Concepts: definition of polynomial functions, linear functions (three representations), transformation of $y=x$ to get $y=m x+b$, quadratic functions (axis of symmetry, vertex, x-intercepts), transformations of $y=x^{2}$ to get vertex form $y=a(x-h)^{2}+k$, sketches.

Polynomial Functions

Let n be a nonnegative integer and let $a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}$ be real numbers with $a_{n} \neq 0$. The function given by

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

is a polynomial function of degree n. The leading coefficient is a_{n}.

Linear Functions

Linear functions are discussed in Sections P. 3 and P. 4 in the prerequisites.
Three different ways of writing the equation of a line:

- slope-intercept form, where m and y-intercept $(0, b)$ are given: $y=m x+b$.
- slope-point form, where m and point on the line $\left(x_{1}, y_{1}\right)$ are given: $y-y_{1}=m\left(x-x_{1}\right)$. (CALCULUS)
- point-point form, where two points on the line $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are given:
$y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$, which is sometimes written as $\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{x-x_{1}}{x_{2}-x_{1}}$.
Choose one of the above to work with depending on what information you are given. I suggest memorizing all three formulas, although you could always work from $y=m x+b$ if you like.

Basic Function: Identity Function $f(x)=x$

This is a linear function with slope $m=1$ and y-intercept 0 .
Domain: $x \in \mathbb{R}$
Range: $y \in \mathbb{R}$
Continuity: continuous for all x
Increasing-decreasing behaviour: increasing for all x
Symmetry: odd
Boundedness: not bounded
Local Extrema: none
Horizontal Asymptotes: none
Vertical Asymptotes: none
End behaviour: $\lim _{x \rightarrow \infty} x=\infty$ and $\lim _{x \rightarrow-\infty} x=-\infty$

Transformations of Identity Function

Basic function: $y=x$
Vertical stretch of m units $(m>1): y=m x$
Shift up b units $(b>0): y=m x+b$.

Example Write an equation for the linear function f such that $f(-1)=2$ and $f(3)=-2$.
The two points the function must pass through are $(x, f(x))=(-1,2)=\left(x_{0}, y_{0}\right)$, and $(x, f(x))=(3,-2)=\left(x_{1}, y_{1}\right)$.
The linear function is given by $y=f(x)=a x+b$, or in point slope form by $y-y_{1}=m\left(x-x_{1}\right)$.
The slope of the line is $m=a=$ rise/run $=(2-(-2)) /(-1-3)=4 /(-4)=-1$.
Use the point-slope form of the line $y-(-2)=(-1)(x-3) \longrightarrow y=-x+3-2=-x+1$.
The linear function is given by $f(x)=-x+1$.
Alternate solution:
The two points the function must pass through are $(x, f(x))=(-1,2)=\left(x_{0}, y_{0}\right)$, and $(x, f(x))=(3,-2)=\left(x_{1}, y_{1}\right)$. The linear function is given by $y=f(x)=a x+b$, or in point-point form by $\frac{y-y_{1}}{x-x_{1}}=\frac{y_{0}-y_{1}}{x_{0}-x_{1}}$.

$$
\begin{aligned}
\frac{y-y_{1}}{x-x_{1}} & =\frac{y_{0}-y_{1}}{x_{0}-x_{1}} \\
\frac{y-(-2)}{x-3} & =\frac{2-(-2)}{-1-3} \\
\frac{y+2}{x-3} & =-1 \\
y+2 & =-(x-3) \\
y & =-x+3-2=-x+1
\end{aligned}
$$

The linear function is given by $f(x)=-x+1$.

Quadratic Functions

A quadratic function is a polynomial of degree $2, y=a x^{2}+b x+c$.
It takes three points to determine the three constants a, b, and c in a quadratic function.
Quadratic functions are described by their axis of symmetry and vertex.

Basic Function: Squaring Function $f(x)=x^{2}$
Domain: $x \in \mathbb{R}$
Range: $y \in[0, \infty)$
Continuity: continuous for all x
Increasing-decreasing behaviour: decreasing for $x<0$, increasing for $x>0$
Symmetry: even (axis of symmetry is the line $x=0$)
Boundedness: bounded below
Local Extrema: minimum at $(0,0)$ (the vertex)
Horizontal Asymptotes: none
Vertical Asymptotes: none
End behaviour: $\lim _{x \rightarrow \infty} x^{2}=\infty$ and $\lim _{x \rightarrow-\infty} x^{2}=\infty$

Transformations of Squaring Function

Basic function: $y=x^{2}$
Shift right by h units $(h>0): y=(x-h)^{2}$
Stretch vertically by a units $(a>1): y=a(x-h)^{2}$
Shift up k units $(k>0): y=a(x-h)^{2}+k$.

The Vertex Form

The form $f(x)=a(x-h)^{2}+k$ is called the vertex form for a quadratic function.
The vertex of the parabola is (h, k).
The axis of symmetry is $x=h$.
If $a>0$, the parabola opens up, if $a<0$ the parabola opens down.

x-intercepts

The x-intercepts of the quadratic function are found from the solution to the quadratic equation: $f(x)=a x^{2}+b x+c=0$, which can be determined using completing the square (c.f. page 46) as

$$
x \text {-intercepts }=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example Find the axis of symmetry and vertex of the quadratic function $f(x)=3 x^{2}+5 x-4$ by writing in the vertex form. Then find the x-intercepts and sketch the function.
To solve this problem we need to write the quadratic function in vertex form. We can do this by completing the square.

$$
\begin{aligned}
3 x^{2}+5 x & =3\left(x^{2}+\frac{5}{3} x\right) \\
& =3\left(x^{2}+\frac{5}{3} x+\left(\frac{5}{6}\right)^{2}\right)-3\left(\frac{5}{6}\right)^{2} \\
& =3\left(x+\frac{5}{6}\right)^{2}-\frac{75}{36} \\
f(x) & =3 x^{2}+5 x-4 \\
& =3\left(x+\frac{5}{6}\right)^{2}-\frac{75}{36}-4 \\
& =3\left(x+\frac{5}{6}\right)^{2}-\frac{75}{36}-\frac{144}{36} \\
& =3\left(x+\frac{5}{6}\right)^{2}-\frac{219}{36} \\
& =3\left(x-\left(-\frac{5}{6}\right)\right)^{2}-\frac{73}{12}
\end{aligned}
$$

From this form we can identify the vertex as $(-5 / 6,-73 / 12)$, and the axis of symmetry as $x=-5 / 6$. The quadratic function opens up since the leading coefficient is $3>0$.
The x-intercepts are found using the quadratic formula to solve $3 x^{2}+5 x-4=0$, or since we have the vertex form we can get them directly:

$$
\begin{aligned}
3\left(x+\frac{5}{6}\right)^{2}-\frac{73}{12} & =0 \\
\left(x+\frac{5}{6}\right)^{2} & =\frac{73}{36} \\
x+\frac{5}{6} & = \pm \sqrt{\frac{73}{36}} \\
x & =-\frac{5}{6} \pm \frac{\sqrt{73}}{6} \\
& =\frac{-5 \pm \sqrt{73}}{6}
\end{aligned}
$$

The Average Rate of Change

The average rate of change of the linear function $f(x)=m x+b$ over the interval $(x, x+h)$ is the slope m.

$$
\text { average rate of change }=\frac{f(x+h)-f(x)}{h}=\frac{(m(x+h)+b)-(m x+b)}{h}=\frac{m x+m h+b-m x-b}{h}=\frac{m h}{h}=m .
$$

The average rate of change here does not depend on the interval $(x, x+h)$.
The average rate of change of the quadratic function $f(x)=a x^{2}+b x+c$ on the interval $(x, x+h)$ is:

$$
\begin{aligned}
\text { average rate of change } & =\frac{f(x+h)-f(x)}{h}=\frac{\left(a(x+h)^{2}+b(x+h)+c\right)-\left(a x^{2}+b x+c\right)}{h} \\
& =\frac{a x^{2}+a h^{2}+2 a h x+b x+b h+\not \subset-a x^{2}-b x-\notin}{h} \\
& =\frac{a h^{2}+2 a h x+b h}{h}=\frac{\not h(a h+2 a x+b)}{\not h}=a h+2 a x+b
\end{aligned}
$$

Notice that the average rate of change here depends on the interval $(x, x+h)$.

