Concepts: Long Division Algorithm, The Remainder Theorem, The Rational Zeros Theorem.

This Section looks at some techniques we can use to help us with factoring polynomials.

- Polynomial Division
- The Remainder Theorem
- Rational Zero Theorem

Fundamental Truths for Polynomial Functions All these statements are equivalent. If one is true, all the others are true as well.

- 1) x = k is a root of the equation f(x) = 0.
- 2) k is a zero of the function f.
- 3) k is an x-intercept of the graph of y = f(x).

4) x - k is a factor of f(x).

Long Division Algorithm for Polynomials Let f (dividend) and d (divisor) be polynomials with the degree of f greater than the degree of d, and $d(x) \neq 0$. Then there are unique polynomials q (quotient) and r (remainder) such that

$$f(x) = d(x) \cdot q(x) + r(x)$$

where either r(x) = 0 or the degree of r is less than the degree of d.

Another way of writing this is $\frac{f(x)}{d(x)} = q(x) + \frac{r(x)}{d(x)}$.

Synthetic division is another alternative to long division of polynomials. I will not require you to learn synthetic division, only long division of polynomials. Synthetic Division only works if you are dividing by x - c, and sometimes you may want to divide by something like $x^2 - 4$, which long division does nicely.

Example Simplify $\frac{x^3 - x^2 + 2x - 1}{x + 3}$ so the degree of the polynomial in the numerator is less than the degree of the polynomial in the numerator i

The Remainder Theorem: If a polynomial f is divided by x - k, then the remainder is f(k). This means that if f(k) = 0, then x = k is a root of f.

Rational Zeros Theorem Suppose f is a polynomial of degree $n \ge 1$ of the form

 $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$

with every coefficient an integer and $a_0 \neq 0$. If x = p/q is a rational zero of f, where p and q have no common integer factors other than 1, then

1) p is an integer factor of the the constant coefficient a_0 .

2) q is an integer factor of the leading coefficient a_n .

These two theorem gives us a place to start when faced with a polynomial that requires factoring.

Example Find all of the real zeros of the function $f(x) = 2x^3 - 3x^2 - 4x + 6$.

Since the coefficients are all integers, we will use the Rational Zero Theorem to get us started. Factors of $a_0 = 6$: $\pm 1, \pm 2, \pm 3, \pm 6$. Factors of $a_4 = 2$: $\pm 1, \pm 2$.

Potential rational zeros: $\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}$.

$$f(1) = 2(1)^3 - 3(1)^2 - 4(1) + 6 = +1 \neq 0$$

$$f(1/2) = 2(1/2)^3 - 3(1/2)^2 - 4(1/2) + 6 = 7/2 \neq 0$$

$$f(3/2) = 2(3/2)^3 - 3(3/2)^2 - 4(3/2) + 6 = 0$$

Therefore, x = 3/2 is a root. Let's factor it out using long division.

$$\begin{array}{c} \chi -\frac{3}{2} \int \chi x^{3} - 3\chi^{2} - 4\chi + b \\ \chi x^{3} - 3\chi^{2} \\ -4\chi + b \\ -\frac{4\chi + b}{0} \end{array}$$

$$f(x) = 2x^3 - 3x^2 - 4x + 6 = \left(x - \frac{3}{2}\right)(2x^2 - 4) = (2x - 3)(x^2 - 2) = (2x - 3)(x + \sqrt{2})(x - \sqrt{2})$$

There are three real roots, one rational (x = 3/2) and two irrational $(x = \pm\sqrt{2})$. Each root has multiplicity one.

Note: This question could be asked on a test in the following manner: Find all of the real zeros of the function $f(x) = 2x^3 - 3x^2 - 4x + 6$ given x = 3/2 is a zero of f. **Example** Sketch by hand the function $f(x) = 2x^4 - 11x^3 + 22x^2 - 19x + 6$, given x = 1 is a root of multiplicity 2 of f. Since x = 1 is a root, we can factor it out using long division.

$\frac{2x^{3} - 9x^{2} + /3x - 6}{2x^{4} - 1/x^{3} + 22x^{2} - 19x + 6^{1}}$ $\frac{2x^{4} - 2x^{3}}{-9x^{3} + 22x^{2} - 19x + 6}$ $-9x^{3} + 9x^{2}$	$2x^{2} - 7x + 6$ $\chi - 1 \int 2x^{3} - 9x^{2} + 13x - 6$ $2x^{3} - 2x^{2}$
$ \frac{13x^{2} - 19x + 6}{13x^{2} - 13x} \\ -6x + 6 \\ -6x + 6 \\ 0 $	$-7x^{2}+13x-6$ $-7x^{2}+7x$ $6x-6$ $\frac{6x-6}{0}$

 $f(x) = 2x^4 - 11x^3 + 22x^2 - 19x + 6 = (x - 1)(2x^3 - 9x^2 + 13x - 6) = (x - 1)g(x)$

Since x = 1 is a root of multiplicity 2, it can be factored out of g(x)! Let's factor it out using long division (details above.

$$g(x) = 2x^3 - 9x^2 + 13x - 6 = (x - 1)(2x^2 - 7x + 6)$$
$$f(x) = (x - 1)g(x) = (x - 1)^2(2x^2 - 7x + 6)$$

We can do the factoring of the quadratic by inspection, $f(x) = (x-1)^2(2x-3)(x-2)$. Now we can sketch, since the factoring is done.

The polynomial will have three zeros, at x = 1, 3/2, 2. Multiplicities:

- zero at x = 1 has multiplicity 2 (even) so f does not change sign,
- zero at x = 3/2 has multiplicity 1 (odd) so f changes sign,
- zero at x = 2 has multiplicity 1 (odd) so f changes sign.

The end behaviour of the polynomial is found by determining the leading term, which is

$$(x-1)^2(2x-3)(x-2) \sim (x)^2(2x)(x) = 2x^4$$
 for large $|x|$.

The end behaviour of the monomial $2x^4$ is $\lim_{x \to -\infty} 2x^4 = \infty$ $\lim_{x \to \infty} 2x^4 = \infty$.

$$y=(2x-3)(x-2)(x-1)^2$$