Questions

1. For the triangle given below, find $|\overline{B D}|,|\overline{C D}|,|\overline{D A}|$ in terms of a, b, x, and y.

Then use these results to prove $\sin (x+y)=\sin x \cos y+\cos x \sin y$.

2. Prove the area of a triangle can be found via the formula Area $=\frac{a^{2} \sin B \sin C}{2 \sin A}$.

3. Find a formula for the area of a regular n-gon that is inscribed inside a circle of radius r. Express your answer in terms of n and r.

Solutions

1. For the triangle given below, find $|\overline{B D}|,|\overline{C D}|,|\overline{D A}|$ in terms of a, b, x, and y.

Then use these results to prove $\sin (x+y)=\sin x \cos y+\cos x \sin y$.

2. Prove the area of a triangle can be found via the formula Area $=\frac{a^{2} \sin B \sin C}{2 \sin A}$.

The area is usually found from the formula area $=\frac{1}{2}$ (base)(perpendicular height). Let's start from there.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} c h \\
& =\frac{1}{2} c b \sin A \quad \text { since from the triangle on the left and SOH-CAH-TOA } \sin A=\frac{h}{b} \Rightarrow h=b \sin A \\
& =\frac{c^{2} \sin B \sin A}{2 \sin C} \text { use Law of Sines } \frac{\sin C}{c}=\frac{\sin B}{b} \Rightarrow b=\frac{c \sin B}{\sin C} \\
& =\frac{\left(a^{2} \sin ^{2} C \sin B \sin A\right.}{2 \sin ^{2} A \sin C} \text { use Law of Sines } \frac{\sin C}{c}=\frac{\sin A}{a} \Rightarrow c^{2}=\frac{a^{2} \sin ^{2} C}{\sin ^{2} A} \\
& =\frac{\left(a^{2} \sin C \sin B\right.}{2 \sin A}
\end{aligned}
$$

3. Find a formula for the area of a regular n-gon that is inscribed inside a circle of radius r. Express your answer in terms of n and r.

This problem is asking us to work in general, so it is a bit difficult to draw an accurate sketch. Drawing a triangle $n=3$ helps us get started on the problem.

An n-gon is made up of n congruent triangles, each triangle having two sides of length r. The angle between these two sides will be $\theta=2 \pi / n$.

$$
\text { Area }=n \cdot \frac{1}{2} a b \sin C=\frac{n r^{2}}{2} \sin (2 \pi / n)
$$

The formula Area $=\frac{1}{2} a b \sin C$ was shown in question 2, and is known as Heron's Formula.

