Math 4401: NM Assignment 2 Due: Feb 26, 2008

Your solutions can contain Mathematica output and handwritten sheets. Don't try to spend too much time typesetting on Mathematica-but you should add enough details to make the Mathematica file understandable!
If your Mathematica file is long, supress unnecessary output and scale diagrams to reduce its size. If your Mathematica solution is 20 pages long, then talk to me before you print it out! I will probably want you to give me a shortened version on paper, and you can then email me the complete Mathematica file for my pleasure.
Remember-talk to me and your peers if you have any questions.
(20) 1. Given the function $f(x)=x \ln (x+1)$, we have seen how to construct the Taylor polynomial approximation $T_{20}(x)$ and the Padé approximant $[L, M]=[10,10]$.
Construct these approximations, and graph the errors $\left|f(x)-T_{20}(x)\right|$ and $|f(x)-[10,10]|$.
The Padé approximant concept can be extended to algebraic approximants, which we can call $[L, M, N]$, in the following manner.
Polynomials $P_{L}(x), Q_{M}(x)$, and $R_{N}(x)$ can be used to form the quantity

$$
P_{L}(x)+T_{n}(x) Q_{M}(x)+\left(T_{n}(x)\right)^{2} R_{N}(x)=0
$$

Proceeding as we did for the Padé approximants, you can collect powers of x, then set coefficients of the first $L+M+N+2$ coefficents equal to zero to solve for the $L+M+N+2$ unknowns (we can set one unknown equal to 1 , so pick $q_{0}=1$).
The $[L, M, N]$ approximants are then found by the solving the equation

$$
P_{L}(x)+[L, M, N] Q_{M}(x)+([L, M, N])^{2} R_{N}(x)=0
$$

for $[L, M, N]$. Since this is a quadratic, it can be done by hand and you will find two algebraic approximants, $[L, M, N]_{1}$ and $[L, M, N]_{2}$.
Construct the $[5,5,5]_{1}$ and $[5,5,5]_{2}$ algebraic approximants, and graph the errors $\left|f(x)-[5,5,5]_{1}\right|$ and $\left|f(x)-[5,5,5]_{1}\right|$. Comment on the behaviour of the two algebraic approximants.
What benefit does the algebraic approximant provide us? One benefit is seen if you evaluate $f(-2), T_{20}(-2)$, and the Padé and the algebraic approximants at $x=-2$. Comment on what you find.
(20) 2. Given $f(x)=x^{3}+2 x^{2}+10 x-20$, find all three roots (complex and real valued) to 10^{-8} using Müller's method. You may want to use a random search of phase space to help you find all the roots. Randomly sample phase space points and see what roots are found (you can wrap this in a Do loop if you like, and use the Mathematica command Random). If you do use this method, comment on how your random search worked-which root was most likely found? Was a root difficult to find?
(20) 3. 3.1.28 from the text. Include in your solution a sketch of the data points and the approximating polynomial you used.
(20) 4. 3.4.30 from the text.

You should plot the velocity as a function of time, and explain what characteristics of this plot let you know that the cubic spline is a free cubic spline.
(20) 5. 4.1.28 from the text.

You won't need Mathematica to do this problem. The goal is to write four equations, and then combine them in an ingenious way to solve for $f^{(3)}\left(x_{0}\right)$ in terms of $f\left(x_{0}+h\right), f\left(x_{0}-h\right), f\left(x_{0}+2 h\right), f\left(x_{0}-2 h\right)$. The error term should just tag along, and when you are done you will see that the error term is $O\left(h^{2}\right)$.
I suggest you work with the pair $f\left(x_{0}+h\right)$ and $f\left(x_{0}-h\right)$ first, combining them to get a new equation. Then, work with $f\left(x_{0}+2 h\right)$ and $f\left(x_{0}-2 h\right)$, again combining them to get a new equation.

