Questions

1. Sketch by hand $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$ and $(x-1)^{2}+y^{2}=4$ on the same set of axes, and use the sketches to solve the system of equations

$$
\begin{aligned}
& \frac{x^{2}}{9}+\frac{y^{2}}{16}=1 \\
& (x-1)^{2}+y^{2}=4
\end{aligned}
$$

Then check your solution to the system of equations by solving the system algebraically.
2. Sketch $36(x-2)^{2}+4(y+5)^{2}=144$.
3. Show $9 x^{2}+4 y^{2}-18 x+8 y-23=0$ is an ellipse by completing the square. Then sketch the ellipse.
4. Sketch $25 y^{2}-9 x^{2}-50 y-54 x-281=0$.

Solutions

1.

sketch $\frac{x^{2}}{9}+\frac{y^{2}}{16}=1$.
This is an ellipse, centered at $(0,0)$.

$$
\frac{x^{2}}{3^{2}}+\frac{y^{2}}{4^{2}}=1
$$

"spree dd" in x is $a=3$. "spread" ing is $b=4$.
sketch $(x-1)^{2}+y^{2}=4=2^{2}$
This is a circle, centered at $(1,0)$ with radius 2 .

Verify solution to $\left.\begin{array}{r}\frac{x^{2}}{9}+\frac{y^{2}}{16}=1 \\ (x-1)^{2}+y^{2}=4\end{array}\right\}$ is $\begin{array}{r}x=3 \\ y=0\end{array}:$
From second equation, $y^{2}=4-(x-1)^{2}$. Substitute this into $1^{\text {st }}$ equation:

$$
\begin{aligned}
& \frac{x^{2}}{9}+\frac{\left(4-(x-1)^{2}\right)}{16}=1 \text { Now solve for } x \text {. } \\
& 16 x^{2}+4-(x-1)^{2}=144 \\
& 16 x^{2}-x^{2}+2 x-1=140 \\
& 15 x^{2}+2 x=141 \\
& 15 x^{2}+2 x-141=0 \quad \text { use quadratic } \\
& x=\frac{-2 \pm \sqrt{2^{2}-4(15)(-141)}}{2(15)} \\
& x=3 \text { or } x=-47 / 15
\end{aligned}
$$

It's a bit hard to tell when drawn by hand, but it looks like the only intersection is $(3,0)$.
2. Sketch $36(x-2)^{2}+4(y+5)^{2}=144$.

The addition and squaring make as think this is an ellipse. Get it in standard form.

$$
\begin{gathered}
{\left[36(x-2)^{2}+4(y+5)^{2}=144\right] \frac{1}{144}} \\
\frac{(x-2)^{2}}{4}+\frac{(y+5)^{2}}{36}=1 \\
\frac{(x-2)^{2}}{2^{2}}+\frac{(y+5)^{2}}{6^{2}}=1
\end{gathered}
$$

Center: $(2,-5)$
"spread" in x is $a=2$. (technically this is called the semiminos axis) "spread" in y is $b=6$. (technically this is called the semimajos axis Draw the box, and cllipse goes in the box:

Add the axes at end, using the box to figure out where they should go.
3. Show $9 x^{2}+4 y^{2}-18 x+8 y-23=0$ is an ellipse by completing the square. Then sketch the ellipse.

$$
\begin{aligned}
& \text { You must complete the square in } x \text { and } y \text { : } \\
& 9 x^{2}-18 x=9\left(x^{2}-2 x\right) \\
& =9(\underbrace{x^{2}-2 x+1}-1) \\
& =9\left([x-1]^{2}-1\right) \\
& =9[x-1]^{2}-9 \\
& 4 y^{2}+8 y=4\left(y^{2}+2 y\right) \\
& =4(\underbrace{y^{2}+2 y+1}-1) \\
& =4\left([y+1]^{2}-1\right) \\
& =4[y+1]^{2}-4 \text {. } \\
& \text { So } 9 x^{2}+4 y^{2}-18 x+8 y-23 \\
& =\left(9 x^{2}-18 x\right)+\left(4 y^{2}+8 y\right)-23 \quad \begin{array}{l}
\text { replace with } \\
\text { what we found } \\
\text { above. }
\end{array} \\
& =9(x-1)^{2}-9+4(y+1)^{2}-4-23 \\
& =9(x-1)^{2}+4(y+1)^{2}-36=0 \\
& \Rightarrow \quad \frac{1}{36}\left[9(x-1)^{2}+4(y+1)^{2}=36\right] \\
& \frac{(x-1)^{2}}{4}+\frac{(y+1)^{2}}{9}=1 \text { or } \frac{(x-1)^{2}}{2^{2}}+\frac{(y+1)^{2}}{3^{2}}=1 \text {. } \\
& \text { Center: }(1,-1) \\
& \text { "spread" in } x \text { is } a=2 \text {. } \\
& \text { "spread" in } y \text { is } b=3 \text {. } \\
& \text { Draw the box } \\
& \text { Add axes at end. }
\end{aligned}
$$

4. Sketch $25 y^{2}-9 x^{2}-50 y-54 x-281=0$.

First, complete the square in x and y.

$$
\begin{aligned}
25 y^{2}-50 y & =25\left(y^{2}-2 y\right) & -9 x^{2}-54 x & =-9\left(x^{2}+6 x\right) \\
& =25\left(y^{2}-2 y+1-1\right) & & =-9\left(x^{2}+6 x+9-9\right) \\
& =25\left((y-1)^{2}-1\right) & & =-9\left((x+3)^{2}-9\right) \\
& =25(y-1)^{2}-25 & & =-9(x+3)^{2}+81
\end{aligned}
$$

our equation:

$$
\begin{aligned}
25 y^{2}-9 x^{2}-50 y-54 x-281 & =\underbrace{25 y^{2}-50 y}_{\text {replace }}=\underbrace{9 x^{2}-54 x}_{\text {replace }}-281 \\
& \begin{array}{l}
\text { use what we } \\
\text { nave form } \\
\text { completing }
\end{array} \\
& =25(y-1)^{2}-25-9(x+3)^{2}+81-281
\end{aligned} \begin{aligned}
& \text { the squire! }
\end{aligned}
$$

$$
=25(y-1)^{2}-9(x+3)^{2}-225=0
$$

$$
\text { So } \frac{1}{225}\left[25(y-1)^{2}-9(x+3)^{2}=225\right]
$$

form!

$$
\frac{(y-1)^{2}}{9}-\frac{(x+3)^{2}}{25}=1 \Rightarrow \frac{(y-1)^{2}}{3^{2}}-\frac{(x+3)^{2}}{5^{2}}=1
$$

Get Box:
Center $(-3,1)$.
"spread" in x is $a=5$.
"spread" in y is $b=3$.
Lines through cornel of box will be slant asymptotes.
This opens up, since if $y=1$, there is no solution, However, if $x=-3$ then

$$
\begin{gathered}
\frac{(y-1)^{2}}{3^{2}}-0=1 \\
\Rightarrow y-1= \pm 3 \\
y=-2,+4
\end{gathered}
$$

Lastly, add axes. (use spread of box to
figure out where they go).

