Questions

1. Using only algebraic methods, find the cubic function that satisfies the given table of values.

x	$\mathrm{f}(\mathrm{x})$
-2	0
-1	24
1	0
5	0

2. Graph the functions using a calculator

$$
f(x)=\frac{2 x^{3}-3 x^{2}-5 x-12}{x-3}, \quad g(x)=2 x^{2}-3 x+4, x \neq 3, \quad h(x)=2 x^{2}-3 x+4
$$

How are these functions related? Include a discussion of the domain and continuity of each function.
3. Find the zeros of $f(x)=2 x^{3}-5 x^{2}-9 x+18$ using the Rational Zero Theorem.

Solutions

1. Using only algebraic methods, find the cubic function with the given table of values. Check by sketching.

x	$\mathrm{f}(\mathrm{x})$
-2	0
-1	24
1	0
5	0

A cubic polynomial has four coefficients, $f(x)=a x^{3}+b x^{2}+c x+d$. Since we are given the three zeros of the polynomial, we can write the polynomial in factored form, with only one coefficient left to determine:

$$
f(x)=a\left(x-c_{1}\right)\left(x-c_{2}\right)\left(x-c_{3}\right)=a(x-(-2))(x-1)(x-5)=a(x+2)(x-1)(x-5)
$$

The fourth point given can be used to determine the coefficient a :

$$
\begin{aligned}
f(x) & =a(x+2)(x-1)(x-5) \\
f(-1) & =a((-1)+2)((-1)-1)((-1)-5)=24 \\
a(1)(-2)(-6) & =24 \\
a(12) & =24 \\
a & =\frac{24}{12}=2
\end{aligned}
$$

The cubic polynomial passing through the points is $f(x)=2(x+2)(x-1)(x-5)$.
2. Graph the functions using a calculator

$$
f(x)=\frac{2 x^{3}-3 x^{2}-5 x-12}{x-3}, \quad g(x)=2 x^{2}-3 x+4, x \neq 3, \quad h(x)=2 x^{2}-3 x+4
$$

How are these functions related? Include a discussion of the domain and continuity of each function.
I graphed these functions using a computer.
$\mathrm{y}=\frac{2 x^{3}-3 x^{2}-5 x-12}{x-3}$

The functions on the left and center are exactly the same. They both have domain $x \in(-\infty, 3) \cup(3, \infty)$ and are discontinuous at $x=3$ (the open circle on the sketch indicates the discontinuity).
The function $h(x)=2 x^{2}-3 x+4$ is different from f and g since it has domain $x \in(-\infty, \infty)$ and is continuous for all x.
It wasn't asked for, but you can show $f(x)=g(x)$ using algebra, but it requires a result we haven't seen yet.

$$
\begin{aligned}
f(x) & =\frac{2 x^{3}-3 x^{2}-5 x-12}{x-3} \\
& =\frac{\left(2 x^{2}-3 x+4\right)(x-3)}{x-3} \text { factor-the graph above give us the hint about the factoring } \\
& =\frac{\left(2 x^{2}-3 x+4\right)(x-3)}{x-3} \\
& =2 x^{2}-3 x+4, x-3 \neq 0 \text { looking ahead to Section Solving Equations in One Variable and Indeterminant Forms } \\
& =g(x)
\end{aligned}
$$

3. Find the zeros of $f(x)=2 x^{3}-5 x^{2}-9 x+18$ using the Rational Zero Theorem.

Factors of $a_{0}=18: \pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18$
Factors of $a_{4}=2: \pm 1, \pm 2$
Potential rational zeros of f are $\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{9}{2}$.

$$
\begin{aligned}
& f(1)=6 \\
& f(-1)=20 \\
& f(2)=-4 \\
& \begin{aligned}
& f(-2)=0 \leftarrow \text { so } x-(-2)=x+2 \\
& \text { will divide evenly } \\
& \text { into f. }
\end{aligned} \\
& x + 2 \longdiv { 2 x ^ { 3 } - 5 x ^ { 2 } - 9 x + 1 8 } \\
& \frac{2 x^{3}+4 x^{2}}{-9 x^{2}}-9 x \\
& -9 x^{2}-18 x \\
& \begin{array}{l}
9 x+18 \\
9 x+18
\end{array} \\
& \frac{9 x+18}{0} \\
& \begin{array}{l}
\text { Use Quadratic formula to } \\
x=\frac{9 \pm \sqrt{81-4(2)(9)}}{4}
\end{array} \\
& =\frac{9 \pm 3}{4}=3 \text { or } \frac{3}{2} .
\end{aligned}
$$

$$
\begin{aligned}
& \rightarrow f(x)=(x+2)\left(2 x^{2}-9 x+9\right) \\
& x=-2,3,3 / 2 \text {. }
\end{aligned}
$$

Using the Rational Zero Theorem isn't particularly hard, it just takes a while to implement since you have to check a bunch of possibilities to determine what might work as a factor, and there is no guarantee you'll find anything that works! For example, $f(x)=x^{4}-5 x^{2}+6$ has no rational factors, yet it has four real roots.

