Questions

1. State the power and constant of variation for the function $f(x) = -2x^{-3}$. Graph the function and analyze it (domain, range, asymptotes, extrema, etc.).

2. The power P (in watts) produced by a windmill is proportional to the cube of the wind speed v (in mph). If a wind of 10 mph generates 15 watts of power, how much power is generated by winds of 20, 40, and 80 mph? Make a table and explain the pattern.

3. Match the function to its graph

(i)
$$y = -2x^4$$
 (ii) $y = -2x^{1/4}$ (iii) $y = x^{1/4}$ (iv) $y = x^{-2}$ (v) $y = -\frac{1}{4}x^{-2}$ (vi) $y = x^3$

4. Is the function $f(x) = \frac{1}{3}x^{-3}$ even, odd, or neither? Is it continuous?

- 5. Is the function $f(x) = x^{1/3}$ even, odd, or neither?
- 6. Evaluate the following limits by thinking of what the sketch of the function looks like.
 - (a) $\lim_{x \to -\infty} x^4 =$ (b) $\lim_{x \to -\infty} x^3 =$ (c) $\lim_{x \to -\infty} x^{1/2} =$ (d) $\lim_{x \to \infty} x^3 =$

Solutions

1. State the power and constant of variation for the function $f(x) = -2x^{-3}$. Graph the function and analyze it.

The function has power -3. Since the power is less than zero, this is an inverse variation function. The constant of variation is -2.

Sketch (from the sketch of the basic function $y = x^{-1}$, so sketched by hand, not with a computer, although I used a computer to draw the sketches).

 $\begin{array}{l} \text{Domain: } x \in (-\infty,0) \cup (0,\infty).\\ \text{Range: } y \in (-\infty,0) \cup (0,\infty).\\ \text{Continuous: the function is discontinuous at } x = 0.\\ \text{Increasing/Decreasing: The function is increasing for } x \in (-\infty,0), \text{ and increasing for } x \in (0,\infty).\\ \text{Symmetric: The function is odd } (f(-x) = f(x)).\\ \text{Boundedness: The function is not bounded above or below.}\\ \text{Extrema: none.}\\ \text{Asymptotes: The function has a horizontal asymptote of } y = 0, \text{ and a vertical asymptote at } x = 0.\\ \text{Vertical Asymptotes: } \lim_{x \to 0^+} (-2x^{-3}) = -\infty, \qquad \lim_{x \to 0^-} (-2x^{-3}) = \infty.\\ \text{End Behaviour: } \lim_{x \to -\infty} (-2x^{-3}) = 0 \text{ and } \lim_{x \to \infty} (-2x^{-3}) = 0 \end{array}$

2. The power P (in watts) produced by a windmill is proportional to the cube of the wind speed v (in mph). If a wind of 10 mph generates 15 watts of power, how much power is generated by winds of 20, 40, and 80 mph? Make a table and explain the pattern.

We are told the power is proportional to the cube of the wind speed. Converting that to mathematics leads us to write

 $P \propto v^3$

where P is the power in watts and v is the wind speed in mph. The symbol between them indicates that they are proportional to each other.

We need to know a relation for when they are equal, and we can get that by inserting a *proportionality constant k*:

 $P = kv^3$

You could have started your solution with this relation. We don't know the value of k yet, but we can find it using some of the information given.

We are told that when v = 10 mph, P = 15 watts, and we can use this do determine the constant k:

$$P = kv^{3}$$

$$15 = k10^{3}$$

$$\frac{15}{1000} = k$$

$$k = \frac{3}{200}$$

and we can write the relation between wind speed in mph and power in watts as:

$$P = \frac{3}{200}v^3.$$

Now we can construct the table that is asked for:

$v \pmod{v}$	$P = \frac{3}{200}v^3 \text{ (watts)}$
10	15 (this data was given)
20	120
40	960
80	7680

The values for P at wind speeds of 20, 40, 80 mph were calculated using the relation. As the wind speed increases, the power grows rapidly, by a cubic relation. The proportionality constant k = 3/200 scales the cubic growth.

3. Match the function to its graph

4. Is the function $f(x) = \frac{1}{3}x^{-3}$ even, odd, or neither? Is it continuous?

To check even/odd/neither, we evaluate f(-x) and see what it simplifies to.

$$f(-x) = \frac{1}{3}(-x)^{-3} = \frac{1}{3} \cdot \frac{1}{(-x)^3} = -\frac{1}{3} \cdot \frac{1}{x^3} = -\frac{1}{3}x^{-3} = -f(x)$$

So, since f(-x) = -f(x), we have that f is odd. Since it is not defined at x = 0, it is not continuous at x = 0.

5. Is the function $f(x) = x^{1/3}$ even, odd, or neither?

$$f(-x) = (-x)^{1/3} = -x^{1/3} = -f(x)$$

So, since f(-x) = -f(x), we have that f is odd.

- 6. Evaluate the following limits by thinking of what the sketch of the function looks like.
 - (a) $\lim_{x \to -\infty} x^4 = \infty$ (b) $\lim_{x \to -\infty} x^3 = -\infty$ (c) $\lim_{x \to -\infty} x^{1/2}$ does not exist, since the domain of $x^{1/2} = \sqrt{x}$ is x > 0(d) $\lim_{x \to \infty} x^3 = \infty$