Concepts: Basic Identities, Pythagorean Identities, Cofunction Identities, Even/Odd Identities.

Basic Identities

From the definition of the trig functions:

$$
\begin{array}{lll}
\csc \theta=\frac{1}{\sin \theta} & \sec \theta=\frac{1}{\cos \theta} & \cot \theta=\frac{1}{\tan \theta} \\
\sin \theta=\frac{1}{\csc \theta} & \cos \theta=\frac{1}{\sec \theta} & \tan \theta=\frac{1}{\cot \theta} \\
\tan \theta=\frac{\sin \theta}{\cos \theta} & \cot \theta=\frac{\cos \theta}{\sin \theta} &
\end{array}
$$

Pythagorean Identities

Consider a point on the unit circle:

Using the Pythagorean theorem, we see that (memorize this one): $\cos ^{2} \theta+\sin ^{2} \theta=1$
Derive two other identities from the one we have memorized:
Divide by $\cos ^{2} \theta$:

$$
\frac{\cos ^{2} \theta}{\cos ^{2} \theta}+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta} \quad \Rightarrow \quad 1+\tan ^{2} \theta=\sec ^{2} \theta
$$

Divide by $\sin ^{2} \theta$:

$$
\frac{\cos ^{2} \theta}{\sin ^{2} \theta}+\frac{\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta} \quad \Rightarrow \quad \cot ^{2} \theta+1=\csc ^{2} \theta
$$

Cofunction Identities

Consider the reference triangle:

We have from the reference triangle:

$$
\begin{array}{lll}
\sin \theta=\frac{y}{r}=\cos \beta & \cos \theta=\frac{x}{r}=\sin \beta & \tan \theta=\frac{y}{x}=\cot \beta \\
\csc \theta=\frac{r}{y}=\sec \beta & \sec \theta=\frac{r}{x}=\csc \beta & \cot \theta=\frac{x}{y}=\tan \beta
\end{array}
$$

The angles must satisfy $\theta+\beta=\frac{\pi}{2}, \beta=\frac{\pi}{2}-\theta$. Therefore,

$$
\begin{array}{lll}
\sin \theta=\cos \left(\frac{\pi}{2}-\theta\right) & \cos \theta=\sin \left(\frac{\pi}{2}-\theta\right) & \tan \theta=\cot \left(\frac{\pi}{2}-\theta\right) \\
\csc \theta=\sec \left(\frac{\pi}{2}-\theta\right) & \sec \theta=\csc \left(\frac{\pi}{2}-\theta\right) & \cot \theta=\tan \left(\frac{\pi}{2}-\theta\right)
\end{array}
$$

Even/Odd Identities (from sketches of trig functions)

$$
\begin{array}{lll}
\sin (-\theta)=-\sin \theta & \cos (-\theta)=\cos \theta & \tan (-\theta)=-\tan \theta \\
\csc (-\theta)=-\csc \theta & \sec (-\theta)=\sec \theta & \cot (-\theta)=-\cot \theta
\end{array}
$$

Example Use the cofunction and even/odd identities to prove $\cos (\pi-x)=-\cos x$.

$$
\begin{array}{rlr}
\cos (\pi-x) & =\cos \left(\frac{\pi}{2}-\left(x-\frac{\pi}{2}\right)\right) \quad \text { want to use } \cos \left(\frac{\pi}{2}-\theta\right)=\sin \theta \\
& =\sin \left(x-\frac{\pi}{2}\right) \quad \text { want to use } \sin \left(\frac{\pi}{2}-\theta\right)=\cos \theta \\
& =\sin \left(-\left(\frac{\pi}{2}-x\right)\right) \quad \text { use } \sin (-\theta)=-\sin \theta \\
& =-\sin \left(\frac{\pi}{2}-x\right) \\
& =-\cos (x)
\end{array}
$$

Example Find $\sin \theta$ and $\tan \theta$ if $\cos \theta=0.8$ and $\tan \theta<0$.
We shall use trig identities rather than reference triangles, or coordinate system, which is how we would have solved this before.

$$
\begin{aligned}
\cos ^{2} \theta+\sin ^{2} \theta & =1 \\
\sin ^{2} \theta & =1-\cos ^{2} \theta \\
\sin \theta & = \pm \sqrt{1-\cos ^{2} \theta} \\
& = \pm \sqrt{1-(0.8)^{6}} \\
& = \pm \sqrt{1-0.64} \\
& = \pm \sqrt{0.36} \\
& = \pm 0.6
\end{aligned}
$$

We need to figure out the correct sign.

We are in Quadrant IV. In Quadrant IV, $\sin \theta<0$.
Therefore, $\sin \theta=-0.6$.
$\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{-0.6}{0.8}=-0.75$.

Example Simply $\frac{(\sec y-\tan y)(\sec y+\tan y)}{\sec y}$ to a basic trig function.

$$
\begin{aligned}
\frac{(\sec y-\tan y)(\sec y+\tan y)}{\sec y} & =\frac{\sec ^{2} y-\tan ^{2} y}{\sec y} \quad \text { Multiply numerator } \\
& =\frac{1}{\sec y} \quad \text { use } \sec ^{2} y-\tan ^{2} y=1 \\
& =\cos y
\end{aligned}
$$

Example Simplify $\sin x \cos x \tan x \sec x \csc x$ to a basic trig function:

$$
\begin{aligned}
\sin x \cos x \tan x \sec x \csc x & =\frac{1}{\operatorname{cse} x} \frac{1}{\sec x} \tan x \sec x \operatorname{cse} x \\
& =\tan x
\end{aligned}
$$

Example Write $\frac{\tan ^{2} x}{\sec x+1}$ as an algebraic expression involving a single trig function:

$$
\begin{aligned}
\frac{\tan ^{2} x}{\sec x+1} & =\frac{\sec ^{2} x-1}{\sec x+1} \quad \text { use } \sec ^{2} y-\tan ^{2} y=1 \\
& =\frac{(\sec x-1)(\sec x+1)}{\sec x+1} \quad \text { use difference of squares in numerator } a^{2}-b^{2}=(a+b)(a-b) \\
& =\sec x-1
\end{aligned}
$$

Example Find all the solutions to the equation $4 \cos ^{2} x-4 \cos x+1=0$.
Note this equation is quadratic in $\cos x$. Let $y=\cos x$.

$$
\begin{aligned}
4 \cos ^{2} x-4 \cos x+1 & =0 \\
4 y^{2}-4 y+1 & =0 \\
y & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{4 \pm \sqrt{16-16}}{8} \\
& =\frac{1}{2} \text { multiplicity } 2 \\
4 y^{2}-4 y+1 & =4\left(y-\frac{1}{2}\right)^{2}=0
\end{aligned}
$$

So now we must solve $y=\cos x=1 / 2$. This comes from one of our special triangles.

Therefore, $x=\pi / 3$. What other angles will be solutions?

We see the other solution is in Quadrant IV, and is $-\pi / 3$.
We can also have solutions which are multiples of 2π, so the solution to the original equation is $x= \pm \frac{\pi}{3}+2 k \pi, \quad k=0, \pm 1, \pm 2, \ldots$.

Example Find all the solutions to the equation $\sqrt{2} \tan x \cos x-\tan x=0$ in the interval $[0,2 \pi)$.

$$
\begin{aligned}
\sqrt{2} \tan x \cos x-\tan x & =0 \\
\tan x(\sqrt{2} \cos x-1) & =0 \quad \text { factor }
\end{aligned}
$$

So we have either $\tan x=0$, or $\sqrt{2} \cos x-1=0$.

Solve $\tan x=0$:

$$
\begin{aligned}
\tan x & =0 \\
\frac{\sin x}{\cos x} & =0 \\
\sin x & =0 \\
x & =0, \pi
\end{aligned}
$$

Solve $\sqrt{2} \cos x-1=0$:

$$
\begin{aligned}
(\sqrt{2} \cos x-1) & =0 \\
\cos x & =\frac{1}{\sqrt{2}}
\end{aligned}
$$

The angle comes from one of our special triangles:

There are two solutions in $[0,2 \pi)$:

The solutions are $\pi / 4$ and $2 \pi-\pi / 4=7 \pi / 4$.
The solutions to $\sqrt{2} \tan x \cos x-\tan x=0$ in $[0,2 \pi)$ are $x=0, \frac{\pi}{4}, \pi, \frac{7 \pi}{4}$.

