Questions

1. Find the exact value without a calculator for $\sin (\arctan 1)$.
2. Express $-\csc ^{2}\left(\cot ^{-1} x\right)$ as an algebraic expression involving no trigonometric functions.
3. Find the algebraic expression equivalent to the expression $\sin (\arccos 3 x)$.
4. What is the value of $\arccos (-\sqrt{3} / 2)$?

Solutions

1. Find the exact value without a calculator for $\sin (\arctan 1)$.

To simplify this we need to know the value of $\theta=\arctan 1$.

This means $\tan \theta=1=\frac{1}{1}=\frac{\mathrm{opp}}{\mathrm{adj}}$.

Construct a reference triangle

The length of the hypotenuse was found using the Pythagorean theorem

$$
\begin{aligned}
& \text { hyp }=\sqrt{1^{2}+1^{2}}=\sqrt{1+1}=\sqrt{2} \\
& \sin (\arctan 1)=\sin \theta=\frac{\mathrm{opp}}{\text { hyp }}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Notice the angle $\theta=\pi / 4$ is one of our special angles, but we did not need to figure that out to solve this problem.
2. Express $-\csc ^{2}\left(\cot ^{-1} x\right)$ as an algebraic expression involving no trigonometric functions.

To simplify this we need to know the value of $\theta=\cot ^{-1} x$.
This means $\cot \theta=x=\frac{x}{1}=\frac{\mathrm{adj}}{\mathrm{opp}}$.
Construct a reference triangle

The length of the hypotenuse was found using the Pythagorean theorem hyp $=\sqrt{1^{2}+x^{2}}=\sqrt{1+x^{2}}$.

$$
\begin{aligned}
\csc \left(\cot ^{-1} x\right) & =\csc \theta \\
& =\frac{\text { hyp }}{\text { opp }} \\
& =\frac{\sqrt{x^{2}+1}}{1} \\
& =\sqrt{x^{2}+1} \\
-\csc ^{2}\left(\cot ^{-1} x\right) & =-\left(\sqrt{x^{2}+1}\right)^{2} \\
& =-\left(x^{2}+1\right)=-x^{2}-1
\end{aligned}
$$

3. Find the algebraic expression equivalent to the expression $\sin (\arccos 3 x)$.

To simplify this we need to know the value of $\theta=\arccos 3 x$, then we can find $\sin \theta=\sin (\arccos 3 x)$.
This means $\cos \theta=3 x=\frac{3 x}{1}=\frac{\text { adj }}{\text { hyp }}$.
Construct a reference triangle

The length of the hypotenuse was found using the Pythagorean theorem

$$
\begin{aligned}
& \text { hyp }=\sqrt{1^{2}-(3 x)^{2}}=\sqrt{1-9 x^{2}} \\
& \sin (\arccos 3 x)=\sin \theta=\frac{\text { opp }}{\text { hyp }}=\frac{\sqrt{1-9 x^{2}}}{1}=\sqrt{1-9 x^{2}}
\end{aligned}
$$

4. What is the value of $\arccos (-\sqrt{3} / 2)$?

$$
\text { Let } \begin{aligned}
\omega & =\arccos \left(-\frac{\sqrt{3}}{2}\right) \\
\Rightarrow & \cos \omega=-\frac{\sqrt{3}}{2}=\frac{x}{r} \\
\Rightarrow \quad & x=-\sqrt{3} \\
r & =2 \\
y & =\sqrt{r^{2}-x^{2}}=1
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi / 2}{\sqrt{3}} \quad \text { so } \theta=\pi / 6 \\
& \Rightarrow \operatorname{arcos}\left(-\frac{\sqrt{3}}{2}\right)=\frac{5 \pi}{6}
\end{aligned}
$$

I strongly feel being able to work things like this out using our knowledge of trigonometry and the special triangles is vastly superior to memorizing the values of trig functions on the unit circle.

