## Questions

1. Evaluate without using a calculator; use identities rather than reference triangles. Find $\sec \theta$ and $\csc \theta$ if $\tan \theta=3$ and $\cos \theta>0$.
2. Find all solutions to the equation $2 \sin ^{2} x=1$ in the interval $[0,2 \pi)$.
3. Find all possible solutions to $3 \sin t=2 \cos ^{2} t$.

## Solutions

1. Evaluate without using a calculator; use identities rather than reference triangles. Find $\sec \theta$ and $\csc \theta$ if $\tan \theta=3$ and $\cos \theta>0$.

First, we need to figure out which Quadrant $\theta$ lies in:
$\tan \theta>0$ means we are in Quadrant I or III.
$\cos \theta>0$ means we are in Quadrant I or IV.
Therefore, we are in Quadrant I.

The $\sec \theta>0$ and $\csc \theta>0$ in Quadrant I .

$$
\begin{aligned}
\sec \theta & =\sqrt{1+\tan ^{2} \theta} \quad(\text { choose }+\sqrt{ } \operatorname{since} \sec \theta>0) \\
& =\sqrt{1+3^{2}} \\
& =\sqrt{1+9}=\sqrt{10} \\
\csc \theta & =\sqrt{\cot ^{2} \theta+1} \quad(\text { choose }+\sqrt{ } \text { since } \csc \theta>0) \\
& =\sqrt{\frac{1}{\tan ^{2} \theta}+1} \\
& =\sqrt{\frac{1}{3^{2}}+1} \\
& =\sqrt{\frac{1}{9}+1}=\sqrt{\frac{10}{9}}=\frac{\sqrt{10}}{3}
\end{aligned}
$$

2. Find all solutions to the equation $2 \sin ^{2} x=1$ in the interval $[0,2 \pi)$.

$$
\begin{aligned}
2 \sin ^{2} x & =1 \\
\sin ^{2} x & =\frac{1}{2} \\
\sin x & = \pm \sqrt{\frac{1}{2}}= \pm \frac{1}{\sqrt{2}}
\end{aligned}
$$

The angles around the unit circle corresponding to points with $y$ coordinate equal to $+\frac{1}{\sqrt{2}}$ or $-\frac{1}{\sqrt{2}}$ are the following:


The equation has solution $x=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$ in the interval $[0,2 \pi)$.
3. Find all possible solutions to $3 \sin t=2 \cos ^{2} t$.

$$
\begin{aligned}
3 \sin t & =2 \cos ^{2} t \\
3 \sin t & =2\left(1-\sin ^{2} t\right) \\
3 \sin t & =2-2 \sin ^{2} t \\
2 \sin ^{2} t+3 \sin t-2 & =0
\end{aligned}
$$

Now, let $y=\sin t$. Then we get

$$
\begin{aligned}
2 y^{2}+3 y-2 & =0 \\
y & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-3 \pm \sqrt{(-3)^{2}-4(2)(-2)}}{2(2)} \\
& =\frac{-3 \pm 5}{4} \\
& =\frac{-3+5}{4} \text { or } \frac{-3-5}{4} \\
& =\frac{2}{4} \text { or } \frac{-8}{4} \\
& =\frac{1}{2} \text { or }-2
\end{aligned}
$$

We can exclude the solution $y=-2=\sin t$ since it is not possible to have the sine of a real number which is less than -1 .
Therefore, we now must solve $y=\sin t=\frac{1}{2}$ for $t$.
From a reference triangle, we see the angle is $t=\pi / 6$, since $\sin (\pi / 6)=\frac{\mathrm{opp}}{\text { hyp }}=\frac{1}{2}$.


We need to get all the possible solutions, so our work is not done. The sine is positive in Quadrant I and II.


The solution in Quadrant I is $t=\frac{\pi}{6}+2 k \pi, k=0, \pm 1, \pm 2, \ldots$.
The solution in Quadrant II is $t=\pi-\frac{\pi}{6}+2 k \pi=\frac{5 \pi}{6}+2 k \pi, k=0, \pm 1, \pm 2, \ldots$.

