Concepts: Long Division Algorithm, The Remainder Theorem, The Rational Zeros Theorem.
This Section looks at some techniques we can use to help us with factoring polynomials.

- Polynomial Division
- The Remainder Theorem
- Rational Zero Theorem

Fundamental Truths for Polynomial Functions All these statements are equivalent. If one is true, all the others are true as well.

1) $x=k$ is a root of the equation $f(x)=0$.
2) k is a zero of the function f.
3) k is an x-intercept of the graph of $y=f(x)$.
4) $x-k$ is a factor of $f(x)$.

Long Division Algorithm for Polynomials Let f (dividend) and d (divisor) be polynomials with the degree of f greater than the degree of d, and $d(x) \neq 0$. Then there are unique polynomials q (quotient) and r (remainder) such that

$$
f(x)=d(x) \cdot q(x)+r(x)
$$

where either $r(x)=0$ or the degree of r is less than the degree of d.
Another way of writing this is $\frac{f(x)}{d(x)}=q(x)+\frac{r(x)}{d(x)}$.
Synthetic division is another alternative to long division of polynomials. I will not require you to learn synthetic division, only long division of polynomials. Synthetic Division only works if you are dividing by $x-c$, and sometimes you may want to divide by something like $x^{2}-4$, which long division does nicely.

Example Simplify $\frac{x^{3}-x^{2}+2 x-1}{x+3}$ so the degree of the polynomial in the numerator is less than the degree of the polynomial in the denominator.

$$
\begin{array}{l|l}
x+3 \begin{array}{l}
\frac{x^{2}-4 x+14}{x^{3}-x^{2}+2 x-1} \\
\frac{x^{3}+3 x^{2}}{-4 x^{2}+2 x-1} \\
\frac{-4 x^{2}-12 x}{14 x-1} \\
\frac{14 x+42}{-43} \\
\end{array} & \begin{aligned}
& \text { You can check this by find a common denominator: } \\
&=\frac{\left(x^{2}-4 x+14-\frac{43}{x+3}\right.}{x+3}(x+3) \\
& x+3
\end{aligned} \\
& =\frac{\left(x^{2}-4 x+14\right)(x+3)-42}{x+3} \\
& =\frac{x\left(x^{2}-4 x+14\right)+3\left(x^{2}-4 x+14\right)-43}{x+3} \\
& =\frac{\left(x^{3}-4 x^{2}+14 x\right)+3 x^{2}-12 x+42-43}{x+3} \\
\text { This means } \frac{x^{3}-x^{2}+2 x-1}{x+3}=x^{2}-4 x+14-\frac{43}{x+3}
\end{array} \quad \begin{aligned}
& =\frac{x^{3}-x^{2}+2 x-1}{x+3}
\end{aligned}
$$

This is useful for factoring since we have shown $x^{3}-x^{2}+2 x-1=\left(x^{2}-4 x+14\right)(x+3)-43$.

The Remainder Theorem: If a polynomial f is divided by $x-k$, then the remainder is $f(k)$. This means that if $f(k)=0$, then $x=k$ is a root of f.

Rational Zeros Theorem Suppose f is a polynomial of degree $n \geq 1$ of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}
$$

with every coefficient an integer and $a_{0} \neq 0$. If $x=p / q$ is a rational zero of f, where p and q have no common integer factors other than 1, then

1) p is an integer factor of the the constant coefficient a_{0}.
2) q is an integer factor of the leading coefficient a_{n}.

These two theorem gives us a place to start when faced with a polynomial that requires factoring.

Example Find all of the real zeros of the function $f(x)=2 x^{3}-3 x^{2}-4 x+6$.
Since the coefficients are all integers, we will use the Rational Zero Theorem to get us started.
Factors of $a_{0}=6: \pm 1, \pm 2, \pm 3, \pm 6$.
Factors of $a_{4}=2: \pm 1, \pm 2$.
Potential rational zeros: $\pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{3}{2}$.

$$
\begin{aligned}
f(1) & =2(1)^{3}-3(1)^{2}-4(1)+6=+1 \neq 0 \\
f(1 / 2) & =2(1 / 2)^{3}-3(1 / 2)^{2}-4(1 / 2)+6=7 / 2 \neq 0 \\
f(3 / 2) & =2(3 / 2)^{3}-3(3 / 2)^{2}-4(3 / 2)+6=0
\end{aligned}
$$

Therefore, $x=3 / 2$ is a root. Let's factor it out using long division.

$$
\begin{aligned}
& \mathcal { C } - \frac { 3 } { 2 } \longdiv { 2 x ^ { 2 } - 4 } \\
& \frac{2 x^{3}-3 x^{2}-4 x+6}{\frac{-4 x+6}{2}} \\
& \frac{-4 x+6}{0}
\end{aligned}
$$

There are three real roots, one rational $(x=3 / 2)$ and two irrational $(x= \pm \sqrt{2})$. Each root has multiplicity one.
Note: This question could be asked on a test in the following manner:
Find all of the real zeros of the function $f(x)=2 x^{3}-3 x^{2}-4 x+6$ given $x=3 / 2$ is a zero of f.

Example Sketch by hand the function $f(x)=2 x^{4}-11 x^{3}+22 x^{2}-19 x+6$, given $x=1$ is a root of multiplicity 2 of f. Since $x=1$ is a root, we can factor it out using long division.

$$
x - 1 \longdiv { 2 x ^ { 3 } - 9 x ^ { 2 } + 1 3 x - 6 } \longdiv { 2 x ^ { 3 } + 2 2 x ^ { 2 } - 1 9 x + 6 }
$$

$$
\frac{2 x^{4}-2 x^{3}}{-9 x^{3}+22 x^{2}-19 x+6}
$$

$$
-9 x^{3}+9 x^{2}
$$

$$
13 x^{2}-19 x+6
$$

$$
\frac{2 x^{3}-2 x^{2}}{-7 x^{2}+13 x-6}
$$

$$
\frac{13 x^{2}-13 x}{-6 x+6}
$$

$$
\frac{-6 x+6}{0}
$$

$$
\begin{array}{r}
\frac{-7 x^{2}+7 x}{6 x-6} \\
\frac{6 x-6}{0}
\end{array}
$$

$$
f(x)=2 x^{4}-11 x^{3}+22 x^{2}-19 x+6=(x-1)\left(2 x^{3}-9 x^{2}+13 x-6\right)=(x-1) g(x)
$$

Since $x=1$ is a root of multiplicity 2 , it can be factored out of $g(x)$! Let's factor it out using long division (details above.

$$
\begin{aligned}
& g(x)=2 x^{3}-9 x^{2}+13 x-6=(x-1)\left(2 x^{2}-7 x+6\right) \\
& f(x)=(x-1) g(x)=(x-1)^{2}\left(2 x^{2}-7 x+6\right)
\end{aligned}
$$

We can do the factoring of the quadratic by inspection, $f(x)=(x-1)^{2}(2 x-3)(x-2)$. Now we can sketch, since the factoring is done.

The polynomial will have three zeros, at $x=1,3 / 2,2$. Multiplicities:

- zero at $x=1$ has multiplicity 2 (even) so f does not change sign,
- zero at $x=3 / 2$ has multiplicity 1 (odd) so f changes sign,
- zero at $x=2$ has multiplicity 1 (odd) so f changes sign.

The end behaviour of the polynomial is found by determining the leading term, which is

$$
(x-1)^{2}(2 x-3)(x-2) \sim(x)^{2}(2 x)(x)=2 x^{4} \text { for large }|x| .
$$

The end behaviour of the monomial $2 x^{4}$ is $\lim _{x \rightarrow-\infty} 2 x^{4}=\infty \quad \lim _{x \rightarrow \infty} 2 x^{4}=\infty$.

