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The idea utilized here is to take two integral approximations and combine them in a smart way that yields a new
approximation that is more accurate. This process in general is called Richardson’s extrapolation.

Consider two applications of the composite trapezoidal rule, one with with step size h1 and another with step size
h2 < h1. The integral I =

∫ b
a f(x) dx is give by

I = IT (h1) + E(h1) = IT (h2) + E(h2) (1)

where IT (hi) refers to a trapezoidal rule result with step size hi and errors given by

E(hi) =
b− a

12
h2i f

(2)(ci)

If we assume that f (2)(c1) ∼ f (2)(c2) = K = constant, then we have

E(h1)

E(h2)
∼
(
h1
h2

)2

−→ E(h1) ∼
(
h1
h2

)2

E(h2)

Substituting this back into Eq. (1), we can say:

I ∼ IT (h1) +

(
h1
h2

)2

E(h2) = IT (h2) + E(h2)

Solve for E(h2):

E(h2) ∼
IT (h1)− IT (h2)

1− (h1/h2)2

Substitute this back into Eq. (1)

I = IT (h2) + E(h2)

∼ IT (h2) +
IT (h1)− IT (h2)

1− (h1/h2)2

∼ IT (h2)

(
(h1/h2)

2

(h1/h2)2 − 1

)
− IT (h1)

(
1

(h1/h2)2 − 1

)
So from two approximations to I, we have constructed a third approximation.

If we double the number of partitions in our second Trapezoidal rule, we would have h2 = h1/2, and the result
simplifies to

I ∼ IT (h2) +
IT (h2)− IT (h1)

3

∼ 4

3
IT (h2)−

1

3
IT (h1)

This new estimate has an error O(h4).
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Romberg Table

We can structure the process in a Romberg table in the following manner.

R11 = T1
R21 = T2 R22

R31 = T4 R32 R33

R41 = T8 R42 R43 R44

R51 = T16 R52 R53 R54 R55

where the first column is initialized using trapezoidal rule where the number of partitions is doubled each time, and
the table is filled in using the recursion relations:

Rk1 = T2k−1

Rk2 = Rk1 +
Rk1 −Rk−1,1

3

Rkj = Rk,j−1 +
Rk,j−1 −Rk−1,j−1

4j−1 − 1
k = 2, 3, . . . , n j = 2, 3, . . . , k

Romberg integration is typically better than Simpson’s rule.

Adaptive Quadrature

Question: Can we improve an integration method by having unequally spaced nodes? This could be useful if the
integrand is smoothly varying over part of the integration region, and wildly varying over another. To get accuracy
in the wildly varying region would put more nodes than needed in the smoothly varying region.

To compute the integral
∫ b
a f(x) dx to a tolerance of ε, we can do the following.∫ b

a
f(x) dx = S(a, b) + E(a, b)

The notation S(a, b) is the integration formula applied to the interval (a, b) (in all cases c ∈ [a, b] and h = b− a):

Trapezoidal rule: S(a, b) =
h

2
(f(a) + f(b)) and E(a, b) = −h

3

12
f (2)(c)

Simpson’s rule: S(a, b) =
h

3
(f(a) + 4f(a+ h) + f(b)) and E(a, b) = −h

5

90
f (4)(c)

Trapezoidal

Start with, where c0 ∈ [a, b]:∫ b

a
f(x) dx = S(a, b)− h3

12
f (2)(c0) (2)

The next step is to halve the region, which will halve the step size, c1 ∈ [a, (a+ b)/2] and c2 ∈ [(a+ b)/2, b]:∫ b

a
f(x) dx = S(a,

a+ b

2
) + S(

a+ b

2
, b)− (h/2)3

12
f (2)(c1)−

(h/2)3

12
f (2)(c2) (3)

= S(a,
a+ b

2
) + S(

a+ b

2
, b)− 1

4
· h

3

12
f (2)(c3) where c3 ∈ [a, b] (4)
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where in the last step we used the generalized intermediate value theorem. If f (2)(c0) ∼ f (2)(c3) then we can say
Eq. (2) ∼ (4), and we have

S(a, b)− h3

12
f (2)(c0) = S(a,

a+ b

2
) + S(

a+ b

2
, b)− 1

4
· h

3

12
f (2)(c0)

h3

12
f (2)(c0) =

4

3

(
S(a, b)− S(a,

a+ b

2
)− S(

a+ b

2
, b)

)
Therefore, using this in Eq. (4), we can say∣∣∣∣∫ b

a
f(x) dx− S(a,

a+ b

2
)− S(

a+ b

2
, b)

∣∣∣∣ ∼ 1

4

∣∣∣∣h312
f (2)(c2)

∣∣∣∣
∼ 1

3

∣∣∣∣S(a, b)− S(a,
a+ b

2
)− S(

a+ b

2
, b)

∣∣∣∣
What does this mean? This means that the quantity S(a, a+b

2 ) + S(a+b
2 , b) approximates the integral

∫ b
a f(x) dx

about three times better than it approximates S(a, b).

Therefore, if∣∣∣∣S(a, b)− S(a,
a+ b

2
)− S(

a+ b

2
, b)

∣∣∣∣ < 3ε

we would expect∣∣∣∣∫ b

a
f(x) dx− S(a,

a+ b

2
)− S(

a+ b

2
, b)

∣∣∣∣ < ε

and we could say we have a sufficiently accurate approximation to the integral.

Simpson’s rule

Start with, where c0 ∈ [a, b]:∫ b

a
f(x) dx = S(a, b)− h5

90
f (4)(c0) (5)

The next step is to halve the region, which will halve the step size, c1 ∈ [a, (a+ b)/2] and c2 ∈ [(a+ b)/2, b]:∫ b

a
f(x) dx = S(a,

a+ b

2
) + S(

a+ b

2
, b)− (h/2)5

90
f (4)(c1)−

(h/2)5

90
f (4)(c2) (6)

= S(a,
a+ b

2
) + S(

a+ b

2
, b)− 1

16
· h

5

90
f (4)(c3) where c3 ∈ [a, b] (7)

where in the last step we used the generalized intermediate value theorem. If f (4)(c0) ∼ f (4)(c3) then we can say
Eq. (5) ∼ (7), and we have

S(a, b)− h5

90
f (4)(c0) = S(a,

a+ b

2
) + S(

a+ b

2
, b)− 1

16
· h

5

90
f (4)(c0)

h5

90
f (4)(c0) =

16

15

(
S(a, b)− S(a,

a+ b

2
)− S(

a+ b

2
, b)

)
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Therefore, using this in Eq. (7), we can say∣∣∣∣∫ b

a
f(x) dx− S(a,

a+ b

2
)− S(

a+ b

2
, b)

∣∣∣∣ ∼ 1

16

∣∣∣∣h590
f (4)(c2)

∣∣∣∣
∼ 1

15

∣∣∣∣S(a, b)− S(a,
a+ b

2
)− S(

a+ b

2
, b)

∣∣∣∣
Therefore, the quantity S(a, a+b

2 ) + S(a+b
2 , b) approximates the integral

∫ b
a f(x) dx about fifteen times better than

it approximates S(a, b).

Therefore, if∣∣∣∣S(a, b)− S(a,
a+ b

2
)− S(

a+ b

2
, b)

∣∣∣∣ < 15ε

we would expect∣∣∣∣∫ b

a
f(x) dx− S(a,

a+ b

2
)− S(

a+ b

2
, b)

∣∣∣∣ < ε

and we could say we have a sufficiently accurate approximation to the integral.

The process to implement adaptive integration is to subdivide the intervals whenever the error is greater than 15ε,
until the error inside a subdivision is less than ε/2k where k is the number of subdivisions that have taken place.

Notes:

• Adaptive Quadrature using Simpson’s rule arrives at 15ε rather than 3ε as the condition for achieving a
tolerance of ε in the integral.
• Adaptive quadrature typically uses Simpson’s rule, although you can set it up for any rule you like.
• In practice, we do choose the factor of 15 to be slightly smaller to allow for the fact that f (4)(c0) ∼ f (4)(c3)

is only an approximation. If the fourth derivative was known to be wildly varying, then we should lower the
bound even further.


