4452 Mathematical Modeling Lecture 5: Mathematica Worksheet

Here are some problems for you to work on. They are typical of the type of things that you will use Mathematica to do in the modeling course.

Problem 1. Generate a sketch of the function $f(x, y)=\left(2 x^{3}+y^{3}-3 x y\right) e^{-x^{2}-y^{2}}$. You can use the command Plot3D with the options PlotPoints and PlotRange. Adjust the options until you get a plot you are happy with.

Make sure you have assigned the above plot to a variable name. Then, use the Show command with the ViewPoint option to examine the object from many angles. You can add axeslabels with the option AxesLabel. At how many points does the function attain its absolute maximum and absolute minimum?

To find the extrema, we need to calculate the partial derivatives and solve the equations $f_{x}(x, y)=$ $0, f_{y}(x, y)=0$ for the points (x, y). In Mathematica this can be done using:

```
eq1 = D[f[x, y], x] == 0
eq2 = D[f[x, y], y] == 0
Solve[{eq1, eq2}, {x, y}]
```

What kind of output did you get? How could you get an estimate of the solution that would be useful to you? Also, you can tell Mathematica to only provide solutions which are real-valued by loading the package RealOnly, which is done via <<Miscellaneous 'RealOnly' (those quotes should be single backquotes!).

How many real-valued (x, y) points did you get? Do they all make sense if you look at your 3D sketch?
Generate a plot of the level curves of the function using ContourPlot. You may want to use the options Contours and PlotPoints. From this, can you deduce which points are local extrema, and which points are saddle points? There are four extrema and two saddlepoints. Was one of the saddle points a surprise? Can you determine the absolute max and the absolute min?

Problem 2. Animate the graph of the 3D plot you created above. You can do this using the Table command, and changing the viewpoint. Once you have created a set of graphs to animate, you start the animation by double-clicking on one of the graphs. You can adjust the speed of the animation using the numeric keypad. A useful animation would be to circle around the plot and view it from different angles.

Problem 3. Using the command DSolve, get Mathematica to solve the differential equation,

$$
y^{\prime}(x)=x^{2} y(x)+y^{2}(x)
$$

and the initial value problem

$$
y^{\prime}(x)=x^{2} y(x)+y^{2}(x), \quad y(0)=k
$$

What do the initial value problem solutions look like for $k=-1,0,1$?

