Questions

1. The half-life of a radioactive substance is 10 days and there are 5 g present initially. Find an expression for the amount of material left after t days have elapsed. Show the process you used clearly, and do not begin with a formula. The idea is for you to end with a formula, not begin with it.

Then, find an expression for the time it would take to have m amount of material left. Explain using mathematics and the expression you find for the time that it must be true that $t>0$.
2. Determine an algebraic formula of the form $f(x)=\frac{c}{1+a e^{-k x}}$ for the logistic function whose graph is shown below.

3. Consider depositing an amount of money $\$ P$ into a savings account. After each month, the account earns $\frac{r}{12} \%$ interest based on the amount of money currently in the account. Therefore, r is the interest rate per year. This is called compound interest (you are earning interest on interest). Derive a formula for the amount of money in the account after one year.

Modify your formula for the case when interest is paid every day (assume 365 days in a year).

Modify your formula for the case when interest is paid every hour (assume 365 days in a year).

What would you guess the formula would be if interest was paid continuously?
4. A researcher wishes to determine an exponential growth model for mold. She measures the amount of mold at $t=0$ as $2 \mathrm{~mm}^{2}$. Two days later she finds $4 \mathrm{~mm}^{2}$.

Determine the exponential growth model $P(t)=a \cdot e^{k t}$. How long will the mold take to reach a Level II condition (over 10 square feet)?

Solutions

1. The half-life of a radioactive substance is 10 days and there are 5 g present initially. Find an expression for the amount of material left after t days have elapsed. Show the process you used clearly, and do not begin with a formula. The idea is for you to end with a formula, not begin with it.

Then, find an expression for the time it would take to have m amount of material left. Explain using mathematics and the expression you find for the time that it must be true that $t>0$.

We shall let $m(t)$ be the amount of radioactive material (in mg) present after time t in days. The initial amount is $m(0)=m_{0}=5 \mathrm{mg}$.

We can write down how much is present at specific times knowing the half-life, and then generalize to get a formula for the amount present at any time.

$$
\begin{aligned}
m(0) & =m_{0}=5 \\
m(10) & =\frac{1}{2} m(0)=\frac{1}{2} m_{0} \\
m(20) & =\frac{1}{2} m(10)=\frac{1}{2^{2}} m_{0} \\
m(30) & =\frac{1}{2} m(20)=\frac{1}{2^{3}} m_{0} \\
m(40) & =\frac{1}{2} m(30)=\frac{1}{2^{4}} m_{0} \\
& \vdots \text { generalize from the pattern } \\
m(t) & =\frac{1}{2^{t / 10}} m_{0}=m_{0} \cdot 2^{-t / 10}=5 \cdot 2^{-t / 10}
\end{aligned}
$$

To get a formula for the time it takes to get to m, we should solve $m=5 \cdot 2^{-t / 10}$ for t.

$$
\begin{aligned}
m & =5 \cdot 2^{-t / 10} \\
m / 5 & =2^{-t / 10} \\
\ln (m / 5) & =\ln \left(2^{-t / 10}\right) \\
\ln (m / 5) & =-\frac{t}{10} \cdot \ln (2) \\
-10 \frac{\ln (m / 5)}{\ln 2} & =t \\
t & =-10 \frac{\ln (m / 5)}{\ln 2}
\end{aligned}
$$

It looks like $t<0$, but since this is a radioactive decay problem we know the amount of material is getting smaller, so $m \leq 5$ (if $\left.m=5, t=-10 \frac{\ln (5 / 5)}{\ln 2}=-10 \frac{\ln 1}{\ln 2}=0\right)$.

If $m<5$, then $\ln (m / 5)$ will be the logarithm of a number less than one, which is negative, and combined with the -10 the overall result will be positive.
2. Determine an algebraic formula of the form $f(x)=\frac{c}{1+a e^{-k x}}$ for the logistic function whose graph is shown below.

We can see that the logistic function has an asymptote at $y=6$. Since

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{c}{1+a e^{-k x}}=\frac{c}{1+0}=c
$$

we must have $c=6$.

Using the point $(0,2)$, we can determine:

$$
\begin{aligned}
f(0)=\frac{6}{1+a e^{-k(0)}}=\frac{6}{1+a} & =2 \\
\frac{6}{1+a} & =2 \\
\frac{1+a}{6} & =\frac{1}{2} \\
1+a & =3 \\
a & =3-1=2
\end{aligned}
$$

Finally, we can use the third point to determine k :

$$
\begin{aligned}
f(1)=\frac{6}{1+2 e^{-k}} & =4.7219 \\
\frac{1+2 e^{-k}}{6} & =\frac{1}{4.7219} \\
1+2 e^{-k} & =\frac{6}{4.7219} \\
2 e^{-k} & =\frac{6}{4.7219}-1 \\
e^{-k} & =\frac{3}{4.7219}-\frac{1}{2}=0.135337
\end{aligned}
$$

To go further algebraically, we need logarithms. Here is the algebraic solution using logarithms.

$$
\begin{aligned}
\ln e^{-k} & =\ln \left(\frac{3}{4.7219}-\frac{1}{2}\right) \\
-k & =\ln \left(\frac{3}{4.7219}-\frac{1}{2}\right) \\
k & =-\ln \left(\frac{3}{4.7219}-\frac{1}{2}\right)=1.99998
\end{aligned}
$$

The logistic equation is

$$
f(x)=\frac{6}{1+2 e^{-1.99998 x}}
$$

3. Consider depositing an amount of money $\$ P$ into a savings account. After each month, the account earns $\frac{r}{12} \%$ interest based on the amount of money currently in the account. Therefore, r is the interest rate per year. This is called compound interest (you are earning interest on interest). Derive a formula for the amount of money in the account after one year.

Modify your formula for the case when interest is paid every day (assume 365 days in a year).

Modify your formula for the case when interest is paid every hour (assume 365 days in a year).

What would you guess the formula would be if interest was paid continuously?

The best way to answer this is from a table, where we look for a pattern. Let A be the amount of money we have in the account at time t in months:

$$
\begin{aligned}
A(0) & =P \\
A(1) & =P\left(1+\frac{r}{12}\right)^{1} \\
A(2) & =P\left(1+\frac{r}{12}\right)^{1}\left(1+\frac{r}{12}\right)^{1}=P\left(1+\frac{r}{12}\right)^{2} \\
A(3) & =P\left(1+\frac{r}{12}\right)^{2}\left(1+\frac{r}{12}\right)^{1}=P\left(1+\frac{r}{12}\right)^{3} \\
A(4) & =P\left(1+\frac{r}{12}\right)^{3}\left(1+\frac{r}{12}\right)^{1}=P\left(1+\frac{r}{12}\right)^{4} \\
A(5) & =P\left(1+\frac{r}{12}\right)^{4}\left(1+\frac{r}{12}\right)^{1}=P\left(1+\frac{r}{12}\right)^{5} \\
& \vdots \\
A(12) & =P\left(1+\frac{r}{12}\right)^{12}
\end{aligned}
$$

Therefore, if interest is earned every month, after one year we have:

$$
A=P\left(1+\frac{r}{12}\right)^{12}
$$

If interest is earned every day, after one year we have:

$$
A=P\left(1+\frac{r}{365}\right)^{365}
$$

If interest is earned every hour, after one year we have:

$$
A=P\left(1+\frac{r}{8760}\right)^{8760}
$$

If interest is earned continuously, after one year we have:

$$
A=P \lim _{m \rightarrow \infty}\left(1+\frac{r}{m}\right)^{m}
$$

The fact that $\lim _{m \rightarrow \infty}\left(1+\frac{r}{m}\right)^{m}=e^{r}$ is one of the more interesting facts you will learn in calculus.
4. A researcher wishes to determine an exponential growth model for mold. She measures the amount of mold at $t=0$ as $2 \mathrm{~mm}^{2}$. Two days later she finds $4 \mathrm{~mm}^{2}$.

Determine the exponential growth model $P(t)=a \cdot e^{k t}$. How long will the mold take to reach a Level II condition (over 10 square feet of mold)?

Use the two data points to determine the values of a and k in the model (two parameters, so we need two data points). Let's use units t days.

$$
\begin{aligned}
P(0)=2 & =a \cdot e^{k(0)} \\
2 & =a \cdot 1 \Rightarrow a=2 \\
P(2)=4 & =2 \cdot e^{k(2)} \\
4 & =2 \cdot e^{2 k} \\
2 & =e^{2 k} \\
\ln 2 & =\ln e^{2 k} \\
\ln 2 & =2 k \Rightarrow k=\frac{1}{2} \ln 2
\end{aligned}
$$

The exponential growth model is $P(t)=2 e^{\frac{t}{2} \ln 2}$.

We need to convert units to answer the second part. $10 \mathrm{ft}^{2}=929030 \mathrm{~mm}^{2}$. Solve for t :

$$
\begin{aligned}
P(t)=929030 & =2 e^{\frac{t}{2} \ln 2} \\
464515 & =e^{\frac{t}{2} \ln 2} \\
\ln 464515 & =\ln e^{\frac{t}{2} \ln 2} \\
\ln 464515 & =\frac{t}{2} \ln 2 \Rightarrow t=2 \frac{\ln 464515}{\ln 2} \sim 38
\end{aligned}
$$

In 38 days, or just over a month, you will be facing a Level II mold situation. Of course, the growing conditions may not be as ideal as during the initial growth, so you may actually have a bit longer. Regardless, any amount of mold is cause for concern.

