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Definitions and Problems

Definitions
Given G a finite group with |G | > 1

and p a prime, a G -p field is a
Galois number field K ⊂ C satisfying

Gal(K/Q) ∼= G ,

disc(K/Q) = ±pa for some positive integer a.

KG ,p is the finite (and often empty) set of G -p fields.
PG is the list of primes, with each p listed |KG ,p| times.

Problems
For given G , determine

a non-empty initial segment of PG and its associated fields,

the density (if it exists!) of PG .
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1. Abelian Groups

The classical theory of cyclotomic fields gives complete results here.

Classical fact

|KG ,2| =


3 if G ∼= C2,

2 if G ∼= C2a with a ≥ 2,

1 if G ∼= C2 × C2a with a ≥ 1,

0 else.

If p > 2,

|KG ,p| =

{
1 if G is cyclic of order mpa with m dividing p − 1,

0 else.

Thus e.g. PC10 = 5; 11, 31, 41, 61, 71, . . . .
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2. Length Two Solvable Groups

A length two solvable group has the form G = G ′.G ab with G ′

abelian,

e.g. the quaternions Q = C2.C
2
2 .

If G ab is cyclic, then one has a semi-direct product G = G ′ : G ab,
e.g. the alternating group A4 = C 2

2 : C3.

Proposition
Let K be a G -p field with G solvable of length two. If p 6= 2 and
p 6 | |G ′|, then K is unramified over its maximal abelian subfield K G ′ .

Moral: For G solvable of length two, the study of G -p fields mostly
reduces to the classical theory of class numbers of abelian fields.
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Initial segments of some PG

G G ab pw Tame Primes

S3 2 3 23, 31, 59, 83, 107, 139, 199, 211, 229, 239, 257, 283, 307, 331

D5 2 47, 79, 103, 127, 131, 179, 227, 239, 347, 401, 439, 443, 479, 523

D7 2 7 71, 151, 223, 251, 431, 463, 467, 487, 503, 577, 587, 743, 811, 827

D11 2 11 167, 271, 659, 839, 967, 1283, 1297, 1303, 1307, 1459, 1531, 1583

D13 2 191, 263, 607, 631, 727, 1019, 1439, 1451, 1499, 1667, 1907, 2131

A4 3 163, 277, 349, 397, 547, 607, 709, 853, 937, 1009, 1399, 1699

7:3 3 313, 877, 1129, 1567, 1831, 1987, 2437, 2557, 3217, 3571, 4219

F5 4 5(2)101, 157, 173, 181, 197, 349, 373, 421, 457, 461, 613, 641, 653(2)

32:4 4 149, 293, 661, 733, 1373, 1381, 1613, 1621, 1733, 1973, 2861

F7 6 7 211, 463, 487, 619, 877, 907, 991, 1069, 1171, 1231, 1303, 1381
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3. General Solvable Groups: The Case G = S4

For general solvable groups, calculations involve iterative use of ray
class groups.

In general, it is best to divide up the fields considered according to
behavior at ∞ and behavior at p.

For G = S4 = C 2
2 : C3 : C2, the six parts of PG start like this:

λ\s 0 1 2

4 2713, 2777(2), 2857 59, 107, 139, 283(2) 229(2), 733, 1373

211 2777, 7537, 8069 283, 331, 491, 563 229, 257, 761

Experimentally, the density depends on s in a 1 : 6 : 3 ratio but does
not depend on λ.
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4. Non-Solvable G : A5, S5, A6, S6, G168, A7, S7

Initial segments of PG established by extensive search over candidate
defining polynomials. Results for A6:

Theorem
There are exactly two A6-p fields with p ≤ 1677. Moreover, the
minimal prime for an A6-p field with λ = 2211 is p = 3929.

p λ s fA6,p(x) clp(F6) clp(F t
6 ) clp

1579 42 2 x6 − x5 + 41x4 − 349x3 2·3·3 2·2·3·3 2·3
+12x2 + 3099x + 2851

1667 42 2 x6 − 2x5 − 39x4 + 60x3 2·3 2·2·3 2

+380x2 + 1267x + 100
...

3929 2211 2 x6 − x5 − 3x4 + 9x3 8·8·3 8·2·3 8

−8x2 + 2x − 1
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5. PGL2(7)

The Klüners-Malle website contains the polynomial

f0(x) = x8 − x7 + 3x6 − 3x5 + 2x4 − 2x3 + 5x2 + 5x + 1

defining a PGL2(7)-p field K for the remarkably small prime p = 53
(and ramification partition λ = 611).

Proposition

Assuming the generalized Riemann hypothesis, K is the only
PGL2(7)-p field with p ≤ 53.

Proof uses GRH bounds to eliminate all p ≤ 53 except p = 7 which is
eliminated unconditionally via Khare’s proof of the Serre conjecture.

(Could try to prove unconditionally by octic searches.)
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6. Groups 2r .G and 3.G for Non-Solvable G

Assorted results with base group G = A5, S5, A6, and S6.

For
example, consider the non-split extension 3.A6.

Proposition
P3.A6 begins 1579, 1579, 1579, 1667, . . . The first three fields are
given by

f3.A6,1579,a(x) =

x18 − 6x17 − 23x16 + 211x15 − 283x14 − 115x13 − 2146x12 +

6909x11 − 3119x10 + 9687x9 − 35475x8 − 3061x7 + 47135x6 +

14267x5 − 13368x4 − 19592x3 − 10421x2 − 4728x − 297

and its two cubic twists f3.A6,1579,b(x) and f3.A6,1579,c(x).
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7. Groups of the Form 2.G

Let K be a G -p field and let G̃ = 2.G be a double cover of G . Then
K embeds in a G̃ -p field K̃ if and only if complex conjugation c ∈ G
lifts to an order two element in G̃ . Instead of working with this
obstruction ε∞ ∈ {−1, 1}, one could work with εp ∈ {−1, 1}, as
ε∞εp = 1.

For example, take G = PGL2(11). Then PG begins at p = 11 with a
field K going back to at least 1888 (Kiepert). Likewise,

Proposition
PSL±11

begins 11, . . . with the first field given by

fSL±2 (11),11(x) =

x24 + 90p2x12 − 640p2x8 + 2280p2x6 − 512p2x4 + 2432px2 − p3.



7. Groups of the Form 2.G

Let K be a G -p field and let G̃ = 2.G be a double cover of G .

Then
K embeds in a G̃ -p field K̃ if and only if complex conjugation c ∈ G
lifts to an order two element in G̃ . Instead of working with this
obstruction ε∞ ∈ {−1, 1}, one could work with εp ∈ {−1, 1}, as
ε∞εp = 1.

For example, take G = PGL2(11). Then PG begins at p = 11 with a
field K going back to at least 1888 (Kiepert). Likewise,

Proposition
PSL±11

begins 11, . . . with the first field given by

fSL±2 (11),11(x) =

x24 + 90p2x12 − 640p2x8 + 2280p2x6 − 512p2x4 + 2432px2 − p3.



7. Groups of the Form 2.G

Let K be a G -p field and let G̃ = 2.G be a double cover of G . Then
K embeds in a G̃ -p field K̃ if and only if complex conjugation c ∈ G
lifts to an order two element in G̃ .

Instead of working with this
obstruction ε∞ ∈ {−1, 1}, one could work with εp ∈ {−1, 1}, as
ε∞εp = 1.

For example, take G = PGL2(11). Then PG begins at p = 11 with a
field K going back to at least 1888 (Kiepert). Likewise,

Proposition
PSL±11

begins 11, . . . with the first field given by

fSL±2 (11),11(x) =

x24 + 90p2x12 − 640p2x8 + 2280p2x6 − 512p2x4 + 2432px2 − p3.



7. Groups of the Form 2.G

Let K be a G -p field and let G̃ = 2.G be a double cover of G . Then
K embeds in a G̃ -p field K̃ if and only if complex conjugation c ∈ G
lifts to an order two element in G̃ . Instead of working with this
obstruction ε∞ ∈ {−1, 1},

one could work with εp ∈ {−1, 1}, as
ε∞εp = 1.

For example, take G = PGL2(11). Then PG begins at p = 11 with a
field K going back to at least 1888 (Kiepert). Likewise,

Proposition
PSL±11

begins 11, . . . with the first field given by

fSL±2 (11),11(x) =

x24 + 90p2x12 − 640p2x8 + 2280p2x6 − 512p2x4 + 2432px2 − p3.



7. Groups of the Form 2.G

Let K be a G -p field and let G̃ = 2.G be a double cover of G . Then
K embeds in a G̃ -p field K̃ if and only if complex conjugation c ∈ G
lifts to an order two element in G̃ . Instead of working with this
obstruction ε∞ ∈ {−1, 1}, one could work with εp ∈ {−1, 1},

as
ε∞εp = 1.

For example, take G = PGL2(11). Then PG begins at p = 11 with a
field K going back to at least 1888 (Kiepert). Likewise,

Proposition
PSL±11

begins 11, . . . with the first field given by

fSL±2 (11),11(x) =

x24 + 90p2x12 − 640p2x8 + 2280p2x6 − 512p2x4 + 2432px2 − p3.



7. Groups of the Form 2.G

Let K be a G -p field and let G̃ = 2.G be a double cover of G . Then
K embeds in a G̃ -p field K̃ if and only if complex conjugation c ∈ G
lifts to an order two element in G̃ . Instead of working with this
obstruction ε∞ ∈ {−1, 1}, one could work with εp ∈ {−1, 1}, as
ε∞εp = 1.

For example, take G = PGL2(11). Then PG begins at p = 11 with a
field K going back to at least 1888 (Kiepert). Likewise,

Proposition
PSL±11

begins 11, . . . with the first field given by

fSL±2 (11),11(x) =

x24 + 90p2x12 − 640p2x8 + 2280p2x6 − 512p2x4 + 2432px2 − p3.



7. Groups of the Form 2.G

Let K be a G -p field and let G̃ = 2.G be a double cover of G . Then
K embeds in a G̃ -p field K̃ if and only if complex conjugation c ∈ G
lifts to an order two element in G̃ . Instead of working with this
obstruction ε∞ ∈ {−1, 1}, one could work with εp ∈ {−1, 1}, as
ε∞εp = 1.

For example, take G = PGL2(11). Then PG begins at p = 11 with a
field K going back to at least 1888 (Kiepert).

Likewise,

Proposition
PSL±11

begins 11, . . . with the first field given by

fSL±2 (11),11(x) =

x24 + 90p2x12 − 640p2x8 + 2280p2x6 − 512p2x4 + 2432px2 − p3.



7. Groups of the Form 2.G

Let K be a G -p field and let G̃ = 2.G be a double cover of G . Then
K embeds in a G̃ -p field K̃ if and only if complex conjugation c ∈ G
lifts to an order two element in G̃ . Instead of working with this
obstruction ε∞ ∈ {−1, 1}, one could work with εp ∈ {−1, 1}, as
ε∞εp = 1.

For example, take G = PGL2(11). Then PG begins at p = 11 with a
field K going back to at least 1888 (Kiepert). Likewise,

Proposition
PSL±11

begins 11, . . . with the first field given by

fSL±2 (11),11(x) =

x24 + 90p2x12 − 640p2x8 + 2280p2x6 − 512p2x4 + 2432px2 − p3.



8. A Density Conjecture

Conjecture

Let G be a finite group with |G | > 1 and G ab cyclic. Then the ratio∑
p≤x |KG ,p|/

∑
p≤x 1 tends to a positive limit δG as x →∞.

Simple example: The conjecture is certainly true if G is the cyclic
group Cm. In fact, Ptame

Cm
is the set of primes congruent to 1 modulo

m ,and so δCm = 1/φ(m).

There is a natural candidate for δG in general. For G = Sn, it is

δn =
1

2

1

1 + δn6
Podd

n

bn/2c∑
s=0

1

(n − 2s)!s!2s

with a reason for each factor: εpε∞ = 1, |Out(Sn)| = 1 + δn6, the
number of possibilities for λ, and the fraction of permutations in Sn

which are involutions.
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The constant δn

In particular, one has

n 3 4 5 6 7

δn 0.3 0.416 0.325 0.13194 0.161

Thus e.g. |KS7,p| should have average size 0.161.

For general (rather than prime power) absolute discriminants, the
n = 3 case is the Davenport-Heilbronn theorem and the n = 4, 5 cases
are theorems of Bhargava. However we do not know theorems saying
that the prime power case behaves similarly to the general case.

For n ≥ 8, the quantity δn decreases rapidly with n.
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Evidence for the density conjecture from n = 3, 4

Computations of te Riele & Williams with S3-p fields for the first
several billion primes are supportive of the conjecture. For n = 4, we
find

(s, λ) (0, 211) (1, 211) (2, 211) (0, 4) (1, 4) (2, 4)

102 .00 .03 .02 .00 .12 .02

103 .002 .056 .031 .013 .077 .034

104 .0080 .0698 .0399 .0161 .0965 .0462

105 .01047 .08589 .04567 .01676 .10525 .04837

106 .013471 .097131 .050874 .018186 .111884 .052834

∞ .02083 .125 .0625 .02083 .125 .0625

The experimental densities seem slowly converging to the conjectural
asymptotic densities, just as in the n = 3 case. The computation
supports the principle of independence of λ. It supports the predicted
ratio 1 : 6 : 3 for s ranging over 0, 1, 2.
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Thanks for your attention!
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