Questions

1. Find the vertex and axis of symmetry of $f(x)=5 x^{2}-6 x+4$.
2. Use completing the square to describe and sketch the graph of $f(x)=5 x^{2}-25 x+12$.
3. Find the point of intersection between the line that passes through the two points $(1,2)$ and (3, 7), and the line perpendicular to this first line that passes through the point $(2,4)$. Draw a sketch of the situation that is as accurate as possible.

Solutions

1. Find the vertex and axis of symmetry of $f(x)=5 x^{2}-6 x+4$.

I'll use completing the square to write this in vertex form, and then just read off the vertex and axis of symmetry.

$$
\begin{aligned}
f(x) & =5 x^{2}-6 x+4 \\
& =5\left(x^{2}+\left(\frac{-6}{5}\right) x\right)+4 \\
& =5\left(x^{2}+\left(\frac{-6}{5}\right) x+\left(\frac{-3}{5}\right)^{2}-\left(\frac{-3}{5}\right)^{2}\right)+4 \\
& =5\left(x^{2}+\left(\frac{-6}{5}\right) x+\left(\frac{-3}{5}\right)^{2}-\left(\frac{-3}{5}\right)^{2}\right)+4 \\
& =5\left(\left[x+\left(\frac{-3}{5}\right)\right]^{2}-\left(\frac{-3}{5}\right)^{2}\right)+4 \\
& =5\left(\left[x-\frac{3}{5}\right]^{2}-\left(\frac{-3}{5}\right)^{2}\right)+4 \\
& =5\left[x-\frac{3}{5}\right]^{2}-5\left(\frac{-3}{5}\right)^{2}+4 \\
& =5\left[x-\frac{3}{5}\right]^{2}-\frac{9}{5}+\frac{20}{5} \\
& =5\left[x-\frac{3}{5}\right]^{2}+\frac{11}{5}
\end{aligned}
$$

This is now in the vertex form, and we can identify the vertex as $(h, k)=\left(\frac{3}{5}, \frac{11}{5}\right)$ and axis of symmetry $x=\frac{3}{5}$.
2. Use completing the square to describe and sketch the graph of $f(x)=5 x^{2}-25 x+12$.

$$
\begin{aligned}
f(x) & =5 x^{2}-25 x+12 \\
& =5\left(x^{2}+(-5) x\right)+12 \\
& =5\left(x^{2}+(-5) x+\left(\frac{-5}{2}\right)^{2}-\left(\frac{-5}{2}\right)^{2}\right)+12 \\
& =5\left(x^{2}+(-5) x+\left(\frac{-5}{2}\right)^{2}-\left(\frac{-5}{2}\right)^{2}\right)+12 \\
& =5\left(\left[x+\left(\frac{-5}{2}\right)\right]^{2}-\left(\frac{-5}{2}\right)^{2}\right)+12 \\
& =5\left(\left[x-\frac{5}{2}\right]^{2}-\left(\frac{-5}{2}\right)^{2}\right)+12 \quad \text { notice how our treatment of the minus sign for } b \text { was done! }
\end{aligned}
$$

$$
\begin{aligned}
& =5\left[x-\frac{5}{2}\right]^{2}-5\left(\frac{-5}{2}\right)^{2}+12 \quad \text { simplify } \\
& =5\left[x-\frac{5}{2}\right]^{2}-\frac{125}{4}+\frac{48}{4} \\
& =5\left[x-\frac{5}{2}\right]^{2}-\frac{77}{4}
\end{aligned}
$$

This is now in the vertex form, and we can identify the vertex as $(h, k)=\left(\frac{5}{2},-\frac{77}{4}\right)$ and axis of symmetry $x=\frac{5}{2}$. It will open upwards since the coefficient in front of x^{2} is positive. Since the vertex is below the x axis and the graph opens up, the graph will intersect the x-axis in two places. These roots can be found by setting $g(x)=0$:

$$
\begin{aligned}
g(x)=0 & =5\left[x-\frac{5}{2}\right]^{2}-\frac{77}{4} \\
5\left[x-\frac{5}{2}\right]^{2} & =\frac{77}{4} \\
{\left[x-\frac{5}{2}\right]^{2} } & =\frac{77}{20} \\
x-\frac{5}{2} & = \pm \sqrt{\frac{77}{20}} \\
x & =\frac{5}{2} \pm \sqrt{\frac{77}{20}}
\end{aligned}
$$

$x=5 / 2$
3. Find the point of intersection between the line that passes through the two points $(1,2)$ and $(3,7)$, and the line perpendicular to this first line that passes through the point $(2,4)$. Draw a sketch of the situation that is as accurate as possible.

The lines intersect where

$$
y=\underbrace{-\frac{2}{5} x+\frac{24}{5}=\frac{5}{2} x-\frac{1}{2}}_{\text {solve for } x}
$$

$$
\frac{24}{5}+\frac{1}{2}=\frac{5}{2} x+\frac{2}{5} x
$$

So the point
of intersection
is $\left(\frac{53}{29}, \frac{119}{29}\right)$.

$$
10 \cdot \frac{48+5}{10}=\frac{25 x+4 x}{10} \cdot 10
$$

$$
53=29 x \Rightarrow x=\frac{53}{29}
$$

Get y from either of the
equations. Pick $y=\frac{5}{2} x-\frac{1}{2}$

$$
=\frac{5}{2}\left(\frac{53}{29}\right)-\frac{1}{2}=\frac{118}{29}
$$

