Questions

1. State the degree and list the zeros of the polynomial function $f(x)=(x-1)^{3}(x+2)^{2}$. State the multiplicity of each zero and whether the graph crosses the x-axis at the corresponding x-intercept. Then sketch the graph of the polynomial function by hand.
2. Using only algebra, find a cubic function with zeros given by $1,1+\sqrt{2}, 1-\sqrt{2}$.
3. Sketch $f(x)=(4 x-7)(9-x)(13-x)^{2}$.

Solutions

1. State the degree and list the zeros of the polynomial function $f(x)=(x-1)^{3}(x+2)^{2}$. State the multiplicity of each zero and whether the graph crosses the x-axis at the corresponding x-intercept. Then sketch the graph of the polynomial function by hand.

This is a fifth degree polynomial, so it will have at most 5 real valued roots and 4 local extrema.

The polynomial will have two zeros, at $x=-2,1$.
The polynomial will change sign (cross the x axis) at the roots with odd multiplicity; these roots are $x=1$ multiplicity 3 ,
The polynomial will not change sign (cross the x axis) at the roots with even multiplicity; these roots are $x=-2$ multiplicity 2 .
The end behaviour of the polynomial is found by determining the leading term, which is

$$
(x-1)^{3}(x+2)^{2} \sim(x)^{3}(x)^{2}=x^{5} \text { for large }|x|
$$

The end behaviour of the monomial x^{5} is

$$
\lim _{x \rightarrow-\infty} x^{5}=-\infty \quad \lim _{x \rightarrow \infty} x^{5}=\infty
$$

This sketch tells us the end behaviour of the polynomial.

Putting it all together, we can sketch the polynomial f

2. Using only algebra, find a cubic function with zeros given by $1,1+\sqrt{2}, 1-\sqrt{2}$.

We can get the cubic from the zeros by writing the factored form, where c_{i} are the roots. In this case, we are given all three roots, so each root is multiplicity one.

$$
\begin{aligned}
f(x) & =\left(x-c_{1}\right)\left(x-c_{2}\right)\left(x-c_{3}\right) \\
& =(x-1)(x-(1+\sqrt{2}))(x-(1-\sqrt{2})) \\
& =(x-1)\left(x^{2}-2 x-1\right) \\
& =\left(x^{3}-2 x^{2}-x\right)-\left(x^{2}-2 x-1\right) \\
& =x^{3}-2 x^{2}-x-x^{2}+2 x+1 \\
& =x^{3}-3 x^{2}+x+1
\end{aligned}
$$

I have simplified to standard form for a polynomial.

Check our answer by substituting in the roots:

$$
\begin{aligned}
f(1) & =(1)^{3}-3(1)^{2}+(1)+1 \\
& =0 \\
f(1+\sqrt{2}) & =(1+\sqrt{2})^{3}-3(1+\sqrt{2})^{2}+(1+\sqrt{2})+1 \\
& =\left(1+3 \sqrt{2}+3(\sqrt{2})^{2}+(\sqrt{2})^{3}\right)-3\left(1+2 \sqrt{2}+(\sqrt{2})^{2}\right)+(1+\sqrt{2})+1 \\
& =1+3 \sqrt{2}+6+2 \sqrt{2}-3-6 \sqrt{2}-6+1+\sqrt{2}+1 \\
& =0 \\
f(1-\sqrt{2}) & =(1-\sqrt{2})^{3}-3(1-\sqrt{2})^{2}+(1-\sqrt{2})+1 \\
& =\left(1-3 \sqrt{2}+3(\sqrt{2})^{2}-(\sqrt{2})^{3}\right)-3\left(1-2 \sqrt{2}+(\sqrt{2})^{2}\right)+(1-\sqrt{2})+1 \\
& =1-3 \sqrt{2}+6-2 \sqrt{2}-3+6 \sqrt{2}-6+1-\sqrt{2}+1 \\
& =0
\end{aligned}
$$

3. Sketch $f(x)=(4 x-7)(9-x)(13-x)^{2}$.

Zeros: $\quad 4 x-7=0 \Rightarrow x=7 / 4$ multiplicity 1, so f will change sign.
$9-x=0 \Rightarrow x=9$ multiplicity 1 , so f will change sign.
$13-x=0 \Rightarrow x=13$ multiplicity 2 , oof does not change sign.
End be haviour: $f(x)=(4 x-7)(9-x)(13-x)^{2}$

$$
\sim(4 x)(-x)(-x)^{2} \text { if }|x| \text { large }
$$

$$
\sim(4 x)(-x) x^{2}
$$

$$
2-4 x^{4} \longrightarrow
$$

So $\lim _{x \rightarrow \infty} f(x)=-\infty$ and $\lim _{x \rightarrow-\infty} f(x)=-\infty$
sketch

