Questions

1. Sketch by hand $\frac{x^2}{9} + \frac{y^2}{16} = 1$ and $(x-1)^2 + y^2 = 4$ on the same set of axes, and use the sketches to solve the system of equations

$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$
$$(x-1)^2 + y^2 = 4$$

Then check your solution to the system of equations by solving the system algebraically.

- **2.** Sketch $36(x-2)^2 + 4(y+5)^2 = 144$.
- **3.** Show $9x^2 + 4y^2 18x + 8y 23 = 0$ is an ellipse by completing the square. Then sketch the ellipse.
- **4.** Sketch $25y^2 9x^2 50y 54x 281 = 0$.

Solutions

1.

sketch
$$\frac{x^2}{q} + \frac{y^2}{16} = 1$$
.
This is an ellipse, centered
at $(0,0)$. $\frac{x^2}{3^2} + \frac{y^2}{4^2} = 1$.
sketch $(x-i)^2 + \frac{y^2}{4^2} = 1$.
Sketch $(x-i)^2 + \frac{y^2}{2} = 4$.
Sketch $(x-i)^2 + \frac{y^2}{2} = 4$.
This is a circle, centered
at $(1,0)$ with radius 2.
Verify solution to $\frac{x^2}{q} + \frac{y^2}{16} = 1$? is $x=3$
 $(x-i)^2 + \frac{y^2}{2} = 4$?
From second equation, $y^2 = 4 - (x-i)^2$. Substitute this into 1^{st} equation:
 $\frac{x^2}{q} + \frac{(4 - (x-i)^2)}{16} = 1$ Now solve for \times .
 $\frac{x}{q} + \frac{(4 - (x-i)^2)}{16} = 1$ Now solve for \times .
 $\frac{x^2}{q} + \frac{(4 - (x-i)^2)}{16} = 1$ Now solve for \times .
 $\frac{x^2}{q} + \frac{(4 - (x-i)^2)}{16} = 1$ Now solve for \times .
 $\frac{x^2}{q} + \frac{(4 - (x-i)^2)}{16} = 1$ Now solve for \times .
 $\frac{x^2}{15} + \frac{(4 - (x-i)^2)}{16} = 1$ Now solve for \times .
 $15x^2 + 2x - 141 = 0$ use quadratic
 $x = \frac{-2t}{2^2 + 4^2 - 141} = 0$ use quadratic
 $x = \frac{-2t}{2^2 + 4^2 - 141} = 0$ use quadratic
 $x = \frac{-2t}{2^2 + 4^2 - 141} = 0$ use quadratic
 $x = 3$ or $x = -4\frac{7}{15}$ so only real valued solution is
 $x = 3$, $y = 0$.

2. Sketch $36(x-2)^2 + 4(y+5)^2 = 144$.

The addition and squaring make us think this is an ellipse. Get it in standard form. $\left[36 (x-2)^{2} + 4 (y+5)^{2} = 144 \right] \frac{1}{144}$ $\frac{(x-z)^2}{4} + \frac{(y+5)^2}{24} = 1$ $\frac{(\chi-2)^2}{2^2} + \frac{(\gamma+5)^2}{(\gamma+5)^2} = 1$ Center: (2,-5) "spread" in x is q=2. (technically this is called the <u>semiminor</u>) axis) "spread" in y is b=6. (technically this is called the <u>semimajor</u>) axis) Draw the box, and ellipse goes in the box: (z,1) (0,-5) (2,-5) (2,-5)

Add the axes at end, using the box to figure out where they should go.

3. Show $9x^2 + 4y^2 - 18x + 8y - 23 = 0$ is an ellipse by completing the square. Then sketch the ellipse.

You must complete the square in x and y:

$$9x^{2}-18x = 9(x^{2}-2x)$$

$$= 9([x-i]^{2}-1)$$

$$= 9[[x-i]^{2}-9$$

$$4y^{2}+8y = 4(y^{2}-2y)$$

$$= 4((y^{2}+2y+1-1))$$

$$= 4([y+1]^{2}-1)$$

$$= 4([y+1]^{2}-4).$$
So $9x^{2}+4y^{2}-18x+8y-23$

$$= (9x^{2}-18x) + (4y^{2}+8y) - 23 \quad \text{replace with}$$

$$= 9(x-1)^{2}-9 + 4((y+1))^{2} - 4 - 23$$

$$= 9(x-1)^{2} + 4((y+1))^{2} - 36 = 0$$

$$\Rightarrow \frac{1}{36}[-9(x-1)^{2} + 4((y-1))^{2} - 36 = 0$$

$$\Rightarrow \frac{1}{36}[-9(x-1)^{2} + 4((y-1)^{2} - 36 = 0]$$

$$\Rightarrow \frac{1}{36}[-9(x-1)^{2}$$

4. Sketch $25y^2 - 9x^2 - 50y - 54x - 281 = 0$.

First, complete the square in x and y.

$$25g^{2} - 50y = 25(y^{2} - 2y) - 9x^{2} - 54x = -9(x^{2} + 6x + 9 - 9)$$

$$= 25((y^{-1})^{2} - 1) = -9((x + 3)^{2} - 9)$$

$$= 25((y - 1)^{2} - 1) = -9((x + 3)^{2} - 9)$$

$$= 25((y - 1)^{2} - 25)$$
Cur equation:

$$25y^{2} - 9x^{2} - 50y - 54x - 28I = 25y^{2} - 50y - 9x^{2} - 54x - 28I$$
we with we rave from rave