Questions

1. Solve $\cos 2 x+\cos x=0$ algebraically for exact solutions in the interval $[0,2 \pi)$.
2. Solve $\cos 2 x+\sin x=0$ algebraically for exact solutions in the interval $[0,2 \pi)$.

Solutions

1. Solve $\cos 2 x+\cos x=0$ algebraically for exact solutions in the interval $[0,2 \pi)$.

$$
\begin{aligned}
\cos 2 x+\cos x & =\cos ^{2} x-\sin ^{2} x+\cos x \\
& =\cos ^{2} x-\left(1-\cos ^{2} x\right)+\cos x \\
& =2 \cos ^{2} x+\cos x-1=0
\end{aligned}
$$

Let $y=\cos x$. Then

$$
\begin{aligned}
\cos 2 x+\cos x & =2 \cos ^{2} x+\cos x-1=0 \\
& =2 y^{2}+y-1=0 \\
y & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-1 \pm \sqrt{1+8}}{4} \\
& =\frac{-1 \pm 3}{4} \\
& =\frac{2}{4} \text { or } \frac{-4}{4}=\frac{1}{2} \text { or }-1
\end{aligned}
$$

So we must solve $y=\cos x=1 / 2$ and $y=\cos x=-1$.
The equation $\cos x=-1$ has a solution of π in the interval $[0,2 \pi)$.
The equation $\cos x=\operatorname{adj} /$ hyp $=1 / 2$ corresponds to one of our special triangles:

So the solution is $\pi / 3$. There is also a solution at $2 \pi-\pi / 3=5 \pi / 3$ in the interval $[0,2 \pi)$ (the solution in Quadrant IV).

The solutions to $\cos 2 x+\cos x=0$ in the interval $[0,2 \pi)$ are $\frac{\pi}{3}, \pi, \frac{5 \pi}{3}$.
2. Solve $\cos 2 x+\sin x=0$ algebraically for exact solutions in the interval $[0,2 \pi)$.

$$
\begin{aligned}
\cos 2 x+\sin x & =\cos ^{2} x-\sin ^{2} x+\sin x \\
& =1-\sin ^{2} x-\sin ^{2} x+\sin x \\
& =-2 \sin ^{2} x+\sin x+1=0
\end{aligned}
$$

Let $y=\sin x$. Then

$$
\begin{aligned}
\cos 2 x+\sin x & =-2 \sin ^{2} x+\sin x+1=0 \\
& =-2 y^{2}+y+1=0 \\
y & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-1 \pm \sqrt{1+8}}{-4}=\frac{-1 \pm 3}{-4} \\
& =\frac{2}{-4} \text { or } \frac{-4}{-4}=-\frac{1}{2} \text { or } 1
\end{aligned}
$$

So we must solve $y=\sin x=-1 / 2$ and $y=\sin x=1$.
The equation $\sin x=1$ has a solution of $\pi / 2$ in the interval $[0,2 \pi)$.

The equation $\sin x=\mathrm{opp} /$ hyp $=1 / 2$ corresponds to one of our special triangles:

So the solution to $\sin x=1 / 2$ is $\pi / 6$. We need to do a Quadrant analysis to get the solution to $\sin x=-1 / 2$

Since the sine is negative, that means we get solutions in Quadrants III and IV.

Quadrant III: $\pi / 6+\pi=7 \pi / 6$. Quadrant IV: $2 \pi-\pi / 6=11 \pi / 6$.
The solutions to $\cos 2 x+\sin x=0$ in the interval $[0,2 \pi)$ are $\frac{\pi}{2}, \frac{7 \pi}{6}, \frac{11 \pi}{6}$.

