Questions

1. Using a sign chart, find the values of x that satisfy $\frac{x^{3}-x^{2}-8 x+12}{3-x}>0$. Express your solution in both set notation and interval notation.
2. Using a sign chart, find the values of x that satisfy $\frac{(5 x-6)|2 x-4|}{x}>0$. Express your solution in both set notation and interval notation.
3. Using a sign chart, find the values of x that satisfy $\frac{(4 x+7) \sqrt{1-x}}{x+10} \leq 0$. Express your solution in both set notation and interval notation.

Solutions

1. Using a sign chart, find the values of x that satisfy $\frac{x^{3}-x^{2}-8 x+12}{3-x}>0$. Express your solution in both set notation and interval notation.

$$
f(x)=\frac{x^{3}-x^{2}-8 x+12}{3-x}
$$

Factor numerator):

$$
\text { factors of } a_{0}=12: \pm \pm \pm \pm, \pm 3, \pm 4, \pm 6, \pm 12
$$

So $f(x)=\frac{(x-2)^{2}(x+3)}{3-x}$
\Rightarrow potential rational zeros are
start checking: ± 1 won't wok by inspection
(I can look at at
$f(2)=(2)^{3}-(2)^{2}-8(2)+12=0$ it and see $\left.f(\pm 1) \neq 0\right)$ zeros: $x=2$, even mull, f does not change sign.
$\Rightarrow x-2$ will factor).

$$
\begin{gathered}
\Rightarrow x-2 \\
x-2 \sqrt{x^{2}+x^{2}-8 x+12} \\
\frac{x^{3}-2 x^{2}}{x^{2}-8 x+12} \\
\frac{x^{2}-2 x}{-6 x+12} \\
\frac{-6 x+12}{0}
\end{gathered}
$$

End behaviour: $x=-3$, odd mull, f changes
$f(x) \sim \frac{(x)^{2}(x)}{(-)} \sim-x^{2}, ~$ vertical asymptote: $x=3$, odd multi. fchangessign.
1 Sign chart:
$\Rightarrow f(x)<0$ as $x \rightarrow \infty$!

So $f(x)>0$ when $-3<x<2$ or $2<x<3$ (interval $x \in(-3,2) \cup(2,3)$ (set notation)
2. Using a sign chart, find the values of x that satisfy $\frac{(5 x-6)|2 x-4|}{x}>0$. Express your solution in both set notation and interval notation.
$f(x)=\frac{(5 x-6)|2 x-4|}{x}$ already factored!
$x \quad$ Note absolute value.
Sign chart from zeros/multiplicity:
Zeros: $x=6 / 5$, odd mull $\Rightarrow f$ changes sign.
$x=2$, absolute value $\Rightarrow f$ does not change sign.
vertical asymptote: $x=0$, odd mull $\Rightarrow f$ changes sign.
sign chart:

whoops. Need end behaviour to continue.

$$
f(x) \sim \frac{(5 x)|2 x|}{x}=10 x \text { if } x \rightarrow \infty \quad x \in
$$

$$
\begin{gathered}
f(x)>0 \text { when: } \\
x<0 \text { or } \frac{6}{5}<x<2 \\
\text { or } x>2 . \\
x \in(-\infty, 0) \cup\left(\frac{6}{5}, 2\right) \cup(2 p 0)
\end{gathered}
$$

3. Using a sign chart, find the values of x that satisfy $\frac{(4 x+7) \sqrt{1-x}}{x+10} \leq 0$. Express your solution in both set notation and interval notation.

$$
f(x)=\frac{(4 x+7) \sqrt{1-x}}{x+10} \text { factored: }
$$

Zeros: $x=-7 / 4, f$ changes sign (oddmult).
$x=1$. Square Root, so we need to look at domain.

$$
1-x \geq 0
$$

$$
x \leq 1
$$

\Rightarrow Ais not defined for $x>1$
Vertical Asymptotes: $x=-10$, f changes sign (oddmult.)
End behaviour (have to look at $x \rightarrow-\infty$)

$$
f(x) \sim \frac{(4 x) \sqrt{-x}}{x} \sim 4 \sqrt{-x}
$$

which is positive as $x \rightarrow-\infty$.
(Note that you could always switch to looking at signs of factors in intervals if end behaviour causes you some difficulty)

So $f(x) \leqslant 0$ when

$$
-10<x \leq-7 / 4
$$

or

$$
x \in(-10,-7 / 4]
$$

