Questions

1. Assuming x, y, and z are positive, use properties of logarithms to write the expression as a single logarithm.

$$
3 \ln \left(x^{3} y\right)+2 \ln \left(y z^{2}\right)-\ln (x y z)
$$

2. Sketch the function $f(x)=5 \ln (1-x)-4$ by transforming the basic function $y=\ln x$. Then analyze it for domain, range, continuity, increasing or decreasing behaviour, symmetry, boundedness, extrema, asymptotes, and end behaviour.

Solutions

1. Assuming x, y, and z are positive, use properties of logarithms to write the expression as a single logarithm.

$$
\begin{aligned}
3 \ln \left(x^{3} y\right)+2 \ln \left(y z^{2}\right)-\ln (x y z) & \\
3 \ln \left(x^{3} y\right)+2 \ln \left(y z^{2}\right)-\ln (x y z) & =\ln \left(\left(x^{3} y\right)^{3}\right)+\ln \left(\left(y z^{2}\right)^{2}\right)-\ln (x y z) \\
& =\ln \left(x^{9} y^{3}\right)+\ln \left(y^{2} z^{4}\right)-\ln (x y z) \\
& =\ln \left(\left(x^{9} y^{3}\right)\left(y^{2} z^{4}\right)\right)-\ln (x y z) \\
& =\ln \left(x^{9} y^{5} z^{4}\right)-\ln (x y z) \\
& =\ln \left(\frac{x^{9} y^{5} z^{4}}{x y z}\right) \\
& =\ln \left(x^{8} y^{4} z^{3}\right)
\end{aligned}
$$

2. Sketch the function $f(x)=5 \ln (1-x)-4$ by transforming the basic function $y=\ln x$. Then analyze it for domain, range, continuity, increasing or decreasing behaviour, symmetry, boundedness, extrema, asymptotes, and end behaviour.

Here are the algebraic representations of the transformations:
Basic function: $y=f(x)=\ln x$.
Flip about the y-axis: $y=f(-x)=\ln (-x)$.
Shift right 1 unit: $y=f(1-x)=\ln (1-x)$. (normally adding one would be a shift left, but since the x has a minus sign this is a shift right)
Stretch vertically by a factor of $5: y=5 f(1-x)=5 \ln (1-x)$.
Shift down by a factor of 4: $y=5 f(1-x)-4=5 \ln (1-x)-4$.

Here are the sketches:

Domain: $x \in(-\infty, 1)$
Range: $y \in(-\infty, \infty)$
Continuity: continuous for all x in the domain, $x \in(-\infty, 1)$
Increasing-decreasing behaviour: decreasing for all $x \in(-\infty, 1)$
Symmetry: none
Boundedness: not bounded
Local Extrema: none
Horizontal Asymptotes: none
Vertical Asymptotes: $x=1$
End behaviour: $\lim _{x \rightarrow-\infty}(5 \ln (1-x)-4)=\infty$ and $\lim _{x \rightarrow \infty}(5 \ln (1-x)-4)$ is not defined.

