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4452 Mathematical Modeling Lecture 17: Modeling of Data: Linear
Regression

Introduction

In modeling of data, we are given a set of data points, and we want to fit a function with adjustable
parameters to the data points. Obviously, we want the function to approximate the data as well as possible,
and to do that you have to choose certain values for the parameters in your function. You choose these
parameter values by first designing a merit function which you wish to minimize. When the merit function
is minimized, the agreement between the function and the data will have close agreement.

You can see that fitting a function to data becomes a problem of minimization in many dimensions (the
number of adjustable parameters in your function is the dimension of the problem).

Once we have fit the function to the data, we need to assess how good the fit actually is. There has to be
some sort of statistical analysis of the fit.

The bulk of this discussion was based on Reference [1], which is an excellent first resource for a variety of
applied numerical analysis.

General Set Up

We have N data points (ti, yi), i = 1, 2, . . . , N which we want to fit to a model function which has M
adjustable parameters, f(t) = f(t; α1, . . . , αM ).

We actually have a great deal of choice in what type of function we want to minimize. It can be anything
that will measure the relation of the data to the model function. The vector which compares the data to the
model function at each point is given by




y1 − f(t1; α1, . . . , αM )
y2 − f(t2; α1, . . . , αM )

...
yN − f(tN ;α1, . . . , αM )




We can minimize this vector based on a variety of different norms:

l1 norm:
N∑

i=1

|yi − f(ti;α1, . . . , αM )|

lp norm:

(
N∑

i=1

(yi − f(ti;α1, . . . , αM ))p

)1/p

l∞ norm:
N

max
i=1

(yi − f(ti; α1, . . . , αM ))

What is typically done is that the l2 norm is used, since it is the Euclidean space norm, and the square of
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the norm is minimized (hence the name: least squares fit):

minimize F (α1, . . . , αN ) =
N∑

i=1

(yi − f(ti; α1, . . . , αM ))2

The above result assumes we know the data points only. However, what if we know the data points and
for each data point a standard deviation, σi? How could this be incorporated into the function we wish to
minimize? We can do the following

minimize F (α1, . . . , αN ) =
N∑

i=1

(
yi − f(ti;α1, . . . , αM )

σi

)2

(1)

which assumes that each data point has a measurement error which is independently random and distributed
as a normal distribution around the actual model f(t). This result is based on a great deal of statistics, and
the idea that random deviations will converge to a normal distribution. Of course, this may not be the case
in practice.

Frequently, it is true that σi = σ is the same for all the data points. In that case, σ2 can be factored out
of the sum and the σ does not appear in the solution for α1 and α2. Since this is the case, if you are given
data which does not have an associated error σi which depends on the data point you can simply set σi = 1
and proceed with the analysis.

Minimizing Eq. (1) is just a multivariable unconstrained minimization procedure, which yields the system
of equations

0 =
N∑

i=1

(
yi − f(ti; α1, . . . , αM )

σ2
i

)(
∂

∂αk
f(ti; α1, . . . , αM )

)
, k = 1, . . . , M (2)

which must be solved for the M unknowns αi.

Linear Regression

Linear regression does not mean fitting data to a straight line! The “linear” refers to the models dependence
on the parameters αk. However, for now we are interested in fitting to a straight line. In this case, our
fitting function becomes

f(t;α1, α2) = α1 + α2t.

The system of equations in Eq. (2) becomes

α1

N∑

i=1

1
σ2

i

+ α2

N∑

i=1

ti
σ2

i

=
N∑

i=1

yi

σ2
i

α1

N∑

i=1

ti
σ2

i

+ α2

N∑

i=1

t2i
σ2

i

=
N∑

i=1

yiti
σ2

i

(3)
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We can simplify the notation if we use the following:

S =
N∑

i=1

1
σ2

i

, St =
N∑

i=1

ti
σ2

i

, Sy =
N∑

i=1

yi

σ2
i

, Stt =
N∑

i=1

t2i
σ2

i

, Sty =
N∑

i=1

tiyi

σ2
i

, ∆ = SStt − S2
t .

The solution to Eq. (3) is given by

α1 =
SttSy − StSty

∆

α2 =
SSty − StSy

∆

The Correlation Coefficient–How Good is Our Model Function?

All we need now is an estimate of how good our linear fit is. Reference [1] has a significantly expanded
discussion on determining how good your linear regression model is.

We will consider the case where σi ∼ σ for all i. This is frequently not a restrictive assumption, since the
sources of error in measuring the data that lead to σi are frequently the same for all measurements.

We calculate what is called the correlation coefficient, R2, which is a ratio of the model sum of the squares
to the total sum of the squares

R2 =
∑N

i=1(f(ti)− ȳ)2∑N
i=1(yi − ȳ)2

, ȳ =
1
N

N∑

i=1

yi.

Thus, if R2 ∼ 1 the model is a good representation of the data, and the data are representative of a linear
function. If R2 ∼ 0 the data are essentially random, and a linear function cannot represent the data well.

The results of this analysis for a particular data set (contained in the corresponding Mathematica file) are
shown in Fig. 1. The data set is given for completeness in the Appendix.
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Figure 1: Linear fit, f(t) = 4.74964 + 1.04711t, to a data set. For this fit, the correlation coefficient was
found to be R2 = 0.96, which indicates that the data does represent a linear function, and the linear function
we found represents the data well.
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Extrapolation

Once we have found the linear model of the data, what is it good for? Many times, what is of interest is the
slope of the curve, or the y-intercept. Or, the model can be used for extrapolation. In any case, we would
like an estimate of the standard deviation of the model from the data. We can get an estimate by computing

σ =

√√√√
N∑

i=1

(yi − f(ti))2 (4)

If our data is normally distributed about the model function (which it may very well not be!), we would
expect measurements will be within ±σ of the model function 68% of the time, and within ±2σ 95% of the
time. Figure 2 shows this result.
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Figure 2: An example of the number of data points contained within ±σ (left) and ±2σ (right) of the model
function, with σ = 1.15 from Eq. (4). We get 60% within ±σ and 95% within ±2σ.

We can use this σ to estimate the error in extrapolation. Since we are assuming the model function is
accurately representing the underlying linear dependence of the data, the random fluctuations in measuring
the data would still account for error in future measurement. We would expect, for example, since f(25) =
30.9237 and σ = 1.15 that if we measured the system at t = 25 we would find

29.7693 ≤ y25 ≤ 32.0781

95% of the time.

Outliers

The average of all the data points is the point (t̄, ȳ) where

t̄ =
1
N

N∑

i=1

ti, ȳ =
1
N

N∑

i=1

yi

The model function will always go through this point if we have σi = 1. In a sense, this represents the
centroid of the data set.



Math Modeling Lecture 17: Modeling of Data: Linear Regression Page 5

An outlier is a data point which lies far off the regression line. The effect of this outlier is to inordinately
affect the underlying model function. Figure 3 shows a data set with an outlier, and the fit which was
obtained.
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Figure 3: Linear fit to a data set containing an outlier. For this fit, the correlation coefficient was found to
be R2 = 0.69, which should make us question whether or not the fit is accurately representing the data. The
outlier is strong enough to make all the other points from 10 to 20 lie beneath the model function.

It is imperative that any analysis of data sets which uses linear regression includes some analysis of outliers,
especially for small data sets, like the one pictured, for which the effect of one outlier can be enormous. If
an outlier can be identified, it should be deleted from the data set and the linear regression redone.

You can detect outliers either visually (if they are obviously outliers, like in my example), or by a more
systematic analysis of the quantity |yi − f(ti)|. If this quantity is extremely large for a few data points,
they may be outliers. A more statistical way to find outliers it is to search the data for points for which
|yi − f(ti)| > 2σ.

Obviously, deleting data from your data set should be done with extreme caution, and must be reported
fully in any use of the data set or model function which is created after the removal of outliers.

Other Forms of Linear Regression

As mentioned before, the linear in linear regression comes not from the fact that we are fitting a straight
line to the data points, but that we are fitting a model function which depends linearly on the fit parameters
αk. We could be sines, cosines, or other powers of t.

Let’s look at an example of using a different fit model. Consider the data set shown in Fig. 4.

From looking at the data, we think that it looks quadratic. So our model function should be chosen to be

f(t;α) = αt2.

Note that if we wanted to chose a model function that looked like α1t
α22 this would be a nonlinear regression

problem, since the parameters αk no longer appear in a linear manner.
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Figure 4: Data set which is not modeled well by a straight line (top left); linear regression model function
f(t) = 0.0327963 t2, σ = 0.36 (top right); ±σ interval contains 70% of the points (bottom left); ±2σ interval
contains 95% of the points (bottom right).

We can use the linear regression ideas to determine α. The system in Eq. (2) is now simply the equation

0 =
N∑

i=1

(yi − αt2i )t
2
i

which means the parameter α is given by

α =
∑N

i=1 yit
2
i∑N

i=1 t4i
.

I again estimated σ as

σ =

√√√√
N∑

i=1

(yi − f(ti))2.

Final Thought

My analysis in this lecture is satisfactory for most applications of linear regression you will run into. However,
if you get into serious linear regression applications, you should understand the deeper statistical theory
behind it. You will need to have a deeper understanding if you use statistics packages to do your regression
for you, since you should always understand what it is that the computer is telling you. Mathematica produces
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a tremendous amount of output with its linear regression package, and I have to say that I understand only
a small portion of it. If I use it, I only use the packages I understand.

Appendix

Data set used in Figs. 1 and 2:

{{1, 7.18437}, {2, 7.41171}, {3, 6.46758}, {4, 9.30980}, {5, 7.54707},
{6,12.6665}, {7, 12.63065}, {8, 11.73464}, {9, 14.28273}, {10, 15.95493},
{11, 16.86929}, {12, 15.17158}, {13, 19.68491}, {14, 18.75987}, {15, 20.21733},
{16, 22.45007}, {17, 21.67026}, {18, 24.78354}, {19, 25.03960}, {20, 25.04889}}

Data set with outlier, used in Fig. 3:

{{1, 7.18437}, {2, 7.41171}, {3, 6.46758}, {4, 9.30980}, {5, 7.54707},
{6, 12.6665}, {7, 12.63065}, {8, 11.73464}, {9, 14.28273}, {10, 15.95493},
{11, 16.86929}, {12, 15.17158}, {13, 19.68491}, {14, 18.75987}, {15, 20.21733},
{16, 42.45007}, {17, 21.67026}, {18, 24.78354}, {19, 25.03960}, {20, 25.04889}}

Data set used in Fig. 4:

{{0, 0.847361}, {1, 0.161051}, {2, 0.209979}, {3, 0.576722}, {4, 0.533068},
{5, 0.795271}, {6, 1.37877}, {7, 2.09677}, {8, 2.44694}, {9, 2.71329},
{10, 3.26994}, {11, 4.59521}, {12, 5.26873}, {13, 5.52998}, {14, 6.69377},
{15, 7.73503}, {16, 8.03944}, {17, 9.02567}, {18, 10.6446}, {19, 11.4847},
{20, 12.5403}}
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