Questions

1. Given the parametric equations

 $x = t + 1, \quad y = t^2 - 2t.$

Find the points determined by t = -3, -2, -1, 0, 1, 2, 3. Find a direct relationship between x and y. Is this an explicit function relationship? Graph the relationship in the xy-plane.

2. Find a formula for $f^{-1}(x)$ given $f(x) = \sqrt{x-3}$. Give the domain of $f^{-1}(x)$.

3. Find a formula for $f^{-1}(x)$ given $f(x) = (x-2)^{1/3}$. Give the domain of $f^{-1}(x)$.

4. Find a formula $f^{-1}(x)$ for the inverse of the function (you do not have to discuss domain and range):

$$f(x) = \frac{1+5x}{3-2x}$$

5. Find a formula $f^{-1}(x)$ for the inverse of the function $f(x) = -\sqrt{2x-1} + 1$. What are the domain and range for f? The domain and range for f^{-1} ?

Solutions

1. Given the parametric equations

 $x = t + 1, \quad y = t^2 - 2t.$

Find the points determined by t = -3, -2, -1, 0, 1, 2, 3. Find a direct relationship between x and y. Is this an explicit function relationship? Graph the relationship in the xy-plane.

t	x = t + 1	$y = t^2 - 2t$
-3	-2	15
-2	-1	8
-1	0	3
0	1	0
1	2	-1
2	3	0
3	4	3

To find a direct relationship, we need to eliminate the parameter t from the two equations.

Solve x = t + 1 for t: t = x - 1. Substitute t = x - 1 into the equation $y = t^2 - 2t$:

$$y = t^{2} - 2t$$

= $(x - 1)^{2} - 2(x - 1)$
= $x^{2} - 2x + 1 - 2x + 2$
= $x^{2} - 4x + 3$

The function is a quadratic. We could sketch this by hand, but here I want to check that the sketch agrees with the table of values we found above, so I will use a computer to sketch it for me.

Here is a sketch I created using Mathematica:

Notice the points on the sketch agree with the table we created above.

2. Find a formula for $f^{-1}(x)$ given $f(x) = \sqrt{x-3}$. Give the domain of $f^{-1}(x)$.

$$y = \sqrt{x-3} \quad \text{Step 1: let } y = f(x)$$

$$x = \sqrt{y-3} \quad \text{Step 2: Flip } x \text{ and } y$$

$$x^2 = (y-3) \quad \text{Step 3: Solve for } y$$

$$x^2 + 3 = y$$

$$y = x^2 + 3$$

$$f^{-1}(x) = x^2 + 3 \quad \text{Finally, } f^{-1}(x) = y$$

The function f has a range of $y \in [0, \infty)$. This imposes a restriction on the domain of $f^{-1}(x)$. Since $x^2 + 3$ has domain $x \in (-\infty, \infty)$, the domain of $f^{-1}(x)$ is $x \in [0, \infty)$.

It wasn't asked for in the question, but here is a sketch I created using *Mathematica*, that shows the graphical reflection of the inverse function about the lines y = x.

3. Find a formula for $f^{-1}(x)$ given $f(x) = (x-2)^{1/3}$. Give the domain of $f^{-1}(x)$.

$$y = (x-2)^{1/3} \text{ Step 1: let } y = f(x)$$

$$x = (y-2)^{1/3} \text{ Step 2: Flip } x \text{ and } y$$

$$x^{3} = (y-2) \text{ Step 3: Solve for } y$$

$$x^{3}+2 = y$$

$$y = x^{3}+2$$

$$f^{-1}(x) = x^{3}+2 \text{ Finally, } f^{-1}(x) = y$$

Since there is no restriction imposed by f, the domain of $f^{-1}(x)$ is $x \in (-\infty, \infty)$.

4. Find a formula $f^{-1}(x)$ for the inverse of the function (you do not have to discuss domain and range):

$$f(x) = \frac{1+5x}{3-2x}$$

$$y = \frac{1+5x}{3-2x} \quad \text{Step 1: let } y = f(x)$$

$$x = \frac{1+5y}{3-2y} \quad \text{Step 2: Flip } x \text{ and } y$$

$$(3-2y)x = 1+5y$$

$$3x-2xy = 1+5y$$

$$-2xy-5y = 1-3x$$

$$(-2x-5)y = 1-3x$$

$$y = \frac{1-3x}{-2x-5} = \frac{3x-1}{2x+5}$$

$$f^{-1}(x) = \frac{3x-1}{2x+5} \quad \text{Finally, we have } f^{-1}(x) = y = \frac{3x-1}{2x+5}$$

5. Find a formula $f^{-1}(x)$ for the inverse of the function $f(x) = -\sqrt{2x-1} + 1$. What are the domain and range for f? The domain and range for f^{-1} ?

Let's do the domain and ranges of f first. Since we must take the square root of something greater than or equal to zero, we require

$$2x - 1 \ge 0 \Rightarrow x \ge \frac{1}{2}$$

The domain of f is $x \ge 1/2$.

Since the square root is always less than or equal to zero (since we have a minus in front), and then we are adding one, the range of f is $y \in (-\infty, 1]$.

These are simply flipped for the inverse function.

The domain of f^{-1} is $x \in (-\infty, 1]$, and the range of f^{-1} is $y \ge 1/2$.

$$\begin{array}{rcl} y &=& -\sqrt{2x-1}+1 & {\rm Step \ 1: \ let \ } y=f(x) \\ x &=& -\sqrt{2y-1}+1 & {\rm Step \ 2: \ Flip \ } x \ {\rm and \ } y \\ (x-1)^2 &=& 2y-1 \\ 2y &=& (x-1)^2+1 \\ y &=& \frac{(x-1)^2+1}{2} \\ f^{-1}(x) &=& \frac{(x-1)^2+1}{2} \end{array} \ {\rm Finally, \ we \ have \ } f^{-1}(x)=y=\frac{(x-1)^2+1}{2} \end{array}$$

Summary:

$$f(x) = -\sqrt{2x - 1} + 1$$
 with domain $x \in (1/2, \infty)$, range $y \in (-\infty, 1)$.
 $f^{-1}(x) = \frac{(x - 1)^2 + 1}{2}$ with domain $x \in (-\infty, 1)$, range $y \in (1/2, \infty)$.