Concepts: Laws of Exponents, Laws of Logarithms, Change of Base, Inverse Functions.

Laws of Exponents (memorize) If x and y are real numbers, and b > 0 is real, then

1. $b^x \cdot b^y = b^{x+y}$ 2. $\frac{b^x}{b^y} = b^{x-y}$ 3. $(b^x)^y = b^{xy}$

Laws of Logarithms (memorize) If x and y are positive numbers, and $b > 0, b \neq 1$ is real, then

1. $\log_b(xy) = \log_b x + \log_b y$

2. $\log_b\left(\frac{x}{y}\right) = \log_b x - \log_b y$

3. $\log_b(x^r) = r \log_b x$ where r is any real number

Example of Laws of Logarithms Evaluate $\log_2 80 - \log_2 5$. Solution: $\log_2 80 - \log_2 5 = \log_2 \left(\frac{80}{5}\right) = \log_2 16 = 4$ (since $2^4 = 16$).

Example Express $\ln a + \frac{1}{2} \ln b$ as a single logarithm. Solution: $\ln a + \frac{1}{2} \ln b = \ln a + \ln b^{1/2} = \ln(ab^{1/2}).$

Example Given $f(x) = \ln(x^3)$, $g(x) = e^{4x}$, and $h(x) = x^2$. Find the following functions, and simplify as much as possible.

$$(f \circ g \circ h)(x) = f(g(h(x)))$$

= $f(g(x^2))$
= $f(e^{4x^2})$
= $\ln \left[\left(e^{4x^2} \right)^3 \right] = \ln \left[e^{3 \cdot 4x^2} \right]$
= $\ln \left[e^{12x^2} \right] = 12x^2$
 $(h \circ g \circ f)(x) = h(g(f(x)))$
= $h(g(\ln(x^3)))$
= $h(g(\ln(x^3)))$
= $h(e^{\ln(x^{3})})$
= $h(e^{\ln(x^{3})})$
= $h(e^{\ln(x^{12})})$
= $h(x^{12}) = (x^{12})^2 = x^{24}$

Change of Base

Logarithms with any base can be expressed in terms of the natural logarithm:

Theorem For any positive number $a \ (a \neq 1)$, we have

$$\log_a x = \frac{\ln x}{\ln a}.$$

Proof:

$$y = \log_a x$$

which we write as: $a^y = x$
 $\ln(a^y) = \ln x$
 $y \ln a = \ln x$
 $y = \frac{\ln x}{\ln a}$

We have shown $\log_a x = \frac{\ln x}{\ln a}$. Every logarithmic function is a constant multiple of the natural logarithmic function, i.e., a vertical stretch or shrink.

I encourage you to understand the process of the proof rather than trying to memorize the formula.

Example Convert $100 \log_3\left(\frac{10}{3}\right)$ into natural logarithms. Most calculators do not do base 3, but will do base e, so you need to do this if you want a decimal approximation to the number.

$$y = 100 \log_3\left(\frac{10}{3}\right)$$
$$y/100 = \log_3\left(\frac{10}{3}\right)$$
$$3^{y/100} = \left(\frac{10}{3}\right)$$
$$\ln\left(3^{y/100}\right) = \ln\left(\frac{10}{3}\right)$$
$$\frac{y}{100}\ln 3 = \ln\left(\frac{10}{3}\right)$$
$$y = 100\frac{\ln\left(\frac{10}{3}\right)}{\ln 3}$$

Example Find the inverse function $f^{-1}(x)$ if $f(x) = -3\ln(x-5)$. Finding the inverse function is a three step process.

Step 1.
$$f(x) = y = -3 \ln(x-5)$$

Step 2. (interchange) $x = -3 \ln(y-5)$
Step 3. (solve for y) $x = -3 \ln(y-5)$
 $x = \ln((y-5)^{-3})$ (use $\log_b(x^r) = r \log_b x$)
 $e^x = \exp(\ln(((y-5)^{-3}))$ (take exponential of both sides of equation)
 $e^x = (y-5)^{-3}$
 $e^{-x/3} = y-5$
 $y = 5 + e^{-x/3}$
 $f^{-1}(x) = 5 + e^{-x/3}$

Check cancellation equations:

$$f(f^{-1}(x)) = f(5 + e^{-x/3})$$

= $-3\ln(5 + e^{-x/3} - 5)$
= $-3\ln(e^{-x/3})$
= $\ln\left((e^{-x/3})^{-3}\right)$
= $\ln(e^x)$
= x
$$f^{-1}(f(x)) = f^{-1}(-3\ln(x-5))$$

= $5 + \exp\left(-\frac{1}{3}(-3\ln(x-5))\right)$
= $5 + \exp(\ln(x-5))$
= $5 + (x-5)$

Example Find the inverse function $f^{-1}(x)$ if $f(x) = -2e^{-x}$. Step 1. $f(x) = y = -2e^{-x}$ Step 2. (interchange) $x = -2e^{-y}$ Step 3. (solve for y) $x = -2e^{-y}$ $-\frac{x}{2} = e^{-y}$ $\ln\left(-\frac{x}{2}\right) = \ln e^{-y}$ $\ln\left(-\frac{x}{2}\right) = -y$ $y = -\ln\left(-\frac{x}{2}\right)$ $f^{-1}(x) = -\ln\left(-\frac{x}{2}\right)$