities for λ, and the fraction of permutations in S_{n} which are involutions.

The constant δ_{n}

In particular, one has

n	3	4	5	6	7
δ_{n}	$0 . \overline{3}$	$0.41 \overline{6}$	0.325	$0.1319 \overline{4}$	$0.16 \overline{1}$

The constant δ_{n}

In particular, one has

n	3	4	5	6	7
δ_{n}	$0 . \overline{3}$	$0.41 \overline{6}$	0.325	$0.1319 \overline{4}$	$0.16 \overline{1}$

Thus e.g. $\left|\mathcal{K}_{S_{7}, p}\right|$ should have average size $0.16 \overline{1}$.

The constant δ_{n}

In particular, one has

n	3	4	5	6	7
δ_{n}	$0 . \overline{3}$	$0.41 \overline{6}$	0.325	$0.1319 \overline{4}$	$0.16 \overline{1}$

Thus e.g. $\left|\mathcal{K}_{S_{7}, p}\right|$ should have average size $0.16 \overline{1}$.
For general (rather than prime power) absolute discriminants, the $n=3$ case is the Davenport-Heilbronn theorem and the $n=4,5$ cases are theorems of Bhargava.

The constant δ_{n}

In particular, one has

n	3	4	5	6	7
δ_{n}	$0 . \overline{3}$	$0.41 \overline{6}$	0.325	$0.1319 \overline{4}$	$0.16 \overline{1}$

Thus e.g. $\left|\mathcal{K}_{S_{7}, p}\right|$ should have average size $0.16 \overline{1}$.
For general (rather than prime power) absolute discriminants, the $n=3$ case is the Davenport-Heilbronn theorem and the $n=4,5$ cases are theorems of Bhargava. However we do not know theorems saying that the prime power case behaves similarly to the general case.

The constant δ_{n}

In particular, one has

n	3	4	5	6	7
δ_{n}	$0 . \overline{3}$	$0.41 \overline{6}$	0.325	$0.1319 \overline{4}$	$0.16 \overline{1}$

Thus e.g. $\left|\mathcal{K}_{S_{7, p}}\right|$ should have average size $0.16 \overline{1}$.
For general (rather than prime power) absolute discriminants, the $n=3$ case is the Davenport-Heilbronn theorem and the $n=4,5$ cases are theorems of Bhargava. However we do not know theorems saying that the prime power case behaves similarly to the general case.

For $n \geq 8$, the quantity δ_{n} decreases rapidly with n.

Evidence for the density conjecture from $n=3,4$

Evidence for the density conjecture from $n=3,4$

Computations of te Riele \& Williams with $S_{3}-p$ fields for the first several billion primes are supportive of the conjecture.

Evidence for the density conjecture from $n=3,4$

Computations of te Riele \& Williams with $S_{3}-p$ fields for the first several billion primes are supportive of the conjecture. For $n=4$, we find

(s, λ)	$(0,211)$	$(1,211)$	$(2,211)$	$(0,4)$	$(1,4)$	$(2,4)$
10^{2}	.00	.03	.02	.00	.12	.02
10^{3}	.002	.056	.031	.013	.077	.034
10^{4}	.0080	.0698	.0399	.0161	.0965	.0462
10^{5}	.01047	.08589	.04567	.01676	.10525	.04837
10^{6}	.013471	.097131	.050874	.018186	.111884	.052834
∞	$.0208 \overline{3}$.125	.0625	$.0208 \overline{3}$.125	.0625

Evidence for the density conjecture from $n=3,4$

Computations of te Riele \& Williams with $S_{3}-p$ fields for the first several billion primes are supportive of the conjecture. For $n=4$, we find

(s, λ)	$(0,211)$	$(1,211)$	$(2,211)$	$(0,4)$	$(1,4)$	$(2,4)$
10^{2}	.00	.03	.02	.00	.12	.02
10^{3}	.002	.056	.031	.013	.077	.034
10^{4}	.0080	.0698	.0399	.0161	.0965	.0462
10^{5}	.01047	.08589	.04567	.01676	.10525	.04837
10^{6}	.013471	.097131	.050874	.018186	.111884	.052834
∞	$.0208 \overline{3}$.125	.0625	$.0208 \overline{3}$.125	.0625

The experimental densities seem slowly converging to the conjectural asymptotic densities, just as in the $n=3$ case.

Evidence for the density conjecture from $n=3,4$

Computations of te Riele \& Williams with $S_{3}-p$ fields for the first several billion primes are supportive of the conjecture. For $n=4$, we find

(s, λ)	$(0,211)$	$(1,211)$	$(2,211)$	$(0,4)$	$(1,4)$	$(2,4)$
10^{2}	.00	.03	.02	.00	.12	.02
10^{3}	.002	.056	.031	.013	.077	.034
10^{4}	.0080	.0698	.0399	.0161	.0965	.0462
10^{5}	.01047	.08589	.04567	.01676	.10525	.04837
10^{6}	.013471	.097131	.050874	.018186	.111884	.052834
∞	$.0208 \overline{3}$.125	.0625	$.0208 \overline{3}$.125	.0625

The experimental densities seem slowly converging to the conjectural asymptotic densities, just as in the $n=3$ case. The computation supports the principle of independence of λ.

Evidence for the density conjecture from $n=3,4$

Computations of te Riele \& Williams with $S_{3}-p$ fields for the first several billion primes are supportive of the conjecture. For $n=4$, we find

(s, λ)	$(0,211)$	$(1,211)$	$(2,211)$	$(0,4)$	$(1,4)$	$(2,4)$
10^{2}	.00	.03	.02	.00	.12	.02
10^{3}	.002	.056	.031	.013	.077	.034
10^{4}	.0080	.0698	.0399	.0161	.0965	.0462
10^{5}	.01047	.08589	.04567	.01676	.10525	.04837
10^{6}	.013471	.097131	.050874	.018186	.111884	.052834
∞	$.0208 \overline{3}$.125	.0625	$.0208 \overline{3}$.125	.0625

The experimental densities seem slowly converging to the conjectural asymptotic densities, just as in the $n=3$ case. The computation supports the principle of independence of λ. It supports the predicted ratio $1: 6: 3$ for s ranging over $0,1,2$.

Thanks for your attention!

