Note: There will be no trig based questions on the tests.

Questions

1. Eliminate the parameter t and identify the graph of the parametric curve $x=t^{2}, y=t+1$.
2. Eliminate the parameter t using trig identities and identify the graph of the parametric curve $x=4+3 \cos t, y=-5+2 \sin t$.
3. Find a parameterization of the line segment between the points $(1,2)$ and $(-4,5)$.
4. Sketch the parametric curve

$$
\begin{aligned}
& x=1+t \\
& y=t
\end{aligned}
$$

by eliminating the parameter.
5. Sketch the parametric curve

$$
\begin{aligned}
x & =5-3 t \\
y & =2+t \\
& -1 \leq t \leq 3
\end{aligned}
$$

by eliminating the parameter.
6. Sketch the parametric curve

$$
\begin{gathered}
x=t-3 \\
y=2 / t \\
|t| \leq 5
\end{gathered}
$$

by eliminating the parameter.
7. Sketch the parametric curve

$$
\begin{aligned}
& x=2 t^{2}-1 \\
& y=t^{4}
\end{aligned}
$$

by eliminating the parameter.
8. For the parametric curve

$$
\begin{aligned}
& x=a t+b \\
& y=c t+d
\end{aligned}
$$

where a and c are not both zero.
(a) Eliminate the parameter t and explain why its graph is a line.
(b) Find the slope, y-intercept, and x-intercept if they exist.
(c) Under what conditions would the line be horizontal? Vertical?
9. For the parametric curve

$$
\begin{gathered}
x=t c+(1-t) a \\
y=t d+(1-t) b \\
0 \leq t \leq 1
\end{gathered}
$$

(a) Determine the value of t that divides the line into two equal segments.
(b) Determine the value of t that divides the line into three equal segments.
(c) What do you think the values of t should be to split the line into n equal segments?

Solutions

1. Eliminate the parameter t and identify the graph of the parametric curve $x=t^{2}, y=t+1$.

We can write $t=y-1$ and substitute as follows:

$$
\begin{aligned}
x & =t^{2} \\
& =(y-1)^{2}
\end{aligned}
$$

This is a parabola, which opens to the right with vertex $(0,1)$.
2. Eliminate the parameter t using trig identities and identify the graph of the parametric curve $x=4+3 \cos t, y=-5+2 \sin t$.

We see this is most likely an ellipse, so try to use $\cos ^{2} t+\sin ^{2} t=1$

$$
\begin{aligned}
\cos t & =\frac{x-4}{3} \Rightarrow \cos ^{2} t=\frac{(x-4)^{2}}{3^{2}} \\
\sin t & =\frac{y+5}{2} \Rightarrow \sin ^{2} t=\frac{(y+5)^{2}}{2^{2}}
\end{aligned}
$$

Substitute into the trig identity:

$$
\begin{aligned}
\cos ^{2} t+\sin ^{2} t & =1 \\
\frac{(x-4)^{2}}{3^{2}}+\frac{(y+5)^{2}}{2^{2}} & =1
\end{aligned}
$$

And we can see this is an ellipse with center $(4,-5)$ and $a=3$ and $b=2$.
3. Find a parametrization of the line segment between the points $(1,2)$ and $(-4,5)$.

$$
\begin{aligned}
& x=(1-t) 1+t(-4)=1-5 t \\
& y=(1-t) 2+t(5)=2+3 t, \quad 0 \leq t \leq 1
\end{aligned}
$$

4. Sketch the parametric curve

$$
\begin{aligned}
& x=1+t \\
& y=t
\end{aligned}
$$

by eliminating the parameter.

$$
\begin{aligned}
& \left.\begin{array}{l}
x=1+t \\
y=t
\end{array}\right\} \begin{array}{l}
\text { put second equation } \\
\text { into first. }
\end{array} \\
& \qquad y=1+t y
\end{aligned} \quad \rightarrow y=x-1
$$

5. Sketch the parametric curve

$$
\begin{aligned}
x & =5-3 t \\
y & =2+t \\
& -1 \leq t \leq 3
\end{aligned}
$$

by eliminating the parameter.

$$
\begin{aligned}
& x=5-3 t \quad \text { Solve } 2^{n D} \text { equation for } t \\
& y=2+t \quad \text { sub into } 1^{\text {st }} \text { equation. } \\
& -1 \leq t \leq 3 \\
& x=5-3(y-2) \\
& x=5-3 y+6 \\
& x=11-3 y \\
& y=-\frac{1}{3} x+\frac{11}{3} \\
& \underbrace{\substack{x=5-3 t \\
y=2+t \\
-1 \leq t \leq 3 \\
(8,1)}}_{\substack{(-4,5)}} \\
& \text { straight line. }
\end{aligned}
$$

$$
\begin{aligned}
& t=3: \quad x=5-3(3)=-4 \quad(-4,5) \quad \text { are on } \quad y=\frac{-1}{3} x+\frac{11}{3} \text {, } \\
& \begin{array}{ll}
y=2+(3)=5 \quad & \text { so we probably simplified } \\
& \text { correctly. }
\end{array}
\end{aligned}
$$

6. Sketch the parametric curve

$$
\begin{gathered}
x=t-3 \\
y=2 / t \\
|t| \leq 5
\end{gathered}
$$

by eliminating the parameter.

7. Sketch the parametric curve

$$
\begin{aligned}
& x=2 t^{2}-1 \\
& y=t^{4}
\end{aligned}
$$

by eliminating the parameter.

$$
\begin{aligned}
& \begin{aligned}
x & =2 t^{2}-1 \\
y & =t^{4}
\end{aligned} \\
& \text { Solve } 1 \text { st equation } \\
& \text { for } t^{2}=\frac{x+1}{2} \\
& \text { sub into second: } \\
& y=\left(t^{2}\right)^{2} \\
& =\left(\frac{x+1}{2}\right)^{2} \\
& =\frac{1}{4}(x+1)^{2} \\
& \text { sketch by transforming }
\end{aligned}
$$

 vertical compression by a factor of 4 .
8. For the parametric curve

$$
\begin{aligned}
& x=a t+b \\
& y=c t+d
\end{aligned}
$$

where a and c are not both zero.
(a) Eliminate the parameter t and explain why its graph is a line.
(b) Find the slope, y-intercept, and x-intercept if they exist.
(c) Under what conditions would the line be horizontal? Vertical?

$$
\begin{aligned}
& \begin{array}{l}
x=a t+b \quad a \neq 0 \\
y=c t+d \quad c \neq 0 \\
\text { Eliminate } t: \\
t=\frac{x-b}{a}=\frac{y-d}{c} \\
\text { Notice this is where } a \neq 0, c \neq 0 \text { and abe: one } \\
\text { must occur to avoid division }\} \begin{array}{l}
\text { of } a, b \text { could } \\
\text { be zen, inst } \\
\text { not both. }
\end{array} \\
\text { by zero. Let's solve for } y \text { : } \\
\qquad y=\frac{c}{a}(x-b)+d \\
=\frac{c}{a} x+d-\frac{c b}{a} . \\
\text { straight line (linear) with slope } \frac{c}{a} \\
\text { and } y \text {-intercept } d-\frac{c b}{a} .
\end{array}
\end{aligned}
$$

9. For the parametric curve

$$
\begin{gathered}
x=t c+(1-t) a \\
y=t d+(1-t) b \\
0 \leq t \leq 1
\end{gathered}
$$

(a) Determine the value of t that divides the line into two equal segments. (b) Determine the value of t that divides the line into three equal segments. (c) What do you think the values of t should be to split the line into n equal segments?

$$
\begin{aligned}
& \begin{array}{r}
x=t c+(1-t) a \\
y= \\
\quad t d+(1-t) b \\
\\
0 \leq t \leq 1
\end{array} \\
& \text { at } t=0, \quad(x, y)=(a, b) \\
& t=1, \quad(x, y)=(c, d) \\
& \text { at } t=1 / 2, \quad(x, y)=\left(\frac{c+a}{2}, \frac{d+b}{2}\right) \\
& \text { ie) midpoint of line. } \\
& \text { at } t=1 / 3, \quad(x, y)=\left(\frac{e+2 a}{3}, \frac{d+2 b}{3}\right) \\
& t=2 / 3, \quad(x, y)=\left(\frac{2 c+a}{3}, \frac{2 d+b}{3}\right) \\
& \text { ie) } \quad t=1 / 3,2 / 3 \text { split line into } \\
& \quad \text { three equal pieces. }
\end{aligned}
$$

